summaryrefslogtreecommitdiff
path: root/drivers/mtd
diff options
context:
space:
mode:
authorLinus Walleij <linus.walleij@stericsson.com>2010-09-13 00:35:22 +0200
committerDavid Woodhouse <David.Woodhouse@intel.com>2010-10-25 00:33:48 +0100
commit6c009ab89a212b4364cdb74192d438f542fb291c (patch)
tree8306b42b83b25401ddd1faa017187a0f3a94faed /drivers/mtd
parent3866f673ebd86e5be2533923f5c0aed91fe1669f (diff)
downloadlwn-6c009ab89a212b4364cdb74192d438f542fb291c.tar.gz
lwn-6c009ab89a212b4364cdb74192d438f542fb291c.zip
mtd: generic FSMC NAND MTD driver
This is the same driver submitted by ST Micros SPEAr team but generalized and tested on the ST-Ericsson U300. It probably easily works on the NHK8815 too. Signed-off-by: Vipin Kumar <vipin.kumar@st.com> Signed-off-by: Rajeev Kumar <rajeev-dlh.kumar@st.com> Signed-off-by: Shiraz Hashim <shiraz.hashim@st.com> Signed-off-by: Viresh Kumar <viresh.kumar@st.com> Signed-off-by: Linus Walleij <linus.walleij@stericsson.com> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Diffstat (limited to 'drivers/mtd')
-rw-r--r--drivers/mtd/nand/Kconfig7
-rw-r--r--drivers/mtd/nand/Makefile1
-rw-r--r--drivers/mtd/nand/fsmc_nand.c866
3 files changed, 874 insertions, 0 deletions
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index a6f22f5bbef6..a494cce704b9 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -524,4 +524,11 @@ config MTD_NAND_JZ4740
help
Enables support for NAND Flash on JZ4740 SoC based boards.
+config MTD_NAND_FSMC
+ tristate "Support for NAND on ST Micros FSMC"
+ depends on PLAT_SPEAR || PLAT_NOMADIK || MACH_U300
+ help
+ Enables support for NAND Flash chips on the ST Microelectronics
+ Flexible Static Memory Controller (FSMC)
+
endif # MTD_NAND
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index ac83dcdac5d6..8ad6faec72cb 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -19,6 +19,7 @@ obj-$(CONFIG_MTD_NAND_PPCHAMELEONEVB) += ppchameleonevb.o
obj-$(CONFIG_MTD_NAND_S3C2410) += s3c2410.o
obj-$(CONFIG_MTD_NAND_DAVINCI) += davinci_nand.o
obj-$(CONFIG_MTD_NAND_DISKONCHIP) += diskonchip.o
+obj-$(CONFIG_MTD_NAND_FSMC) += fsmc_nand.o
obj-$(CONFIG_MTD_NAND_H1900) += h1910.o
obj-$(CONFIG_MTD_NAND_RTC_FROM4) += rtc_from4.o
obj-$(CONFIG_MTD_NAND_SHARPSL) += sharpsl.o
diff --git a/drivers/mtd/nand/fsmc_nand.c b/drivers/mtd/nand/fsmc_nand.c
new file mode 100644
index 000000000000..02edfba25b0c
--- /dev/null
+++ b/drivers/mtd/nand/fsmc_nand.c
@@ -0,0 +1,866 @@
+/*
+ * drivers/mtd/nand/fsmc_nand.c
+ *
+ * ST Microelectronics
+ * Flexible Static Memory Controller (FSMC)
+ * Driver for NAND portions
+ *
+ * Copyright © 2010 ST Microelectronics
+ * Vipin Kumar <vipin.kumar@st.com>
+ * Ashish Priyadarshi
+ *
+ * Based on drivers/mtd/nand/nomadik_nand.c
+ *
+ * This file is licensed under the terms of the GNU General Public
+ * License version 2. This program is licensed "as is" without any
+ * warranty of any kind, whether express or implied.
+ */
+
+#include <linux/clk.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/resource.h>
+#include <linux/sched.h>
+#include <linux/types.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/platform_device.h>
+#include <linux/mtd/partitions.h>
+#include <linux/io.h>
+#include <linux/slab.h>
+#include <linux/mtd/fsmc.h>
+#include <mtd/mtd-abi.h>
+
+static struct nand_ecclayout fsmc_ecc1_layout = {
+ .eccbytes = 24,
+ .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52,
+ 66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116},
+ .oobfree = {
+ {.offset = 8, .length = 8},
+ {.offset = 24, .length = 8},
+ {.offset = 40, .length = 8},
+ {.offset = 56, .length = 8},
+ {.offset = 72, .length = 8},
+ {.offset = 88, .length = 8},
+ {.offset = 104, .length = 8},
+ {.offset = 120, .length = 8}
+ }
+};
+
+static struct nand_ecclayout fsmc_ecc4_lp_layout = {
+ .eccbytes = 104,
+ .eccpos = { 2, 3, 4, 5, 6, 7, 8,
+ 9, 10, 11, 12, 13, 14,
+ 18, 19, 20, 21, 22, 23, 24,
+ 25, 26, 27, 28, 29, 30,
+ 34, 35, 36, 37, 38, 39, 40,
+ 41, 42, 43, 44, 45, 46,
+ 50, 51, 52, 53, 54, 55, 56,
+ 57, 58, 59, 60, 61, 62,
+ 66, 67, 68, 69, 70, 71, 72,
+ 73, 74, 75, 76, 77, 78,
+ 82, 83, 84, 85, 86, 87, 88,
+ 89, 90, 91, 92, 93, 94,
+ 98, 99, 100, 101, 102, 103, 104,
+ 105, 106, 107, 108, 109, 110,
+ 114, 115, 116, 117, 118, 119, 120,
+ 121, 122, 123, 124, 125, 126
+ },
+ .oobfree = {
+ {.offset = 15, .length = 3},
+ {.offset = 31, .length = 3},
+ {.offset = 47, .length = 3},
+ {.offset = 63, .length = 3},
+ {.offset = 79, .length = 3},
+ {.offset = 95, .length = 3},
+ {.offset = 111, .length = 3},
+ {.offset = 127, .length = 1}
+ }
+};
+
+/*
+ * ECC placement definitions in oobfree type format.
+ * There are 13 bytes of ecc for every 512 byte block and it has to be read
+ * consecutively and immediately after the 512 byte data block for hardware to
+ * generate the error bit offsets in 512 byte data.
+ * Managing the ecc bytes in the following way makes it easier for software to
+ * read ecc bytes consecutive to data bytes. This way is similar to
+ * oobfree structure maintained already in generic nand driver
+ */
+static struct fsmc_eccplace fsmc_ecc4_lp_place = {
+ .eccplace = {
+ {.offset = 2, .length = 13},
+ {.offset = 18, .length = 13},
+ {.offset = 34, .length = 13},
+ {.offset = 50, .length = 13},
+ {.offset = 66, .length = 13},
+ {.offset = 82, .length = 13},
+ {.offset = 98, .length = 13},
+ {.offset = 114, .length = 13}
+ }
+};
+
+static struct nand_ecclayout fsmc_ecc4_sp_layout = {
+ .eccbytes = 13,
+ .eccpos = { 0, 1, 2, 3, 6, 7, 8,
+ 9, 10, 11, 12, 13, 14
+ },
+ .oobfree = {
+ {.offset = 15, .length = 1},
+ }
+};
+
+static struct fsmc_eccplace fsmc_ecc4_sp_place = {
+ .eccplace = {
+ {.offset = 0, .length = 4},
+ {.offset = 6, .length = 9}
+ }
+};
+
+/*
+ * Default partition tables to be used if the partition information not
+ * provided through platform data
+ */
+#define PARTITION(n, off, sz) {.name = n, .offset = off, .size = sz}
+
+/*
+ * Default partition layout for small page(= 512 bytes) devices
+ * Size for "Root file system" is updated in driver based on actual device size
+ */
+static struct mtd_partition partition_info_16KB_blk[] = {
+ PARTITION("X-loader", 0, 4 * 0x4000),
+ PARTITION("U-Boot", 0x10000, 20 * 0x4000),
+ PARTITION("Kernel", 0x60000, 256 * 0x4000),
+ PARTITION("Root File System", 0x460000, 0),
+};
+
+/*
+ * Default partition layout for large page(> 512 bytes) devices
+ * Size for "Root file system" is updated in driver based on actual device size
+ */
+static struct mtd_partition partition_info_128KB_blk[] = {
+ PARTITION("X-loader", 0, 4 * 0x20000),
+ PARTITION("U-Boot", 0x80000, 12 * 0x20000),
+ PARTITION("Kernel", 0x200000, 48 * 0x20000),
+ PARTITION("Root File System", 0x800000, 0),
+};
+
+#ifdef CONFIG_MTD_CMDLINE_PARTS
+const char *part_probes[] = { "cmdlinepart", NULL };
+#endif
+
+/**
+ * struct fsmc_nand_data - atructure for FSMC NAND device state
+ *
+ * @mtd: MTD info for a NAND flash.
+ * @nand: Chip related info for a NAND flash.
+ * @partitions: Partition info for a NAND Flash.
+ * @nr_partitions: Total number of partition of a NAND flash.
+ *
+ * @ecc_place: ECC placing locations in oobfree type format.
+ * @bank: Bank number for probed device.
+ * @clk: Clock structure for FSMC.
+ *
+ * @data_va: NAND port for Data.
+ * @cmd_va: NAND port for Command.
+ * @addr_va: NAND port for Address.
+ * @regs_va: FSMC regs base address.
+ */
+struct fsmc_nand_data {
+ struct mtd_info mtd;
+ struct nand_chip nand;
+ struct mtd_partition *partitions;
+ unsigned int nr_partitions;
+
+ struct fsmc_eccplace *ecc_place;
+ unsigned int bank;
+ struct clk *clk;
+
+ struct resource *resregs;
+ struct resource *rescmd;
+ struct resource *resaddr;
+ struct resource *resdata;
+
+ void __iomem *data_va;
+ void __iomem *cmd_va;
+ void __iomem *addr_va;
+ void __iomem *regs_va;
+
+ void (*select_chip)(uint32_t bank, uint32_t busw);
+};
+
+/* Assert CS signal based on chipnr */
+static void fsmc_select_chip(struct mtd_info *mtd, int chipnr)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsmc_nand_data *host;
+
+ host = container_of(mtd, struct fsmc_nand_data, mtd);
+
+ switch (chipnr) {
+ case -1:
+ chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
+ break;
+ case 0:
+ case 1:
+ case 2:
+ case 3:
+ if (host->select_chip)
+ host->select_chip(chipnr,
+ chip->options & NAND_BUSWIDTH_16);
+ break;
+
+ default:
+ BUG();
+ }
+}
+
+/*
+ * fsmc_cmd_ctrl - For facilitaing Hardware access
+ * This routine allows hardware specific access to control-lines(ALE,CLE)
+ */
+static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
+{
+ struct nand_chip *this = mtd->priv;
+ struct fsmc_nand_data *host = container_of(mtd,
+ struct fsmc_nand_data, mtd);
+ struct fsmc_regs *regs = host->regs_va;
+ unsigned int bank = host->bank;
+
+ if (ctrl & NAND_CTRL_CHANGE) {
+ if (ctrl & NAND_CLE) {
+ this->IO_ADDR_R = (void __iomem *)host->cmd_va;
+ this->IO_ADDR_W = (void __iomem *)host->cmd_va;
+ } else if (ctrl & NAND_ALE) {
+ this->IO_ADDR_R = (void __iomem *)host->addr_va;
+ this->IO_ADDR_W = (void __iomem *)host->addr_va;
+ } else {
+ this->IO_ADDR_R = (void __iomem *)host->data_va;
+ this->IO_ADDR_W = (void __iomem *)host->data_va;
+ }
+
+ if (ctrl & NAND_NCE) {
+ writel(readl(&regs->bank_regs[bank].pc) | FSMC_ENABLE,
+ &regs->bank_regs[bank].pc);
+ } else {
+ writel(readl(&regs->bank_regs[bank].pc) & ~FSMC_ENABLE,
+ &regs->bank_regs[bank].pc);
+ }
+ }
+
+ mb();
+
+ if (cmd != NAND_CMD_NONE)
+ writeb(cmd, this->IO_ADDR_W);
+}
+
+/*
+ * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
+ *
+ * This routine initializes timing parameters related to NAND memory access in
+ * FSMC registers
+ */
+static void __init fsmc_nand_setup(struct fsmc_regs *regs, uint32_t bank,
+ uint32_t busw)
+{
+ uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
+
+ if (busw)
+ writel(value | FSMC_DEVWID_16, &regs->bank_regs[bank].pc);
+ else
+ writel(value | FSMC_DEVWID_8, &regs->bank_regs[bank].pc);
+
+ writel(readl(&regs->bank_regs[bank].pc) | FSMC_TCLR_1 | FSMC_TAR_1,
+ &regs->bank_regs[bank].pc);
+ writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0,
+ &regs->bank_regs[bank].comm);
+ writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0,
+ &regs->bank_regs[bank].attrib);
+}
+
+/*
+ * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
+ */
+static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+ struct fsmc_nand_data *host = container_of(mtd,
+ struct fsmc_nand_data, mtd);
+ struct fsmc_regs *regs = host->regs_va;
+ uint32_t bank = host->bank;
+
+ writel(readl(&regs->bank_regs[bank].pc) & ~FSMC_ECCPLEN_256,
+ &regs->bank_regs[bank].pc);
+ writel(readl(&regs->bank_regs[bank].pc) & ~FSMC_ECCEN,
+ &regs->bank_regs[bank].pc);
+ writel(readl(&regs->bank_regs[bank].pc) | FSMC_ECCEN,
+ &regs->bank_regs[bank].pc);
+}
+
+/*
+ * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
+ * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction upto
+ * max of 8-bits)
+ */
+static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
+ uint8_t *ecc)
+{
+ struct fsmc_nand_data *host = container_of(mtd,
+ struct fsmc_nand_data, mtd);
+ struct fsmc_regs *regs = host->regs_va;
+ uint32_t bank = host->bank;
+ uint32_t ecc_tmp;
+ unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
+
+ do {
+ if (readl(&regs->bank_regs[bank].sts) & FSMC_CODE_RDY)
+ break;
+ else
+ cond_resched();
+ } while (!time_after_eq(jiffies, deadline));
+
+ ecc_tmp = readl(&regs->bank_regs[bank].ecc1);
+ ecc[0] = (uint8_t) (ecc_tmp >> 0);
+ ecc[1] = (uint8_t) (ecc_tmp >> 8);
+ ecc[2] = (uint8_t) (ecc_tmp >> 16);
+ ecc[3] = (uint8_t) (ecc_tmp >> 24);
+
+ ecc_tmp = readl(&regs->bank_regs[bank].ecc2);
+ ecc[4] = (uint8_t) (ecc_tmp >> 0);
+ ecc[5] = (uint8_t) (ecc_tmp >> 8);
+ ecc[6] = (uint8_t) (ecc_tmp >> 16);
+ ecc[7] = (uint8_t) (ecc_tmp >> 24);
+
+ ecc_tmp = readl(&regs->bank_regs[bank].ecc3);
+ ecc[8] = (uint8_t) (ecc_tmp >> 0);
+ ecc[9] = (uint8_t) (ecc_tmp >> 8);
+ ecc[10] = (uint8_t) (ecc_tmp >> 16);
+ ecc[11] = (uint8_t) (ecc_tmp >> 24);
+
+ ecc_tmp = readl(&regs->bank_regs[bank].sts);
+ ecc[12] = (uint8_t) (ecc_tmp >> 16);
+
+ return 0;
+}
+
+/*
+ * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
+ * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction upto
+ * max of 1-bit)
+ */
+static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
+ uint8_t *ecc)
+{
+ struct fsmc_nand_data *host = container_of(mtd,
+ struct fsmc_nand_data, mtd);
+ struct fsmc_regs *regs = host->regs_va;
+ uint32_t bank = host->bank;
+ uint32_t ecc_tmp;
+
+ ecc_tmp = readl(&regs->bank_regs[bank].ecc1);
+ ecc[0] = (uint8_t) (ecc_tmp >> 0);
+ ecc[1] = (uint8_t) (ecc_tmp >> 8);
+ ecc[2] = (uint8_t) (ecc_tmp >> 16);
+
+ return 0;
+}
+
+/*
+ * fsmc_read_page_hwecc
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @page: page number to read
+ *
+ * This routine is needed for fsmc verison 8 as reading from NAND chip has to be
+ * performed in a strict sequence as follows:
+ * data(512 byte) -> ecc(13 byte)
+ * After this read, fsmc hardware generates and reports error data bits(upto a
+ * max of 8 bits)
+ */
+static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf, int page)
+{
+ struct fsmc_nand_data *host = container_of(mtd,
+ struct fsmc_nand_data, mtd);
+ struct fsmc_eccplace *ecc_place = host->ecc_place;
+ int i, j, s, stat, eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ uint8_t *p = buf;
+ uint8_t *ecc_calc = chip->buffers->ecccalc;
+ uint8_t *ecc_code = chip->buffers->ecccode;
+ int off, len, group = 0;
+ /*
+ * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
+ * end up reading 14 bytes (7 words) from oob. The local array is
+ * to maintain word alignment
+ */
+ uint16_t ecc_oob[7];
+ uint8_t *oob = (uint8_t *)&ecc_oob[0];
+
+ for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
+
+ chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
+ chip->ecc.hwctl(mtd, NAND_ECC_READ);
+ chip->read_buf(mtd, p, eccsize);
+
+ for (j = 0; j < eccbytes;) {
+ off = ecc_place->eccplace[group].offset;
+ len = ecc_place->eccplace[group].length;
+ group++;
+
+ /*
+ * length is intentionally kept a higher multiple of 2
+ * to read at least 13 bytes even in case of 16 bit NAND
+ * devices
+ */
+ len = roundup(len, 2);
+ chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
+ chip->read_buf(mtd, oob + j, len);
+ j += len;
+ }
+
+ memcpy(&ecc_code[i], oob, 13);
+ chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+ stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+ if (stat < 0)
+ mtd->ecc_stats.failed++;
+ else
+ mtd->ecc_stats.corrected += stat;
+ }
+
+ return 0;
+}
+
+/*
+ * fsmc_correct_data
+ * @mtd: mtd info structure
+ * @dat: buffer of read data
+ * @read_ecc: ecc read from device spare area
+ * @calc_ecc: ecc calculated from read data
+ *
+ * calc_ecc is a 104 bit information containing maximum of 8 error
+ * offset informations of 13 bits each in 512 bytes of read data.
+ */
+static int fsmc_correct_data(struct mtd_info *mtd, uint8_t *dat,
+ uint8_t *read_ecc, uint8_t *calc_ecc)
+{
+ struct fsmc_nand_data *host = container_of(mtd,
+ struct fsmc_nand_data, mtd);
+ struct fsmc_regs *regs = host->regs_va;
+ unsigned int bank = host->bank;
+ uint16_t err_idx[8];
+ uint64_t ecc_data[2];
+ uint32_t num_err, i;
+
+ /* The calculated ecc is actually the correction index in data */
+ memcpy(ecc_data, calc_ecc, 13);
+
+ /*
+ * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
+ * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
+ *
+ * calc_ecc is a 104 bit information containing maximum of 8 error
+ * offset informations of 13 bits each. calc_ecc is copied into a
+ * uint64_t array and error offset indexes are populated in err_idx
+ * array
+ */
+ for (i = 0; i < 8; i++) {
+ if (i == 4) {
+ err_idx[4] = ((ecc_data[1] & 0x1) << 12) | ecc_data[0];
+ ecc_data[1] >>= 1;
+ continue;
+ }
+ err_idx[i] = (ecc_data[i/4] & 0x1FFF);
+ ecc_data[i/4] >>= 13;
+ }
+
+ num_err = (readl(&regs->bank_regs[bank].sts) >> 10) & 0xF;
+
+ if (num_err == 0xF)
+ return -EBADMSG;
+
+ i = 0;
+ while (num_err--) {
+ change_bit(0, (unsigned long *)&err_idx[i]);
+ change_bit(1, (unsigned long *)&err_idx[i]);
+
+ if (err_idx[i] <= 512 * 8) {
+ change_bit(err_idx[i], (unsigned long *)dat);
+ i++;
+ }
+ }
+ return i;
+}
+
+/*
+ * fsmc_nand_probe - Probe function
+ * @pdev: platform device structure
+ */
+static int __init fsmc_nand_probe(struct platform_device *pdev)
+{
+ struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
+ struct fsmc_nand_data *host;
+ struct mtd_info *mtd;
+ struct nand_chip *nand;
+ struct fsmc_regs *regs;
+ struct resource *res;
+ int nr_parts, ret = 0;
+
+ if (!pdata) {
+ dev_err(&pdev->dev, "platform data is NULL\n");
+ return -EINVAL;
+ }
+
+ /* Allocate memory for the device structure (and zero it) */
+ host = kzalloc(sizeof(*host), GFP_KERNEL);
+ if (!host) {
+ dev_err(&pdev->dev, "failed to allocate device structure\n");
+ return -ENOMEM;
+ }
+
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
+ if (!res) {
+ ret = -EIO;
+ goto err_probe1;
+ }
+
+ host->resdata = request_mem_region(res->start, resource_size(res),
+ pdev->name);
+ if (!host->resdata) {
+ ret = -EIO;
+ goto err_probe1;
+ }
+
+ host->data_va = ioremap(res->start, resource_size(res));
+ if (!host->data_va) {
+ ret = -EIO;
+ goto err_probe1;
+ }
+
+ host->resaddr = request_mem_region(res->start + PLAT_NAND_ALE,
+ resource_size(res), pdev->name);
+ if (!host->resaddr) {
+ ret = -EIO;
+ goto err_probe1;
+ }
+
+ host->addr_va = ioremap(res->start + PLAT_NAND_ALE, resource_size(res));
+ if (!host->addr_va) {
+ ret = -EIO;
+ goto err_probe1;
+ }
+
+ host->rescmd = request_mem_region(res->start + PLAT_NAND_CLE,
+ resource_size(res), pdev->name);
+ if (!host->rescmd) {
+ ret = -EIO;
+ goto err_probe1;
+ }
+
+ host->cmd_va = ioremap(res->start + PLAT_NAND_CLE, resource_size(res));
+ if (!host->cmd_va) {
+ ret = -EIO;
+ goto err_probe1;
+ }
+
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
+ if (!res) {
+ ret = -EIO;
+ goto err_probe1;
+ }
+
+ host->resregs = request_mem_region(res->start, resource_size(res),
+ pdev->name);
+ if (!host->resregs) {
+ ret = -EIO;
+ goto err_probe1;
+ }
+
+ host->regs_va = ioremap(res->start, resource_size(res));
+ if (!host->regs_va) {
+ ret = -EIO;
+ goto err_probe1;
+ }
+
+ host->clk = clk_get(&pdev->dev, NULL);
+ if (IS_ERR(host->clk)) {
+ dev_err(&pdev->dev, "failed to fetch block clock\n");
+ ret = PTR_ERR(host->clk);
+ host->clk = NULL;
+ goto err_probe1;
+ }
+
+ ret = clk_enable(host->clk);
+ if (ret)
+ goto err_probe1;
+
+ host->bank = pdata->bank;
+ host->select_chip = pdata->select_bank;
+ regs = host->regs_va;
+
+ /* Link all private pointers */
+ mtd = &host->mtd;
+ nand = &host->nand;
+ mtd->priv = nand;
+ nand->priv = host;
+
+ host->mtd.owner = THIS_MODULE;
+ nand->IO_ADDR_R = host->data_va;
+ nand->IO_ADDR_W = host->data_va;
+ nand->cmd_ctrl = fsmc_cmd_ctrl;
+ nand->chip_delay = 30;
+
+ nand->ecc.mode = NAND_ECC_HW;
+ nand->ecc.hwctl = fsmc_enable_hwecc;
+ nand->ecc.size = 512;
+ nand->options = pdata->options;
+ nand->select_chip = fsmc_select_chip;
+
+ if (pdata->width == FSMC_NAND_BW16)
+ nand->options |= NAND_BUSWIDTH_16;
+
+ fsmc_nand_setup(regs, host->bank, nand->options & NAND_BUSWIDTH_16);
+
+ if (get_fsmc_version(host->regs_va) == FSMC_VER8) {
+ nand->ecc.read_page = fsmc_read_page_hwecc;
+ nand->ecc.calculate = fsmc_read_hwecc_ecc4;
+ nand->ecc.correct = fsmc_correct_data;
+ nand->ecc.bytes = 13;
+ } else {
+ nand->ecc.calculate = fsmc_read_hwecc_ecc1;
+ nand->ecc.correct = nand_correct_data;
+ nand->ecc.bytes = 3;
+ }
+
+ /*
+ * Scan to find existance of the device
+ */
+ if (nand_scan_ident(&host->mtd, 1, NULL)) {
+ ret = -ENXIO;
+ dev_err(&pdev->dev, "No NAND Device found!\n");
+ goto err_probe;
+ }
+
+ if (get_fsmc_version(host->regs_va) == FSMC_VER8) {
+ if (host->mtd.writesize == 512) {
+ nand->ecc.layout = &fsmc_ecc4_sp_layout;
+ host->ecc_place = &fsmc_ecc4_sp_place;
+ } else {
+ nand->ecc.layout = &fsmc_ecc4_lp_layout;
+ host->ecc_place = &fsmc_ecc4_lp_place;
+ }
+ } else {
+ nand->ecc.layout = &fsmc_ecc1_layout;
+ }
+
+ /* Second stage of scan to fill MTD data-structures */
+ if (nand_scan_tail(&host->mtd)) {
+ ret = -ENXIO;
+ goto err_probe;
+ }
+
+ /*
+ * The partition information can is accessed by (in the same precedence)
+ *
+ * command line through Bootloader,
+ * platform data,
+ * default partition information present in driver.
+ */
+#ifdef CONFIG_MTD_PARTITIONS
+#ifdef CONFIG_MTD_CMDLINE_PARTS
+ /*
+ * Check if partition info passed via command line
+ */
+ host->mtd.name = "nand";
+ nr_parts = parse_mtd_partitions(&host->mtd, part_probes,
+ &host->partitions, 0);
+ if (nr_parts > 0) {
+ host->nr_partitions = nr_parts;
+ } else {
+#endif
+ /*
+ * Check if partition info passed via command line
+ */
+ if (pdata->partitions) {
+ host->partitions = pdata->partitions;
+ host->nr_partitions = pdata->nr_partitions;
+ } else {
+ struct mtd_partition *partition;
+ int i;
+
+ /* Select the default partitions info */
+ switch (host->mtd.size) {
+ case 0x01000000:
+ case 0x02000000:
+ case 0x04000000:
+ host->partitions = partition_info_16KB_blk;
+ host->nr_partitions =
+ sizeof(partition_info_16KB_blk) /
+ sizeof(struct mtd_partition);
+ break;
+ case 0x08000000:
+ case 0x10000000:
+ case 0x20000000:
+ case 0x40000000:
+ host->partitions = partition_info_128KB_blk;
+ host->nr_partitions =
+ sizeof(partition_info_128KB_blk) /
+ sizeof(struct mtd_partition);
+ break;
+ default:
+ ret = -ENXIO;
+ pr_err("Unsupported NAND size\n");
+ goto err_probe;
+ }
+
+ partition = host->partitions;
+ for (i = 0; i < host->nr_partitions; i++, partition++) {
+ if (partition->size == 0) {
+ partition->size = host->mtd.size -
+ partition->offset;
+ break;
+ }
+ }
+ }
+#ifdef CONFIG_MTD_CMDLINE_PARTS
+ }
+#endif
+
+ if (host->partitions) {
+ ret = add_mtd_partitions(&host->mtd, host->partitions,
+ host->nr_partitions);
+ if (ret)
+ goto err_probe;
+ }
+#else
+ dev_info(&pdev->dev, "Registering %s as whole device\n", mtd->name);
+ if (!add_mtd_device(mtd)) {
+ ret = -ENXIO;
+ goto err_probe;
+ }
+#endif
+
+ platform_set_drvdata(pdev, host);
+ dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
+ return 0;
+
+err_probe:
+ clk_disable(host->clk);
+err_probe1:
+ if (host->clk)
+ clk_put(host->clk);
+ if (host->regs_va)
+ iounmap(host->regs_va);
+ if (host->resregs)
+ release_mem_region(host->resregs->start,
+ resource_size(host->resregs));
+ if (host->cmd_va)
+ iounmap(host->cmd_va);
+ if (host->rescmd)
+ release_mem_region(host->rescmd->start,
+ resource_size(host->rescmd));
+ if (host->addr_va)
+ iounmap(host->addr_va);
+ if (host->resaddr)
+ release_mem_region(host->resaddr->start,
+ resource_size(host->resaddr));
+ if (host->data_va)
+ iounmap(host->data_va);
+ if (host->resdata)
+ release_mem_region(host->resdata->start,
+ resource_size(host->resdata));
+
+ kfree(host);
+ return ret;
+}
+
+/*
+ * Clean up routine
+ */
+static int fsmc_nand_remove(struct platform_device *pdev)
+{
+ struct fsmc_nand_data *host = platform_get_drvdata(pdev);
+
+ platform_set_drvdata(pdev, NULL);
+
+ if (host) {
+#ifdef CONFIG_MTD_PARTITIONS
+ del_mtd_partitions(&host->mtd);
+#else
+ del_mtd_device(&host->mtd);
+#endif
+ clk_disable(host->clk);
+ clk_put(host->clk);
+
+ iounmap(host->regs_va);
+ release_mem_region(host->resregs->start,
+ resource_size(host->resregs));
+ iounmap(host->cmd_va);
+ release_mem_region(host->rescmd->start,
+ resource_size(host->rescmd));
+ iounmap(host->addr_va);
+ release_mem_region(host->resaddr->start,
+ resource_size(host->resaddr));
+ iounmap(host->data_va);
+ release_mem_region(host->resdata->start,
+ resource_size(host->resdata));
+
+ kfree(host);
+ }
+ return 0;
+}
+
+#ifdef CONFIG_PM
+static int fsmc_nand_suspend(struct device *dev)
+{
+ struct fsmc_nand_data *host = dev_get_drvdata(dev);
+ if (host)
+ clk_disable(host->clk);
+ return 0;
+}
+
+static int fsmc_nand_resume(struct device *dev)
+{
+ struct fsmc_nand_data *host = dev_get_drvdata(dev);
+ if (host)
+ clk_enable(host->clk);
+ return 0;
+}
+
+static const struct dev_pm_ops fsmc_nand_pm_ops = {
+ .suspend = fsmc_nand_suspend,
+ .resume = fsmc_nand_resume,
+};
+#endif
+
+static struct platform_driver fsmc_nand_driver = {
+ .remove = fsmc_nand_remove,
+ .driver = {
+ .owner = THIS_MODULE,
+ .name = "fsmc-nand",
+#ifdef CONFIG_PM
+ .pm = &fsmc_nand_pm_ops,
+#endif
+ },
+};
+
+static int __init fsmc_nand_init(void)
+{
+ return platform_driver_probe(&fsmc_nand_driver,
+ fsmc_nand_probe);
+}
+module_init(fsmc_nand_init);
+
+static void __exit fsmc_nand_exit(void)
+{
+ platform_driver_unregister(&fsmc_nand_driver);
+}
+module_exit(fsmc_nand_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
+MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");