diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/mtd/nand/rtc_from4.c | |
download | lwn-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.gz lwn-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.zip |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'drivers/mtd/nand/rtc_from4.c')
-rw-r--r-- | drivers/mtd/nand/rtc_from4.c | 559 |
1 files changed, 559 insertions, 0 deletions
diff --git a/drivers/mtd/nand/rtc_from4.c b/drivers/mtd/nand/rtc_from4.c new file mode 100644 index 000000000000..02305a2adca7 --- /dev/null +++ b/drivers/mtd/nand/rtc_from4.c @@ -0,0 +1,559 @@ +/* + * drivers/mtd/nand/rtc_from4.c + * + * Copyright (C) 2004 Red Hat, Inc. + * + * Derived from drivers/mtd/nand/spia.c + * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) + * + * $Id: rtc_from4.c,v 1.7 2004/11/04 12:53:10 gleixner Exp $ + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * Overview: + * This is a device driver for the AG-AND flash device found on the + * Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4), + * which utilizes the Renesas HN29V1G91T-30 part. + * This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device. + */ + +#include <linux/delay.h> +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/slab.h> +#include <linux/rslib.h> +#include <linux/module.h> +#include <linux/mtd/compatmac.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/partitions.h> +#include <asm/io.h> + +/* + * MTD structure for Renesas board + */ +static struct mtd_info *rtc_from4_mtd = NULL; + +#define RTC_FROM4_MAX_CHIPS 2 + +/* HS77x9 processor register defines */ +#define SH77X9_BCR1 ((volatile unsigned short *)(0xFFFFFF60)) +#define SH77X9_BCR2 ((volatile unsigned short *)(0xFFFFFF62)) +#define SH77X9_WCR1 ((volatile unsigned short *)(0xFFFFFF64)) +#define SH77X9_WCR2 ((volatile unsigned short *)(0xFFFFFF66)) +#define SH77X9_MCR ((volatile unsigned short *)(0xFFFFFF68)) +#define SH77X9_PCR ((volatile unsigned short *)(0xFFFFFF6C)) +#define SH77X9_FRQCR ((volatile unsigned short *)(0xFFFFFF80)) + +/* + * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor) + */ +/* Address where flash is mapped */ +#define RTC_FROM4_FIO_BASE 0x14000000 + +/* CLE and ALE are tied to address lines 5 & 4, respectively */ +#define RTC_FROM4_CLE (1 << 5) +#define RTC_FROM4_ALE (1 << 4) + +/* address lines A24-A22 used for chip selection */ +#define RTC_FROM4_NAND_ADDR_SLOT3 (0x00800000) +#define RTC_FROM4_NAND_ADDR_SLOT4 (0x00C00000) +#define RTC_FROM4_NAND_ADDR_FPGA (0x01000000) +/* mask address lines A24-A22 used for chip selection */ +#define RTC_FROM4_NAND_ADDR_MASK (RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA) + +/* FPGA status register for checking device ready (bit zero) */ +#define RTC_FROM4_FPGA_SR (RTC_FROM4_NAND_ADDR_FPGA | 0x00000002) +#define RTC_FROM4_DEVICE_READY 0x0001 + +/* FPGA Reed-Solomon ECC Control register */ + +#define RTC_FROM4_RS_ECC_CTL (RTC_FROM4_NAND_ADDR_FPGA | 0x00000050) +#define RTC_FROM4_RS_ECC_CTL_CLR (1 << 7) +#define RTC_FROM4_RS_ECC_CTL_GEN (1 << 6) +#define RTC_FROM4_RS_ECC_CTL_FD_E (1 << 5) + +/* FPGA Reed-Solomon ECC code base */ +#define RTC_FROM4_RS_ECC (RTC_FROM4_NAND_ADDR_FPGA | 0x00000060) +#define RTC_FROM4_RS_ECCN (RTC_FROM4_NAND_ADDR_FPGA | 0x00000080) + +/* FPGA Reed-Solomon ECC check register */ +#define RTC_FROM4_RS_ECC_CHK (RTC_FROM4_NAND_ADDR_FPGA | 0x00000070) +#define RTC_FROM4_RS_ECC_CHK_ERROR (1 << 7) + +/* Undefine for software ECC */ +#define RTC_FROM4_HWECC 1 + +/* + * Module stuff + */ +static void __iomem *rtc_from4_fio_base = P2SEGADDR(RTC_FROM4_FIO_BASE); + +const static struct mtd_partition partition_info[] = { + { + .name = "Renesas flash partition 1", + .offset = 0, + .size = MTDPART_SIZ_FULL + }, +}; +#define NUM_PARTITIONS 1 + +/* + * hardware specific flash bbt decriptors + * Note: this is to allow debugging by disabling + * NAND_BBT_CREATE and/or NAND_BBT_WRITE + * + */ +static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; +static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' }; + +static struct nand_bbt_descr rtc_from4_bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 40, + .len = 4, + .veroffs = 44, + .maxblocks = 4, + .pattern = bbt_pattern +}; + +static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 40, + .len = 4, + .veroffs = 44, + .maxblocks = 4, + .pattern = mirror_pattern +}; + + + +#ifdef RTC_FROM4_HWECC + +/* the Reed Solomon control structure */ +static struct rs_control *rs_decoder; + +/* + * hardware specific Out Of Band information + */ +static struct nand_oobinfo rtc_from4_nand_oobinfo = { + .useecc = MTD_NANDECC_AUTOPLACE, + .eccbytes = 32, + .eccpos = { + 0, 1, 2, 3, 4, 5, 6, 7, + 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, + 24, 25, 26, 27, 28, 29, 30, 31}, + .oobfree = { {32, 32} } +}; + +/* Aargh. I missed the reversed bit order, when I + * was talking to Renesas about the FPGA. + * + * The table is used for bit reordering and inversion + * of the ecc byte which we get from the FPGA + */ +static uint8_t revbits[256] = { + 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, + 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0, + 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, + 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8, + 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, + 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4, + 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, + 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc, + 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, + 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2, + 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, + 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa, + 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, + 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6, + 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, + 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe, + 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, + 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1, + 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, + 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9, + 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, + 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5, + 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, + 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd, + 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, + 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3, + 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, + 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb, + 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, + 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7, + 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, + 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff, +}; + +#endif + + + +/* + * rtc_from4_hwcontrol - hardware specific access to control-lines + * @mtd: MTD device structure + * @cmd: hardware control command + * + * Address lines (A5 and A4) are used to control Command and Address Latch + * Enable on this board, so set the read/write address appropriately. + * + * Chip Enable is also controlled by the Chip Select (CS5) and + * Address lines (A24-A22), so no action is required here. + * + */ +static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd) +{ + struct nand_chip* this = (struct nand_chip *) (mtd->priv); + + switch(cmd) { + + case NAND_CTL_SETCLE: + this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_CLE); + break; + case NAND_CTL_CLRCLE: + this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_CLE); + break; + + case NAND_CTL_SETALE: + this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_ALE); + break; + case NAND_CTL_CLRALE: + this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_ALE); + break; + + case NAND_CTL_SETNCE: + break; + case NAND_CTL_CLRNCE: + break; + + } +} + + +/* + * rtc_from4_nand_select_chip - hardware specific chip select + * @mtd: MTD device structure + * @chip: Chip to select (0 == slot 3, 1 == slot 4) + * + * The chip select is based on address lines A24-A22. + * This driver uses flash slots 3 and 4 (A23-A22). + * + */ +static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip) +{ + struct nand_chip *this = mtd->priv; + + this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK); + this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK); + + switch(chip) { + + case 0: /* select slot 3 chip */ + this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3); + this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3); + break; + case 1: /* select slot 4 chip */ + this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4); + this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4); + break; + + } +} + + + +/* + * rtc_from4_nand_device_ready - hardware specific ready/busy check + * @mtd: MTD device structure + * + * This board provides the Ready/Busy state in the status register + * of the FPGA. Bit zero indicates the RDY(1)/BSY(0) signal. + * + */ +static int rtc_from4_nand_device_ready(struct mtd_info *mtd) +{ + unsigned short status; + + status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR)); + + return (status & RTC_FROM4_DEVICE_READY); + +} + +#ifdef RTC_FROM4_HWECC +/* + * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function + * @mtd: MTD device structure + * @mode: I/O mode; read or write + * + * enable hardware ECC for data read or write + * + */ +static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode) +{ + volatile unsigned short * rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL); + unsigned short status; + + switch (mode) { + case NAND_ECC_READ : + status = RTC_FROM4_RS_ECC_CTL_CLR + | RTC_FROM4_RS_ECC_CTL_FD_E; + + *rs_ecc_ctl = status; + break; + + case NAND_ECC_READSYN : + status = 0x00; + + *rs_ecc_ctl = status; + break; + + case NAND_ECC_WRITE : + status = RTC_FROM4_RS_ECC_CTL_CLR + | RTC_FROM4_RS_ECC_CTL_GEN + | RTC_FROM4_RS_ECC_CTL_FD_E; + + *rs_ecc_ctl = status; + break; + + default: + BUG(); + break; + } + +} + +/* + * rtc_from4_calculate_ecc - hardware specific code to read ECC code + * @mtd: MTD device structure + * @dat: buffer containing the data to generate ECC codes + * @ecc_code ECC codes calculated + * + * The ECC code is calculated by the FPGA. All we have to do is read the values + * from the FPGA registers. + * + * Note: We read from the inverted registers, since data is inverted before + * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code + * + */ +static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) +{ + volatile unsigned short * rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN); + unsigned short value; + int i; + + for (i = 0; i < 8; i++) { + value = *rs_eccn; + ecc_code[i] = (unsigned char)value; + rs_eccn++; + } + ecc_code[7] |= 0x0f; /* set the last four bits (not used) */ +} + +/* + * rtc_from4_correct_data - hardware specific code to correct data using ECC code + * @mtd: MTD device structure + * @buf: buffer containing the data to generate ECC codes + * @ecc1 ECC codes read + * @ecc2 ECC codes calculated + * + * The FPGA tells us fast, if there's an error or not. If no, we go back happy + * else we read the ecc results from the fpga and call the rs library to decode + * and hopefully correct the error + * + * For now I use the code, which we read from the FLASH to use the RS lib, + * as the syndrom conversion has a unresolved issue. + */ +static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2) +{ + int i, j, res; + unsigned short status; + uint16_t par[6], syn[6], tmp; + uint8_t ecc[8]; + volatile unsigned short *rs_ecc; + + status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK)); + + if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) { + return 0; + } + + /* Read the syndrom pattern from the FPGA and correct the bitorder */ + rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC); + for (i = 0; i < 8; i++) { + ecc[i] = revbits[(*rs_ecc) & 0xFF]; + rs_ecc++; + } + + /* convert into 6 10bit syndrome fields */ + par[5] = rs_decoder->index_of[(((uint16_t)ecc[0] >> 0) & 0x0ff) | + (((uint16_t)ecc[1] << 8) & 0x300)]; + par[4] = rs_decoder->index_of[(((uint16_t)ecc[1] >> 2) & 0x03f) | + (((uint16_t)ecc[2] << 6) & 0x3c0)]; + par[3] = rs_decoder->index_of[(((uint16_t)ecc[2] >> 4) & 0x00f) | + (((uint16_t)ecc[3] << 4) & 0x3f0)]; + par[2] = rs_decoder->index_of[(((uint16_t)ecc[3] >> 6) & 0x003) | + (((uint16_t)ecc[4] << 2) & 0x3fc)]; + par[1] = rs_decoder->index_of[(((uint16_t)ecc[5] >> 0) & 0x0ff) | + (((uint16_t)ecc[6] << 8) & 0x300)]; + par[0] = (((uint16_t)ecc[6] >> 2) & 0x03f) | (((uint16_t)ecc[7] << 6) & 0x3c0); + + /* Convert to computable syndrome */ + for (i = 0; i < 6; i++) { + syn[i] = par[0]; + for (j = 1; j < 6; j++) + if (par[j] != rs_decoder->nn) + syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)]; + + /* Convert to index form */ + syn[i] = rs_decoder->index_of[syn[i]]; + } + + /* Let the library code do its magic.*/ + res = decode_rs8(rs_decoder, buf, par, 512, syn, 0, NULL, 0xff, NULL); + if (res > 0) { + DEBUG (MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: " + "ECC corrected %d errors on read\n", res); + } + return res; +} +#endif + +/* + * Main initialization routine + */ +int __init rtc_from4_init (void) +{ + struct nand_chip *this; + unsigned short bcr1, bcr2, wcr2; + + /* Allocate memory for MTD device structure and private data */ + rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof (struct nand_chip), + GFP_KERNEL); + if (!rtc_from4_mtd) { + printk ("Unable to allocate Renesas NAND MTD device structure.\n"); + return -ENOMEM; + } + + /* Get pointer to private data */ + this = (struct nand_chip *) (&rtc_from4_mtd[1]); + + /* Initialize structures */ + memset((char *) rtc_from4_mtd, 0, sizeof(struct mtd_info)); + memset((char *) this, 0, sizeof(struct nand_chip)); + + /* Link the private data with the MTD structure */ + rtc_from4_mtd->priv = this; + + /* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */ + bcr1 = *SH77X9_BCR1 & ~0x0002; + bcr1 |= 0x0002; + *SH77X9_BCR1 = bcr1; + + /* set */ + bcr2 = *SH77X9_BCR2 & ~0x0c00; + bcr2 |= 0x0800; + *SH77X9_BCR2 = bcr2; + + /* set area 5 wait states */ + wcr2 = *SH77X9_WCR2 & ~0x1c00; + wcr2 |= 0x1c00; + *SH77X9_WCR2 = wcr2; + + /* Set address of NAND IO lines */ + this->IO_ADDR_R = rtc_from4_fio_base; + this->IO_ADDR_W = rtc_from4_fio_base; + /* Set address of hardware control function */ + this->hwcontrol = rtc_from4_hwcontrol; + /* Set address of chip select function */ + this->select_chip = rtc_from4_nand_select_chip; + /* command delay time (in us) */ + this->chip_delay = 100; + /* return the status of the Ready/Busy line */ + this->dev_ready = rtc_from4_nand_device_ready; + +#ifdef RTC_FROM4_HWECC + printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n"); + + this->eccmode = NAND_ECC_HW8_512; + this->options |= NAND_HWECC_SYNDROME; + /* set the nand_oobinfo to support FPGA H/W error detection */ + this->autooob = &rtc_from4_nand_oobinfo; + this->enable_hwecc = rtc_from4_enable_hwecc; + this->calculate_ecc = rtc_from4_calculate_ecc; + this->correct_data = rtc_from4_correct_data; +#else + printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n"); + + this->eccmode = NAND_ECC_SOFT; +#endif + + /* set the bad block tables to support debugging */ + this->bbt_td = &rtc_from4_bbt_main_descr; + this->bbt_md = &rtc_from4_bbt_mirror_descr; + + /* Scan to find existence of the device */ + if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) { + kfree(rtc_from4_mtd); + return -ENXIO; + } + + /* Register the partitions */ + add_mtd_partitions(rtc_from4_mtd, partition_info, NUM_PARTITIONS); + +#ifdef RTC_FROM4_HWECC + /* We could create the decoder on demand, if memory is a concern. + * This way we have it handy, if an error happens + * + * Symbolsize is 10 (bits) + * Primitve polynomial is x^10+x^3+1 + * first consecutive root is 0 + * primitve element to generate roots = 1 + * generator polinomial degree = 6 + */ + rs_decoder = init_rs(10, 0x409, 0, 1, 6); + if (!rs_decoder) { + printk (KERN_ERR "Could not create a RS decoder\n"); + nand_release(rtc_from4_mtd); + kfree(rtc_from4_mtd); + return -ENOMEM; + } +#endif + /* Return happy */ + return 0; +} +module_init(rtc_from4_init); + + +/* + * Clean up routine + */ +#ifdef MODULE +static void __exit rtc_from4_cleanup (void) +{ + /* Release resource, unregister partitions */ + nand_release(rtc_from4_mtd); + + /* Free the MTD device structure */ + kfree (rtc_from4_mtd); + +#ifdef RTC_FROM4_HWECC + /* Free the reed solomon resources */ + if (rs_decoder) { + free_rs(rs_decoder); + } +#endif +} +module_exit(rtc_from4_cleanup); +#endif + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("d.marlin <dmarlin@redhat.com"); +MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4"); + |