summaryrefslogtreecommitdiff
path: root/drivers/hwmon
diff options
context:
space:
mode:
authorHans de Goede <j.w.r.degoede@hhs.nl>2006-06-04 20:22:24 +0200
committerGreg Kroah-Hartman <gregkh@suse.de>2006-06-22 11:10:34 -0700
commitf2b84bbcebfdbe4855bab532909eef6621999f9f (patch)
tree9e0112af923b56af771708505b69e792c4bc9f2f /drivers/hwmon
parentbed730821b74be4c7d135098842219473f7c8f2c (diff)
downloadlwn-f2b84bbcebfdbe4855bab532909eef6621999f9f.tar.gz
lwn-f2b84bbcebfdbe4855bab532909eef6621999f9f.zip
[PATCH] abituguru: New hardware monitoring driver
New hardware monitoring driver for the Abit uGuru Signed-off-by: Hans de Goede <j.w.r.degoede@hhs.nl> Signed-off-by: Jean Delvare <khali@linux-fr.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Diffstat (limited to 'drivers/hwmon')
-rw-r--r--drivers/hwmon/Kconfig12
-rw-r--r--drivers/hwmon/Makefile1
-rw-r--r--drivers/hwmon/abituguru.c1391
3 files changed, 1404 insertions, 0 deletions
diff --git a/drivers/hwmon/Kconfig b/drivers/hwmon/Kconfig
index 164760df1233..6fb93d63bd8c 100644
--- a/drivers/hwmon/Kconfig
+++ b/drivers/hwmon/Kconfig
@@ -27,6 +27,18 @@ config HWMON_VID
tristate
default n
+config SENSORS_ABITUGURU
+ tristate "Abit uGuru"
+ depends on HWMON && EXPERIMENTAL
+ help
+ If you say yes here you get support for the Abit uGuru chips
+ sensor part. The voltage and frequency control parts of the Abit
+ uGuru are not supported. The Abit uGuru chip can be found on Abit
+ uGuru featuring motherboards (most modern Abit motherboards).
+
+ This driver can also be built as a module. If so, the module
+ will be called abituguru.
+
config SENSORS_ADM1021
tristate "Analog Devices ADM1021 and compatibles"
depends on HWMON && I2C
diff --git a/drivers/hwmon/Makefile b/drivers/hwmon/Makefile
index db72b1415e7f..5092999deb7b 100644
--- a/drivers/hwmon/Makefile
+++ b/drivers/hwmon/Makefile
@@ -12,6 +12,7 @@ obj-$(CONFIG_SENSORS_W83792D) += w83792d.o
obj-$(CONFIG_SENSORS_W83781D) += w83781d.o
obj-$(CONFIG_SENSORS_W83791D) += w83791d.o
+obj-$(CONFIG_SENSORS_ABITUGURU) += abituguru.o
obj-$(CONFIG_SENSORS_ADM1021) += adm1021.o
obj-$(CONFIG_SENSORS_ADM1025) += adm1025.o
obj-$(CONFIG_SENSORS_ADM1026) += adm1026.o
diff --git a/drivers/hwmon/abituguru.c b/drivers/hwmon/abituguru.c
new file mode 100644
index 000000000000..bf2cb0aa69b4
--- /dev/null
+++ b/drivers/hwmon/abituguru.c
@@ -0,0 +1,1391 @@
+/*
+ abituguru.c Copyright (c) 2005-2006 Hans de Goede <j.w.r.degoede@hhs.nl>
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+*/
+/*
+ This driver supports the sensor part of the custom Abit uGuru chip found
+ on Abit uGuru motherboards. Note: because of lack of specs the CPU / RAM /
+ etc voltage & frequency control is not supported!
+*/
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <linux/jiffies.h>
+#include <linux/mutex.h>
+#include <linux/err.h>
+#include <linux/platform_device.h>
+#include <linux/hwmon.h>
+#include <linux/hwmon-sysfs.h>
+#include <asm/io.h>
+
+/* Banks */
+#define ABIT_UGURU_ALARM_BANK 0x20 /* 1x 3 bytes */
+#define ABIT_UGURU_SENSOR_BANK1 0x21 /* 16x volt and temp */
+#define ABIT_UGURU_FAN_PWM 0x24 /* 3x 5 bytes */
+#define ABIT_UGURU_SENSOR_BANK2 0x26 /* fans */
+/* max nr of sensors in bank2, currently mb's with max 6 fans are known */
+#define ABIT_UGURU_MAX_BANK2_SENSORS 6
+/* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
+#define ABIT_UGURU_MAX_PWMS 5
+/* uGuru sensor bank 1 flags */ /* Alarm if: */
+#define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE 0x01 /* temp over warn */
+#define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE 0x02 /* volt over max */
+#define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE 0x04 /* volt under min */
+#define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG 0x10 /* temp is over warn */
+#define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG 0x20 /* volt is over max */
+#define ABIT_UGURU_VOLT_LOW_ALARM_FLAG 0x40 /* volt is under min */
+/* uGuru sensor bank 2 flags */ /* Alarm if: */
+#define ABIT_UGURU_FAN_LOW_ALARM_ENABLE 0x01 /* fan under min */
+/* uGuru sensor bank common flags */
+#define ABIT_UGURU_BEEP_ENABLE 0x08 /* beep if alarm */
+#define ABIT_UGURU_SHUTDOWN_ENABLE 0x80 /* shutdown if alarm */
+/* uGuru fan PWM (speed control) flags */
+#define ABIT_UGURU_FAN_PWM_ENABLE 0x80 /* enable speed control */
+/* Values used for conversion */
+#define ABIT_UGURU_FAN_MAX 15300 /* RPM */
+/* Bank1 sensor types */
+#define ABIT_UGURU_IN_SENSOR 0
+#define ABIT_UGURU_TEMP_SENSOR 1
+#define ABIT_UGURU_NC 2
+/* Timeouts / Retries, if these turn out to need a lot of fiddling we could
+ convert them to params. */
+/* 250 was determined by trial and error, 200 works most of the time, but not
+ always. I assume this is cpu-speed independent, since the ISA-bus and not
+ the CPU should be the bottleneck. Note that 250 sometimes is still not
+ enough (only reported on AN7 mb) this is handled by a higher layer. */
+#define ABIT_UGURU_WAIT_TIMEOUT 250
+/* Normally all expected status in abituguru_ready, are reported after the
+ first read, but sometimes not and we need to poll, 5 polls was not enough
+ 50 sofar is. */
+#define ABIT_UGURU_READY_TIMEOUT 50
+/* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
+#define ABIT_UGURU_MAX_RETRIES 3
+#define ABIT_UGURU_RETRY_DELAY (HZ/5)
+/* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is a error */
+#define ABIT_UGURU_MAX_TIMEOUTS 2
+
+/* All the variables below are named identical to the oguru and oguru2 programs
+ reverse engineered by Olle Sandberg, hence the names might not be 100%
+ logical. I could come up with better names, but I prefer keeping the names
+ identical so that this driver can be compared with his work more easily. */
+/* Two i/o-ports are used by uGuru */
+#define ABIT_UGURU_BASE 0x00E0
+/* Used to tell uGuru what to read and to read the actual data */
+#define ABIT_UGURU_CMD 0x00
+/* Mostly used to check if uGuru is busy */
+#define ABIT_UGURU_DATA 0x04
+#define ABIT_UGURU_REGION_LENGTH 5
+/* uGuru status' */
+#define ABIT_UGURU_STATUS_WRITE 0x00 /* Ready to be written */
+#define ABIT_UGURU_STATUS_READ 0x01 /* Ready to be read */
+#define ABIT_UGURU_STATUS_INPUT 0x08 /* More input */
+#define ABIT_UGURU_STATUS_READY 0x09 /* Ready to be written */
+/* utility macros */
+#define ABIT_UGURU_NAME "abituguru"
+#define ABIT_UGURU_DEBUG(level, format, arg...) \
+ if (level <= verbose) \
+ printk(KERN_DEBUG ABIT_UGURU_NAME ": " format , ## arg)
+
+/* Constants */
+/* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
+static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
+/* Min / Max allowed values for sensor2 (fan) alarm threshold, these values
+ correspond to 300-3000 RPM */
+static const u8 abituguru_bank2_min_threshold = 5;
+static const u8 abituguru_bank2_max_threshold = 50;
+/* Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
+ are temperature trip points. */
+static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
+/* Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
+ special case the minium allowed pwm% setting for this is 30% (77) on
+ some MB's this special case is handled in the code! */
+static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
+static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
+
+
+/* Insmod parameters */
+static int force;
+module_param(force, bool, 0);
+MODULE_PARM_DESC(force, "Set to one to force detection.");
+static int fan_sensors;
+module_param(fan_sensors, int, 0);
+MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
+ "(0 = autodetect)");
+static int pwms;
+module_param(pwms, int, 0);
+MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
+ "(0 = autodetect)");
+
+/* Default verbose is 2, since this driver is still in the testing phase */
+static int verbose = 2;
+module_param(verbose, int, 0644);
+MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
+ " 0 normal output\n"
+ " 1 + verbose error reporting\n"
+ " 2 + sensors type probing info\n"
+ " 3 + retryable error reporting");
+
+
+/* For the Abit uGuru, we need to keep some data in memory.
+ The structure is dynamically allocated, at the same time when a new
+ abituguru device is allocated. */
+struct abituguru_data {
+ struct class_device *class_dev; /* hwmon registered device */
+ struct mutex update_lock; /* protect access to data and uGuru */
+ unsigned long last_updated; /* In jiffies */
+ unsigned short addr; /* uguru base address */
+ char uguru_ready; /* is the uguru in ready state? */
+ unsigned char update_timeouts; /* number of update timeouts since last
+ successful update */
+
+ /* The sysfs attr and their names are generated automatically, for bank1
+ we cannot use a predefined array because we don't know beforehand
+ of a sensor is a volt or a temp sensor, for bank2 and the pwms its
+ easier todo things the same way. For in sensors we have 9 (temp 7)
+ sysfs entries per sensor, for bank2 and pwms 6. */
+ struct sensor_device_attribute_2 sysfs_attr[16 * 9 +
+ ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
+ /* Buffer to store the dynamically generated sysfs names, we need 2120
+ bytes for bank1 (worst case scenario of 16 in sensors), 444 bytes
+ for fan1-6 and 738 bytes for pwm1-6 + some room to spare in case I
+ miscounted :) */
+ char bank1_names[3400];
+
+ /* Bank 1 data */
+ u8 bank1_sensors[2]; /* number of [0] in, [1] temp sensors */
+ u8 bank1_address[2][16];/* addresses of [0] in, [1] temp sensors */
+ u8 bank1_value[16];
+ /* This array holds 16 x 3 entries for all the bank 1 sensor settings
+ (flags, min, max for voltage / flags, warn, shutdown for temp). */
+ u8 bank1_settings[16][3];
+ /* Maximum value for each sensor used for scaling in mV/millidegrees
+ Celsius. */
+ int bank1_max_value[16];
+
+ /* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
+ u8 bank2_sensors; /* actual number of bank2 sensors found */
+ u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
+ u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
+
+ /* Alarms 2 bytes for bank1, 1 byte for bank2 */
+ u8 alarms[3];
+
+ /* Fan PWM (speed control) 5 bytes per PWM */
+ u8 pwms; /* actual number of pwms found */
+ u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
+};
+
+/* wait till the uguru is in the specified state */
+static int abituguru_wait(struct abituguru_data *data, u8 state)
+{
+ int timeout = ABIT_UGURU_WAIT_TIMEOUT;
+
+ while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
+ timeout--;
+ if (timeout == 0)
+ return -EBUSY;
+ }
+ return 0;
+}
+
+/* Put the uguru in ready for input state */
+static int abituguru_ready(struct abituguru_data *data)
+{
+ int timeout = ABIT_UGURU_READY_TIMEOUT;
+
+ if (data->uguru_ready)
+ return 0;
+
+ /* Reset? / Prepare for next read/write cycle */
+ outb(0x00, data->addr + ABIT_UGURU_DATA);
+
+ /* Wait till the uguru is ready */
+ if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
+ ABIT_UGURU_DEBUG(1,
+ "timeout exceeded waiting for ready state\n");
+ return -EIO;
+ }
+
+ /* Cmd port MUST be read now and should contain 0xAC */
+ while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
+ timeout--;
+ if (timeout == 0) {
+ ABIT_UGURU_DEBUG(1,
+ "CMD reg does not hold 0xAC after ready command\n");
+ return -EIO;
+ }
+ }
+
+ /* After this the ABIT_UGURU_DATA port should contain
+ ABIT_UGURU_STATUS_INPUT */
+ timeout = ABIT_UGURU_READY_TIMEOUT;
+ while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
+ timeout--;
+ if (timeout == 0) {
+ ABIT_UGURU_DEBUG(1,
+ "state != more input after ready command\n");
+ return -EIO;
+ }
+ }
+
+ data->uguru_ready = 1;
+ return 0;
+}
+
+/* Send the bank and then sensor address to the uGuru for the next read/write
+ cycle. This function gets called as the first part of a read/write by
+ abituguru_read and abituguru_write. This function should never be
+ called by any other function. */
+static int abituguru_send_address(struct abituguru_data *data,
+ u8 bank_addr, u8 sensor_addr, int retries)
+{
+ /* assume the caller does error handling itself if it has not requested
+ any retries, and thus be quiet. */
+ int report_errors = retries;
+
+ for (;;) {
+ /* Make sure the uguru is ready and then send the bank address,
+ after this the uguru is no longer "ready". */
+ if (abituguru_ready(data) != 0)
+ return -EIO;
+ outb(bank_addr, data->addr + ABIT_UGURU_DATA);
+ data->uguru_ready = 0;
+
+ /* Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
+ and send the sensor addr */
+ if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
+ if (retries) {
+ ABIT_UGURU_DEBUG(3, "timeout exceeded "
+ "waiting for more input state, %d "
+ "tries remaining\n", retries);
+ set_current_state(TASK_UNINTERRUPTIBLE);
+ schedule_timeout(ABIT_UGURU_RETRY_DELAY);
+ retries--;
+ continue;
+ }
+ if (report_errors)
+ ABIT_UGURU_DEBUG(1, "timeout exceeded "
+ "waiting for more input state "
+ "(bank: %d)\n", (int)bank_addr);
+ return -EBUSY;
+ }
+ outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
+ return 0;
+ }
+}
+
+/* Read count bytes from sensor sensor_addr in bank bank_addr and store the
+ result in buf, retry the send address part of the read retries times. */
+static int abituguru_read(struct abituguru_data *data,
+ u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
+{
+ int i;
+
+ /* Send the address */
+ i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
+ if (i)
+ return i;
+
+ /* And read the data */
+ for (i = 0; i < count; i++) {
+ if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
+ ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
+ "read state (bank: %d, sensor: %d)\n",
+ (int)bank_addr, (int)sensor_addr);
+ break;
+ }
+ buf[i] = inb(data->addr + ABIT_UGURU_CMD);
+ }
+
+ /* Last put the chip back in ready state */
+ abituguru_ready(data);
+
+ return i;
+}
+
+/* Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
+ address part of the write is always retried ABIT_UGURU_MAX_RETRIES times. */
+static int abituguru_write(struct abituguru_data *data,
+ u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
+{
+ int i;
+
+ /* Send the address */
+ i = abituguru_send_address(data, bank_addr, sensor_addr,
+ ABIT_UGURU_MAX_RETRIES);
+ if (i)
+ return i;
+
+ /* And write the data */
+ for (i = 0; i < count; i++) {
+ if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
+ ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
+ "write state (bank: %d, sensor: %d)\n",
+ (int)bank_addr, (int)sensor_addr);
+ break;
+ }
+ outb(buf[i], data->addr + ABIT_UGURU_CMD);
+ }
+
+ /* Now we need to wait till the chip is ready to be read again,
+ don't ask why */
+ if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
+ ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
+ "after write (bank: %d, sensor: %d)\n", (int)bank_addr,
+ (int)sensor_addr);
+ return -EIO;
+ }
+
+ /* Cmd port MUST be read now and should contain 0xAC */
+ if (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
+ ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after write "
+ "(bank: %d, sensor: %d)\n", (int)bank_addr,
+ (int)sensor_addr);
+ return -EIO;
+ }
+
+ /* Last put the chip back in ready state */
+ abituguru_ready(data);
+
+ return i;
+}
+
+/* Detect sensor type. Temp and Volt sensors are enabled with
+ different masks and will ignore enable masks not meant for them.
+ This enables us to test what kind of sensor we're dealing with.
+ By setting the alarm thresholds so that we will always get an
+ alarm for sensor type X and then enabling the sensor as sensor type
+ X, if we then get an alarm it is a sensor of type X. */
+static int __devinit
+abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
+ u8 sensor_addr)
+{
+ u8 val, buf[3];
+ int ret = ABIT_UGURU_NC;
+
+ /* First read the sensor and the current settings */
+ if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
+ 1, ABIT_UGURU_MAX_RETRIES) != 1)
+ return -EIO;
+
+ /* Test val is sane / usable for sensor type detection. */
+ if ((val < 10u) || (val > 240u)) {
+ printk(KERN_WARNING ABIT_UGURU_NAME
+ ": bank1-sensor: %d reading (%d) too close to limits, "
+ "unable to determine sensor type, skipping sensor\n",
+ (int)sensor_addr, (int)val);
+ /* assume no sensor is there for sensors for which we can't
+ determine the sensor type because their reading is too close
+ to their limits, this usually means no sensor is there. */
+ return ABIT_UGURU_NC;
+ }
+
+ ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
+ /* Volt sensor test, enable volt low alarm, set min value ridicously
+ high. If its a volt sensor this should always give us an alarm. */
+ buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
+ buf[1] = 245;
+ buf[2] = 250;
+ if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
+ buf, 3) != 3)
+ return -EIO;
+ /* Now we need 20 ms to give the uguru time to read the sensors
+ and raise a voltage alarm */
+ set_current_state(TASK_UNINTERRUPTIBLE);
+ schedule_timeout(HZ/50);
+ /* Check for alarm and check the alarm is a volt low alarm. */
+ if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
+ ABIT_UGURU_MAX_RETRIES) != 3)
+ return -EIO;
+ if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
+ if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
+ sensor_addr, buf, 3,
+ ABIT_UGURU_MAX_RETRIES) != 3)
+ return -EIO;
+ if (buf[0] & ABIT_UGURU_VOLT_LOW_ALARM_FLAG) {
+ /* Restore original settings */
+ if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
+ sensor_addr,
+ data->bank1_settings[sensor_addr],
+ 3) != 3)
+ return -EIO;
+ ABIT_UGURU_DEBUG(2, " found volt sensor\n");
+ return ABIT_UGURU_IN_SENSOR;
+ } else
+ ABIT_UGURU_DEBUG(2, " alarm raised during volt "
+ "sensor test, but volt low flag not set\n");
+ } else
+ ABIT_UGURU_DEBUG(2, " alarm not raised during volt sensor "
+ "test\n");
+
+ /* Temp sensor test, enable sensor as a temp sensor, set beep value
+ ridicously low (but not too low, otherwise uguru ignores it).
+ If its a temp sensor this should always give us an alarm. */
+ buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
+ buf[1] = 5;
+ buf[2] = 10;
+ if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
+ buf, 3) != 3)
+ return -EIO;
+ /* Now we need 50 ms to give the uguru time to read the sensors
+ and raise a temp alarm */
+ set_current_state(TASK_UNINTERRUPTIBLE);
+ schedule_timeout(HZ/20);
+ /* Check for alarm and check the alarm is a temp high alarm. */
+ if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
+ ABIT_UGURU_MAX_RETRIES) != 3)
+ return -EIO;
+ if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
+ if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
+ sensor_addr, buf, 3,
+ ABIT_UGURU_MAX_RETRIES) != 3)
+ return -EIO;
+ if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
+ ret = ABIT_UGURU_TEMP_SENSOR;
+ ABIT_UGURU_DEBUG(2, " found temp sensor\n");
+ } else
+ ABIT_UGURU_DEBUG(2, " alarm raised during temp "
+ "sensor test, but temp high flag not set\n");
+ } else
+ ABIT_UGURU_DEBUG(2, " alarm not raised during temp sensor "
+ "test\n");
+
+ /* Restore original settings */
+ if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
+ data->bank1_settings[sensor_addr], 3) != 3)
+ return -EIO;
+
+ return ret;
+}
+
+/* These functions try to find out how many sensors there are in bank2 and how
+ many pwms there are. The purpose of this is to make sure that we don't give
+ the user the possibility to change settings for non-existent sensors / pwm.
+ The uGuru will happily read / write whatever memory happens to be after the
+ memory storing the PWM settings when reading/writing to a PWM which is not
+ there. Notice even if we detect a PWM which doesn't exist we normally won't
+ write to it, unless the user tries to change the settings.
+
+ Although the uGuru allows reading (settings) from non existing bank2
+ sensors, my version of the uGuru does seem to stop writing to them, the
+ write function above aborts in this case with:
+ "CMD reg does not hold 0xAC after write"
+
+ Notice these 2 tests are non destructive iow read-only tests, otherwise
+ they would defeat their purpose. Although for the bank2_sensors detection a
+ read/write test would be feasible because of the reaction above, I've
+ however opted to stay on the safe side. */
+static void __devinit
+abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
+{
+ int i;
+
+ if (fan_sensors) {
+ data->bank2_sensors = fan_sensors;
+ ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
+ "\"fan_sensors\" module param\n",
+ (int)data->bank2_sensors);
+ return;
+ }
+
+ ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
+ for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
+ /* 0x89 are the known used bits:
+ -0x80 enable shutdown
+ -0x08 enable beep
+ -0x01 enable alarm
+ All other bits should be 0, but on some motherboards
+ 0x40 (bit 6) is also high, at least for fan1 */
+ if ((!i && (data->bank2_settings[i][0] & ~0xC9)) ||
+ (i && (data->bank2_settings[i][0] & ~0x89))) {
+ ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
+ "to be a fan sensor: settings[0] = %02X\n",
+ i, (unsigned int)data->bank2_settings[i][0]);
+ break;
+ }
+
+ /* check if the threshold is within the allowed range */
+ if (data->bank2_settings[i][1] <
+ abituguru_bank2_min_threshold) {
+ ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
+ "to be a fan sensor: the threshold (%d) is "
+ "below the minimum (%d)\n", i,
+ (int)data->bank2_settings[i][1],
+ (int)abituguru_bank2_min_threshold);
+ break;
+ }
+ if (data->bank2_settings[i][1] >
+ abituguru_bank2_max_threshold) {
+ ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
+ "to be a fan sensor: the threshold (%d) is "
+ "above the maximum (%d)\n", i,
+ (int)data->bank2_settings[i][1],
+ (int)abituguru_bank2_max_threshold);
+ break;
+ }
+ }
+
+ data->bank2_sensors = i;
+ ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
+ (int)data->bank2_sensors);
+}
+
+static void __devinit
+abituguru_detect_no_pwms(struct abituguru_data *data)
+{
+ int i, j;
+
+ if (pwms) {
+ data->pwms = pwms;
+ ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
+ "\"pwms\" module param\n", (int)data->pwms);
+ return;
+ }
+
+ ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
+ for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
+ /* 0x80 is the enable bit and the low
+ nibble is which temp sensor to use,
+ the other bits should be 0 */
+ if (data->pwm_settings[i][0] & ~0x8F) {
+ ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
+ "to be a pwm channel: settings[0] = %02X\n",
+ i, (unsigned int)data->pwm_settings[i][0]);
+ break;
+ }
+
+ /* the low nibble must correspond to one of the temp sensors
+ we've found */
+ for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
+ j++) {
+ if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
+ (data->pwm_settings[i][0] & 0x0F))
+ break;
+ }
+ if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
+ ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
+ "to be a pwm channel: %d is not a valid temp "
+ "sensor address\n", i,
+ data->pwm_settings[i][0] & 0x0F);
+ break;
+ }
+
+ /* check if all other settings are within the allowed range */
+ for (j = 1; j < 5; j++) {
+ u8 min;
+ /* special case pwm1 min pwm% */
+ if ((i == 0) && ((j == 1) || (j == 2)))
+ min = 77;
+ else
+ min = abituguru_pwm_min[j];
+ if (data->pwm_settings[i][j] < min) {
+ ABIT_UGURU_DEBUG(2, " pwm channel %d does "
+ "not seem to be a pwm channel: "
+ "setting %d (%d) is below the minimum "
+ "value (%d)\n", i, j,
+ (int)data->pwm_settings[i][j],
+ (int)min);
+ goto abituguru_detect_no_pwms_exit;
+ }
+ if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
+ ABIT_UGURU_DEBUG(2, " pwm channel %d does "
+ "not seem to be a pwm channel: "
+ "setting %d (%d) is above the maximum "
+ "value (%d)\n", i, j,
+ (int)data->pwm_settings[i][j],
+ (int)abituguru_pwm_max[j]);
+ goto abituguru_detect_no_pwms_exit;
+ }
+ }
+
+ /* check that min temp < max temp and min pwm < max pwm */
+ if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
+ ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
+ "to be a pwm channel: min pwm (%d) >= "
+ "max pwm (%d)\n", i,
+ (int)data->pwm_settings[i][1],
+ (int)data->pwm_settings[i][2]);
+ break;
+ }
+ if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
+ ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
+ "to be a pwm channel: min temp (%d) >= "
+ "max temp (%d)\n", i,
+ (int)data->pwm_settings[i][3],
+ (int)data->pwm_settings[i][4]);
+ break;
+ }
+ }
+
+abituguru_detect_no_pwms_exit:
+ data->pwms = i;
+ ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
+}
+
+/* Following are the sysfs callback functions. These functions expect:
+ sensor_device_attribute_2->index: sensor address/offset in the bank
+ sensor_device_attribute_2->nr: register offset, bitmask or NA. */
+static struct abituguru_data *abituguru_update_device(struct device *dev);
+
+static ssize_t show_bank1_value(struct device *dev,
+ struct device_attribute *devattr, char *buf)
+{
+ struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
+ struct abituguru_data *data = abituguru_update_device(dev);
+ if (!data)
+ return -EIO;
+ return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
+ data->bank1_max_value[attr->index] + 128) / 255);
+}
+
+static ssize_t show_bank1_setting(struct device *dev,
+ struct device_attribute *devattr, char *buf)
+{
+ struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
+ struct abituguru_data *data = dev_get_drvdata(dev);
+ return sprintf(buf, "%d\n",
+ (data->bank1_settings[attr->index][attr->nr] *
+ data->bank1_max_value[attr->index] + 128) / 255);
+}
+
+static ssize_t show_bank2_value(struct device *dev,
+ struct device_attribute *devattr, char *buf)
+{
+ struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
+ struct abituguru_data *data = abituguru_update_device(dev);
+ if (!data)
+ return -EIO;
+ return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
+ ABIT_UGURU_FAN_MAX + 128) / 255);
+}
+
+static ssize_t show_bank2_setting(struct device *dev,
+ struct device_attribute *devattr, char *buf)
+{
+ struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
+ struct abituguru_data *data = dev_get_drvdata(dev);
+ return sprintf(buf, "%d\n",
+ (data->bank2_settings[attr->index][attr->nr] *
+ ABIT_UGURU_FAN_MAX + 128) / 255);
+}
+
+static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
+ *devattr, const char *buf, size_t count)
+{
+ struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
+ struct abituguru_data *data = dev_get_drvdata(dev);
+ u8 val = (simple_strtoul(buf, NULL, 10) * 255 +
+ data->bank1_max_value[attr->index]/2) /
+ data->bank1_max_value[attr->index];
+ ssize_t ret = count;
+
+ mutex_lock(&data->update_lock);
+ if (data->bank1_settings[attr->index][attr->nr] != val) {
+ u8 orig_val = data->bank1_settings[attr->index][attr->nr];
+ data->bank1_settings[attr->index][attr->nr] = val;
+ if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
+ attr->index, data->bank1_settings[attr->index],
+ 3) <= attr->nr) {
+ data->bank1_settings[attr->index][attr->nr] = orig_val;
+ ret = -EIO;
+ }
+ }
+ mutex_unlock(&data->update_lock);
+ return ret;
+}
+
+static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
+ *devattr, const char *buf, size_t count)
+{
+ struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
+ struct abituguru_data *data = dev_get_drvdata(dev);
+ u8 val = (simple_strtoul(buf, NULL, 10)*255 + ABIT_UGURU_FAN_MAX/2) /
+ ABIT_UGURU_FAN_MAX;
+ ssize_t ret = count;
+
+ /* this check can be done before taking the lock */
+ if ((val < abituguru_bank2_min_threshold) ||
+ (val > abituguru_bank2_max_threshold))
+ return -EINVAL;
+
+ mutex_lock(&data->update_lock);
+ if (data->bank2_settings[attr->index][attr->nr] != val) {
+ u8 orig_val = data->bank2_settings[attr->index][attr->nr];
+ data->bank2_settings[attr->index][attr->nr] = val;
+ if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
+ attr->index, data->bank2_settings[attr->index],
+ 2) <= attr->nr) {
+ data->bank2_settings[attr->index][attr->nr] = orig_val;
+ ret = -EIO;
+ }
+ }
+ mutex_unlock(&data->update_lock);
+ return ret;
+}
+
+static ssize_t show_bank1_alarm(struct device *dev,
+ struct device_attribute *devattr, char *buf)
+{
+ struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
+ struct abituguru_data *data = abituguru_update_device(dev);
+ if (!data)
+ return -EIO;
+ /* See if the alarm bit for this sensor is set, and if the
+ alarm matches the type of alarm we're looking for (for volt
+ it can be either low or high). The type is stored in a few
+ readonly bits in the settings part of the relevant sensor.
+ The bitmask of the type is passed to us in attr->nr. */
+ if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
+ (data->bank1_settings[attr->index][0] & attr->nr))
+ return sprintf(buf, "1\n");
+ else
+ return sprintf(buf, "0\n");
+}
+
+static ssize_t show_bank2_alarm(struct device *dev,
+ struct device_attribute *devattr, char *buf)
+{
+ struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
+ struct abituguru_data *data = abituguru_update_device(dev);
+ if (!data)
+ return -EIO;
+ if (data->alarms[2] & (0x01 << attr->index))
+ return sprintf(buf, "1\n");
+ else
+ return sprintf(buf, "0\n");
+}
+
+static ssize_t show_bank1_mask(struct device *dev,
+ struct device_attribute *devattr, char *buf)
+{
+ struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
+ struct abituguru_data *data = dev_get_drvdata(dev);
+ if (data->bank1_settings[attr->index][0] & attr->nr)
+ return sprintf(buf, "1\n");
+ else
+ return sprintf(buf, "0\n");
+}
+
+static ssize_t show_bank2_mask(struct device *dev,
+ struct device_attribute *devattr, char *buf)
+{
+ struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
+ struct abituguru_data *data = dev_get_drvdata(dev);
+ if (data->bank2_settings[attr->index][0] & attr->nr)
+ return sprintf(buf, "1\n");
+ else
+ return sprintf(buf, "0\n");
+}
+
+static ssize_t store_bank1_mask(struct device *dev,
+ struct device_attribute *devattr, const char *buf, size_t count)
+{
+ struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
+ struct abituguru_data *data = dev_get_drvdata(dev);
+ int mask = simple_strtoul(buf, NULL, 10);
+ ssize_t ret = count;
+ u8 orig_val;
+
+ mutex_lock(&data->update_lock);
+ orig_val = data->bank1_settings[attr->index][0];
+
+ if (mask)
+ data->bank1_settings[attr->index][0] |= attr->nr;
+ else
+ data->bank1_settings[attr->index][0] &= ~attr->nr;
+
+ if ((data->bank1_settings[attr->index][0] != orig_val) &&
+ (abituguru_write(data,
+ ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
+ data->bank1_settings[attr->index], 3) < 1)) {
+ data->bank1_settings[attr->index][0] = orig_val;
+ ret = -EIO;
+ }
+ mutex_unlock(&data->update_lock);
+ return ret;
+}
+
+static ssize_t store_bank2_mask(struct device *dev,
+ struct device_attribute *devattr, const char *buf, size_t count)
+{
+ struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
+ struct abituguru_data *data = dev_get_drvdata(dev);
+ int mask = simple_strtoul(buf, NULL, 10);
+ ssize_t ret = count;
+ u8 orig_val;
+
+ mutex_lock(&data->update_lock);
+ orig_val = data->bank2_settings[attr->index][0];
+
+ if (mask)
+ data->bank2_settings[attr->index][0] |= attr->nr;
+ else
+ data->bank2_settings[attr->index][0] &= ~attr->nr;
+
+ if ((data->bank2_settings[attr->index][0] != orig_val) &&
+ (abituguru_write(data,
+ ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
+ data->bank2_settings[attr->index], 2) < 1)) {
+ data->bank2_settings[attr->index][0] = orig_val;
+ ret = -EIO;
+ }
+ mutex_unlock(&data->update_lock);
+ return ret;
+}
+
+/* Fan PWM (speed control) */
+static ssize_t show_pwm_setting(struct device *dev,
+ struct device_attribute *devattr, char *buf)
+{
+ struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
+ struct abituguru_data *data = dev_get_drvdata(dev);
+ return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
+ abituguru_pwm_settings_multiplier[attr->nr]);
+}
+
+static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
+ *devattr, const char *buf, size_t count)
+{
+ struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
+ struct abituguru_data *data = dev_get_drvdata(dev);
+ u8 min, val = (simple_strtoul(buf, NULL, 10) +
+ abituguru_pwm_settings_multiplier[attr->nr]/2) /
+ abituguru_pwm_settings_multiplier[attr->nr];
+ ssize_t ret = count;
+
+ /* special case pwm1 min pwm% */
+ if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
+ min = 77;
+ else
+ min = abituguru_pwm_min[attr->nr];
+
+ /* this check can be done before taking the lock */
+ if ((val < min) || (val > abituguru_pwm_max[attr->nr]))
+ return -EINVAL;
+
+ mutex_lock(&data->update_lock);
+ /* this check needs to be done after taking the lock */
+ if ((attr->nr & 1) &&
+ (val >= data->pwm_settings[attr->index][attr->nr + 1]))
+ ret = -EINVAL;
+ else if (!(attr->nr & 1) &&
+ (val <= data->pwm_settings[attr->index][attr->nr - 1]))
+ ret = -EINVAL;
+ else if (data->pwm_settings[attr->index][attr->nr] != val) {
+ u8 orig_val = data->pwm_settings[attr->index][attr->nr];
+ data->pwm_settings[attr->index][attr->nr] = val;
+ if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
+ attr->index, data->pwm_settings[attr->index],
+ 5) <= attr->nr) {
+ data->pwm_settings[attr->index][attr->nr] =
+ orig_val;
+ ret = -EIO;
+ }
+ }
+ mutex_unlock(&data->update_lock);
+ return ret;
+}
+
+static ssize_t show_pwm_sensor(struct device *dev,
+ struct device_attribute *devattr, char *buf)
+{
+ struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
+ struct abituguru_data *data = dev_get_drvdata(dev);
+ int i;
+ /* We need to walk to the temp sensor addresses to find what
+ the userspace id of the configured temp sensor is. */
+ for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
+ if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
+ (data->pwm_settings[attr->index][0] & 0x0F))
+ return sprintf(buf, "%d\n", i+1);
+
+ return -ENXIO;
+}
+
+static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
+ *devattr, const char *buf, size_t count)
+{
+ struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
+ struct abituguru_data *data = dev_get_drvdata(dev);
+ unsigned long val = simple_strtoul(buf, NULL, 10) - 1;
+ ssize_t ret = count;
+
+ mutex_lock(&data->update_lock);
+ if (val < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
+ u8 orig_val = data->pwm_settings[attr->index][0];
+ u8 address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
+ data->pwm_settings[attr->index][0] &= 0xF0;
+ data->pwm_settings[attr->index][0] |= address;
+ if (data->pwm_settings[attr->index][0] != orig_val) {
+ if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
+ attr->index,
+ data->pwm_settings[attr->index],
+ 5) < 1) {
+ data->pwm_settings[attr->index][0] = orig_val;
+ ret = -EIO;
+ }
+ }
+ }
+ else
+ ret = -EINVAL;
+ mutex_unlock(&data->update_lock);
+ return ret;
+}
+
+static ssize_t show_pwm_enable(struct device *dev,
+ struct device_attribute *devattr, char *buf)
+{
+ struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
+ struct abituguru_data *data = dev_get_drvdata(dev);
+ int res = 0;
+ if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
+ res = 2;
+ return sprintf(buf, "%d\n", res);
+}
+
+static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
+ *devattr, const char *buf, size_t count)
+{
+ struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
+ struct abituguru_data *data = dev_get_drvdata(dev);
+ u8 orig_val, user_val = simple_strtoul(buf, NULL, 10);
+ ssize_t ret = count;
+
+ mutex_lock(&data->update_lock);
+ orig_val = data->pwm_settings[attr->index][0];
+ switch (user_val) {
+ case 0:
+ data->pwm_settings[attr->index][0] &=
+ ~ABIT_UGURU_FAN_PWM_ENABLE;
+ break;
+ case 2:
+ data->pwm_settings[attr->index][0] |=
+ ABIT_UGURU_FAN_PWM_ENABLE;
+ break;
+ default:
+ ret = -EINVAL;
+ }
+ if ((data->pwm_settings[attr->index][0] != orig_val) &&
+ (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
+ attr->index, data->pwm_settings[attr->index],
+ 5) < 1)) {
+ data->pwm_settings[attr->index][0] = orig_val;
+ ret = -EIO;
+ }
+ mutex_unlock(&data->update_lock);
+ return ret;
+}
+
+static ssize_t show_name(struct device *dev,
+ struct device_attribute *devattr, char *buf)
+{
+ return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
+}
+
+/* Sysfs attr templates, the real entries are generated automatically. */
+static const
+struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
+ {
+ SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
+ SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
+ store_bank1_setting, 1, 0),
+ SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
+ ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
+ SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
+ store_bank1_setting, 2, 0),
+ SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
+ ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
+ SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
+ store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
+ SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
+ store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
+ SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
+ store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
+ SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
+ store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
+ }, {
+ SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
+ SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
+ ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
+ SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
+ store_bank1_setting, 1, 0),
+ SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
+ store_bank1_setting, 2, 0),
+ SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
+ store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
+ SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
+ store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
+ SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
+ store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
+ }
+};
+
+static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
+ SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
+ SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
+ SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
+ store_bank2_setting, 1, 0),
+ SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
+ store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
+ SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
+ store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
+ SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
+ store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
+};
+
+static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
+ SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
+ store_pwm_enable, 0, 0),
+ SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
+ store_pwm_sensor, 0, 0),
+ SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
+ store_pwm_setting, 1, 0),
+ SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
+ store_pwm_setting, 2, 0),
+ SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
+ store_pwm_setting, 3, 0),
+ SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
+ store_pwm_setting, 4, 0),
+};
+
+static const struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
+ SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
+};
+
+static int __devinit abituguru_probe(struct platform_device *pdev)
+{
+ struct abituguru_data *data;
+ int i, j, res;
+ char *sysfs_filename;
+ int sysfs_attr_i = 0;
+
+ /* El weirdo probe order, to keep the sysfs order identical to the
+ BIOS and window-appliction listing order. */
+ const u8 probe_order[16] = { 0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E,
+ 0x02, 0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
+
+ if (!(data = kzalloc(sizeof(struct abituguru_data), GFP_KERNEL)))
+ return -ENOMEM;
+
+ data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
+ mutex_init(&data->update_lock);
+ platform_set_drvdata(pdev, data);
+
+ /* See if the uGuru is ready */
+ if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
+ data->uguru_ready = 1;
+
+ /* Completely read the uGuru this has 2 purposes:
+ - testread / see if one really is there.
+ - make an in memory copy of all the uguru settings for future use. */
+ if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
+ data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3) {
+ kfree(data);
+ return -ENODEV;
+ }
+
+ for (i = 0; i < 16; i++) {
+ if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
+ &data->bank1_value[i], 1,
+ ABIT_UGURU_MAX_RETRIES) != 1) {
+ kfree(data);
+ return -ENODEV;
+ }
+ if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
+ data->bank1_settings[i], 3,
+ ABIT_UGURU_MAX_RETRIES) != 3) {
+ kfree(data);
+ return -ENODEV;
+ }
+ }
+ /* Note: We don't know how many bank2 sensors / pwms there really are,
+ but in order to "detect" this we need to read the maximum amount
+ anyways. If we read sensors/pwms not there we'll just read crap
+ this can't hurt. We need the detection because we don't want
+ unwanted writes, which will hurt! */
+ for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
+ if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
+ &data->bank2_value[i], 1,
+ ABIT_UGURU_MAX_RETRIES) != 1) {
+ kfree(data);
+ return -ENODEV;
+ }
+ if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
+ data->bank2_settings[i], 2,
+ ABIT_UGURU_MAX_RETRIES) != 2) {
+ kfree(data);
+ return -ENODEV;
+ }
+ }
+ for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
+ if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
+ data->pwm_settings[i], 5,
+ ABIT_UGURU_MAX_RETRIES) != 5) {
+ kfree(data);
+ return -ENODEV;
+ }
+ }
+ data->last_updated = jiffies;
+
+ /* Detect sensor types and fill the sysfs attr for bank1 */
+ sysfs_filename = data->bank1_names;
+ for (i = 0; i < 16; i++) {
+ res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
+ if (res < 0) {
+ kfree(data);
+ return -ENODEV;
+ }
+ if (res == ABIT_UGURU_NC)
+ continue;
+
+ for (j = 0; j < (res ? 7 : 9); j++) {
+ const char *name_templ = abituguru_sysfs_bank1_templ[
+ res][j].dev_attr.attr.name;
+ data->sysfs_attr[sysfs_attr_i] =
+ abituguru_sysfs_bank1_templ[res][j];
+ data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
+ sysfs_filename;
+ sysfs_filename += sprintf(sysfs_filename, name_templ,
+ data->bank1_sensors[res] + res) + 1;
+ data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
+ sysfs_attr_i++;
+ }
+ data->bank1_max_value[probe_order[i]] =
+ abituguru_bank1_max_value[res];
+ data->bank1_address[res][data->bank1_sensors[res]] =
+ probe_order[i];
+ data->bank1_sensors[res]++;
+ }
+ /* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
+ abituguru_detect_no_bank2_sensors(data);
+ for (i = 0; i < data->bank2_sensors; i++) {
+ for (j = 0; j < 6; j++) {
+ const char *name_templ = abituguru_sysfs_fan_templ[j].
+ dev_attr.attr.name;
+ data->sysfs_attr[sysfs_attr_i] =
+ abituguru_sysfs_fan_templ[j];
+ data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
+ sysfs_filename;
+ sysfs_filename += sprintf(sysfs_filename, name_templ,
+ i + 1) + 1;
+ data->sysfs_attr[sysfs_attr_i].index = i;
+ sysfs_attr_i++;
+ }
+ }
+ /* Detect number of sensors and fill the sysfs attr for pwms */
+ abituguru_detect_no_pwms(data);
+ for (i = 0; i < data->pwms; i++) {
+ for (j = 0; j < 6; j++) {
+ const char *name_templ = abituguru_sysfs_pwm_templ[j].
+ dev_attr.attr.name;
+ data->sysfs_attr[sysfs_attr_i] =
+ abituguru_sysfs_pwm_templ[j];
+ data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
+ sysfs_filename;
+ sysfs_filename += sprintf(sysfs_filename, name_templ,
+ i + 1) + 1;
+ data->sysfs_attr[sysfs_attr_i].index = i;
+ sysfs_attr_i++;
+ }
+ }
+ /* Last add any "generic" entries to sysfs */
+ for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) {
+ data->sysfs_attr[sysfs_attr_i] = abituguru_sysfs_attr[i];
+ sysfs_attr_i++;
+ }
+ printk(KERN_INFO ABIT_UGURU_NAME ": found Abit uGuru\n");
+
+ /* Register sysfs hooks */
+ data->class_dev = hwmon_device_register(&pdev->dev);
+ if (IS_ERR(data->class_dev)) {
+ kfree(data);
+ return PTR_ERR(data->class_dev);
+ }
+ for (i = 0; i < sysfs_attr_i; i++)
+ device_create_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
+
+ return 0;
+}
+
+static int __devexit abituguru_remove(struct platform_device *pdev)
+{
+ struct abituguru_data *data = platform_get_drvdata(pdev);
+
+ platform_set_drvdata(pdev, NULL);
+ hwmon_device_unregister(data->class_dev);
+ kfree(data);
+
+ return 0;
+}
+
+static struct abituguru_data *abituguru_update_device(struct device *dev)
+{
+ int i, err;
+ struct abituguru_data *data = dev_get_drvdata(dev);
+ /* fake a complete successful read if no update necessary. */
+ char success = 1;
+
+ mutex_lock(&data->update_lock);
+ if (time_after(jiffies, data->last_updated + HZ)) {
+ success = 0;
+ if ((err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
+ data->alarms, 3, 0)) != 3)
+ goto LEAVE_UPDATE;
+ for (i = 0; i < 16; i++) {
+ if ((err = abituguru_read(data,
+ ABIT_UGURU_SENSOR_BANK1, i,
+ &data->bank1_value[i], 1, 0)) != 1)
+ goto LEAVE_UPDATE;
+ if ((err = abituguru_read(data,
+ ABIT_UGURU_SENSOR_BANK1 + 1, i,
+ data->bank1_settings[i], 3, 0)) != 3)
+ goto LEAVE_UPDATE;
+ }
+ for (i = 0; i < data->bank2_sensors; i++)
+ if ((err = abituguru_read(data,
+ ABIT_UGURU_SENSOR_BANK2, i,
+ &data->bank2_value[i], 1, 0)) != 1)
+ goto LEAVE_UPDATE;
+ /* success! */
+ success = 1;
+ data->update_timeouts = 0;
+LEAVE_UPDATE:
+ /* handle timeout condition */
+ if (err == -EBUSY) {
+ /* No overflow please */
+ if (data->update_timeouts < 255u)
+ data->update_timeouts++;
+ if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
+ ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
+ "try again next update\n");
+ /* Just a timeout, fake a successful read */
+ success = 1;
+ } else
+ ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
+ "times waiting for more input state\n",
+ (int)data->update_timeouts);
+ }
+ /* On success set last_updated */
+ if (success)
+ data->last_updated = jiffies;
+ }
+ mutex_unlock(&data->update_lock);
+
+ if (success)
+ return data;
+ else
+ return NULL;
+}
+
+static struct platform_driver abituguru_driver = {
+ .driver = {
+ .owner = THIS_MODULE,
+ .name = ABIT_UGURU_NAME,
+ },
+ .probe = abituguru_probe,
+ .remove = __devexit_p(abituguru_remove),
+};
+
+static int __init abituguru_detect(void)
+{
+ /* See if there is an uguru there. After a reboot uGuru will hold 0x00
+ at DATA and 0xAC, when this driver has already been loaded once
+ DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
+ scenario but some will hold 0x00.
+ Some uGuru's initally hold 0x09 at DATA and will only hold 0x08
+ after reading CMD first, so CMD must be read first! */
+ u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
+ u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
+ if (((data_val == 0x00) || (data_val == 0x08)) &&
+ ((cmd_val == 0x00) || (cmd_val == 0xAC)))
+ return ABIT_UGURU_BASE;
+
+ ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
+ "0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
+
+ if (force) {
+ printk(KERN_INFO ABIT_UGURU_NAME ": Assuming Abit uGuru is "
+ "present because of \"force\" parameter\n");
+ return ABIT_UGURU_BASE;
+ }
+
+ /* No uGuru found */
+ return -ENODEV;
+}
+
+static struct platform_device *abituguru_pdev;
+
+static int __init abituguru_init(void)
+{
+ int address, err;
+ struct resource res = { .flags = IORESOURCE_IO };
+
+ address = abituguru_detect();
+ if (address < 0)
+ return address;
+
+ err = platform_driver_register(&abituguru_driver);
+ if (err)
+ goto exit;
+
+ abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
+ if (!abituguru_pdev) {
+ printk(KERN_ERR ABIT_UGURU_NAME
+ ": Device allocation failed\n");
+ err = -ENOMEM;
+ goto exit_driver_unregister;
+ }
+
+ res.start = address;
+ res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
+ res.name = ABIT_UGURU_NAME;
+
+ err = platform_device_add_resources(abituguru_pdev, &res, 1);
+ if (err) {
+ printk(KERN_ERR ABIT_UGURU_NAME
+ ": Device resource addition failed (%d)\n", err);
+ goto exit_device_put;
+ }
+
+ err = platform_device_add(abituguru_pdev);
+ if (err) {
+ printk(KERN_ERR ABIT_UGURU_NAME
+ ": Device addition failed (%d)\n", err);
+ goto exit_device_put;
+ }
+
+ return 0;
+
+exit_device_put:
+ platform_device_put(abituguru_pdev);
+exit_driver_unregister:
+ platform_driver_unregister(&abituguru_driver);
+exit:
+ return err;
+}
+
+static void __exit abituguru_exit(void)
+{
+ platform_device_unregister(abituguru_pdev);
+ platform_driver_unregister(&abituguru_driver);
+}
+
+MODULE_AUTHOR("Hans de Goede <j.w.r.degoede@hhs.nl>");
+MODULE_DESCRIPTION("Abit uGuru Sensor device");
+MODULE_LICENSE("GPL");
+
+module_init(abituguru_init);
+module_exit(abituguru_exit);