diff options
author | Corrado Zoccolo <czoccolo@gmail.com> | 2009-10-26 22:45:29 +0100 |
---|---|---|
committer | Jens Axboe <jens.axboe@oracle.com> | 2009-10-28 09:23:26 +0100 |
commit | 718eee0579b802aabe3bafacf09d0a9b0830f1dd (patch) | |
tree | 3a85a6d38ed7b68ed6ca21d04158afee13980e5e /block | |
parent | a6d44e982d3734583b3b4e1d36921af8cfd61fc0 (diff) | |
download | lwn-718eee0579b802aabe3bafacf09d0a9b0830f1dd.tar.gz lwn-718eee0579b802aabe3bafacf09d0a9b0830f1dd.zip |
cfq-iosched: fairness for sync no-idle queues
Currently no-idle queues in cfq are not serviced fairly:
even if they can only dispatch a small number of requests at a time,
they have to compete with idling queues to be serviced, experiencing
large latencies.
We should notice, instead, that no-idle queues are the ones that would
benefit most from having low latency, in fact they are any of:
* processes with large think times (e.g. interactive ones like file
managers)
* seeky (e.g. programs faulting in their code at startup)
* or marked as no-idle from upper levels, to improve latencies of those
requests.
This patch improves the fairness and latency for those queues, by:
* separating sync idle, sync no-idle and async queues in separate
service_trees, for each priority
* service all no-idle queues together
* and idling when the last no-idle queue has been serviced, to
anticipate for more no-idle work
* the timeslices allotted for idle and no-idle service_trees are
computed proportionally to the number of processes in each set.
Servicing all no-idle queues together should have a performance boost
for NCQ-capable drives, without compromising fairness.
Signed-off-by: Corrado Zoccolo <czoccolo@gmail.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Diffstat (limited to 'block')
-rw-r--r-- | block/cfq-iosched.c | 200 |
1 files changed, 168 insertions, 32 deletions
diff --git a/block/cfq-iosched.c b/block/cfq-iosched.c index 76afa3696894..859f534ae9ef 100644 --- a/block/cfq-iosched.c +++ b/block/cfq-iosched.c @@ -134,7 +134,7 @@ struct cfq_queue { }; /* - * Index in the service_trees. + * First index in the service_trees. * IDLE is handled separately, so it has negative index */ enum wl_prio_t { @@ -144,6 +144,16 @@ enum wl_prio_t { }; /* + * Second index in the service_trees. + */ +enum wl_type_t { + ASYNC_WORKLOAD = 0, + SYNC_NOIDLE_WORKLOAD = 1, + SYNC_WORKLOAD = 2 +}; + + +/* * Per block device queue structure */ struct cfq_data { @@ -153,12 +163,14 @@ struct cfq_data { * rr lists of queues with requests, onle rr for each priority class. * Counts are embedded in the cfq_rb_root */ - struct cfq_rb_root service_trees[2]; + struct cfq_rb_root service_trees[2][3]; struct cfq_rb_root service_tree_idle; /* * The priority currently being served */ enum wl_prio_t serving_prio; + enum wl_type_t serving_type; + unsigned long workload_expires; /* * Each priority tree is sorted by next_request position. These @@ -221,12 +233,13 @@ struct cfq_data { }; static struct cfq_rb_root *service_tree_for(enum wl_prio_t prio, + enum wl_type_t type, struct cfq_data *cfqd) { if (prio == IDLE_WORKLOAD) return &cfqd->service_tree_idle; - return &cfqd->service_trees[prio]; + return &cfqd->service_trees[prio][type]; } enum cfqq_state_flags { @@ -282,12 +295,24 @@ static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq) return BE_WORKLOAD; } + +static enum wl_type_t cfqq_type(struct cfq_queue *cfqq) +{ + if (!cfq_cfqq_sync(cfqq)) + return ASYNC_WORKLOAD; + if (!cfq_cfqq_idle_window(cfqq)) + return SYNC_NOIDLE_WORKLOAD; + return SYNC_WORKLOAD; +} + static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd) { if (wl == IDLE_WORKLOAD) return cfqd->service_tree_idle.count; - return cfqd->service_trees[wl].count; + return cfqd->service_trees[wl][ASYNC_WORKLOAD].count + + cfqd->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count + + cfqd->service_trees[wl][SYNC_WORKLOAD].count; } static void cfq_dispatch_insert(struct request_queue *, struct request *); @@ -597,7 +622,7 @@ static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq, struct cfq_rb_root *service_tree; int left; - service_tree = service_tree_for(cfqq_prio(cfqq), cfqd); + service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd); if (cfq_class_idle(cfqq)) { rb_key = CFQ_IDLE_DELAY; parent = rb_last(&service_tree->rb); @@ -1030,7 +1055,7 @@ static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out) static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd) { struct cfq_rb_root *service_tree = - service_tree_for(cfqd->serving_prio, cfqd); + service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd); if (RB_EMPTY_ROOT(&service_tree->rb)) return NULL; @@ -1167,7 +1192,7 @@ static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd, static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq) { enum wl_prio_t prio = cfqq_prio(cfqq); - struct cfq_rb_root *service_tree; + struct cfq_rb_root *service_tree = cfqq->service_tree; /* We never do for idle class queues. */ if (prio == IDLE_WORKLOAD) @@ -1181,7 +1206,9 @@ static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq) * Otherwise, we do only if they are the last ones * in their service tree. */ - service_tree = service_tree_for(prio, cfqd); + if (!service_tree) + service_tree = service_tree_for(prio, cfqq_type(cfqq), cfqd); + if (service_tree->count == 0) return true; @@ -1235,14 +1262,20 @@ static void cfq_arm_slice_timer(struct cfq_data *cfqd) cfq_mark_cfqq_wait_request(cfqq); - /* - * we don't want to idle for seeks, but we do want to allow - * fair distribution of slice time for a process doing back-to-back - * seeks. so allow a little bit of time for him to submit a new rq - */ sl = cfqd->cfq_slice_idle; - if (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq)) + /* are we servicing noidle tree, and there are more queues? + * non-rotational or NCQ: no idle + * non-NCQ rotational : very small idle, to allow + * fair distribution of slice time for a process doing back-to-back + * seeks. + */ + if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD && + service_tree_for(cfqd->serving_prio, SYNC_NOIDLE_WORKLOAD, cfqd) + ->count > 0) { + if (blk_queue_nonrot(cfqd->queue) || cfqd->hw_tag) + return; sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT)); + } mod_timer(&cfqd->idle_slice_timer, jiffies + sl); cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl); @@ -1346,6 +1379,106 @@ static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq) } } +static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd, enum wl_prio_t prio, + bool prio_changed) +{ + struct cfq_queue *queue; + int i; + bool key_valid = false; + unsigned long lowest_key = 0; + enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD; + + if (prio_changed) { + /* + * When priorities switched, we prefer starting + * from SYNC_NOIDLE (first choice), or just SYNC + * over ASYNC + */ + if (service_tree_for(prio, cur_best, cfqd)->count) + return cur_best; + cur_best = SYNC_WORKLOAD; + if (service_tree_for(prio, cur_best, cfqd)->count) + return cur_best; + + return ASYNC_WORKLOAD; + } + + for (i = 0; i < 3; ++i) { + /* otherwise, select the one with lowest rb_key */ + queue = cfq_rb_first(service_tree_for(prio, i, cfqd)); + if (queue && + (!key_valid || time_before(queue->rb_key, lowest_key))) { + lowest_key = queue->rb_key; + cur_best = i; + key_valid = true; + } + } + + return cur_best; +} + +static void choose_service_tree(struct cfq_data *cfqd) +{ + enum wl_prio_t previous_prio = cfqd->serving_prio; + bool prio_changed; + unsigned slice; + unsigned count; + + /* Choose next priority. RT > BE > IDLE */ + if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd)) + cfqd->serving_prio = RT_WORKLOAD; + else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd)) + cfqd->serving_prio = BE_WORKLOAD; + else { + cfqd->serving_prio = IDLE_WORKLOAD; + cfqd->workload_expires = jiffies + 1; + return; + } + + /* + * For RT and BE, we have to choose also the type + * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload + * expiration time + */ + prio_changed = (cfqd->serving_prio != previous_prio); + count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd) + ->count; + + /* + * If priority didn't change, check workload expiration, + * and that we still have other queues ready + */ + if (!prio_changed && count && + !time_after(jiffies, cfqd->workload_expires)) + return; + + /* otherwise select new workload type */ + cfqd->serving_type = + cfq_choose_wl(cfqd, cfqd->serving_prio, prio_changed); + count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd) + ->count; + + /* + * the workload slice is computed as a fraction of target latency + * proportional to the number of queues in that workload, over + * all the queues in the same priority class + */ + slice = cfq_target_latency * count / + max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio], + cfq_busy_queues_wl(cfqd->serving_prio, cfqd)); + + if (cfqd->serving_type == ASYNC_WORKLOAD) + /* async workload slice is scaled down according to + * the sync/async slice ratio. */ + slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1]; + else + /* sync workload slice is at least 2 * cfq_slice_idle */ + slice = max(slice, 2 * cfqd->cfq_slice_idle); + + slice = max_t(unsigned, slice, CFQ_MIN_TT); + cfqd->workload_expires = jiffies + slice; +} + /* * Select a queue for service. If we have a current active queue, * check whether to continue servicing it, or retrieve and set a new one. @@ -1398,14 +1531,13 @@ static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd) expire: cfq_slice_expired(cfqd, 0); new_queue: - if (!new_cfqq) { - if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd)) - cfqd->serving_prio = RT_WORKLOAD; - else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd)) - cfqd->serving_prio = BE_WORKLOAD; - else - cfqd->serving_prio = IDLE_WORKLOAD; - } + /* + * Current queue expired. Check if we have to switch to a new + * service tree + */ + if (!new_cfqq) + choose_service_tree(cfqd); + cfqq = cfq_set_active_queue(cfqd, new_cfqq); keep_queue: return cfqq; @@ -1432,10 +1564,12 @@ static int cfq_forced_dispatch(struct cfq_data *cfqd) { struct cfq_queue *cfqq; int dispatched = 0; - int i; + int i, j; for (i = 0; i < 2; ++i) - while ((cfqq = cfq_rb_first(&cfqd->service_trees[i])) != NULL) - dispatched += __cfq_forced_dispatch_cfqq(cfqq); + for (j = 0; j < 3; ++j) + while ((cfqq = cfq_rb_first(&cfqd->service_trees[i][j])) + != NULL) + dispatched += __cfq_forced_dispatch_cfqq(cfqq); while ((cfqq = cfq_rb_first(&cfqd->service_tree_idle)) != NULL) dispatched += __cfq_forced_dispatch_cfqq(cfqq); @@ -2218,13 +2352,10 @@ cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq, enable_idle = old_idle = cfq_cfqq_idle_window(cfqq); if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle || - (!cfqd->cfq_latency && cfqd->hw_tag && CFQQ_SEEKY(cfqq))) + (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq))) enable_idle = 0; else if (sample_valid(cic->ttime_samples)) { - unsigned int slice_idle = cfqd->cfq_slice_idle; - if (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq)) - slice_idle = msecs_to_jiffies(CFQ_MIN_TT); - if (cic->ttime_mean > slice_idle) + if (cic->ttime_mean > cfqd->cfq_slice_idle) enable_idle = 0; else enable_idle = 1; @@ -2262,6 +2393,10 @@ cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq, if (cfq_class_idle(cfqq)) return true; + if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD + && new_cfqq->service_tree == cfqq->service_tree) + return true; + /* * if the new request is sync, but the currently running queue is * not, let the sync request have priority. @@ -2778,14 +2913,15 @@ static void cfq_exit_queue(struct elevator_queue *e) static void *cfq_init_queue(struct request_queue *q) { struct cfq_data *cfqd; - int i; + int i, j; cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node); if (!cfqd) return NULL; for (i = 0; i < 2; ++i) - cfqd->service_trees[i] = CFQ_RB_ROOT; + for (j = 0; j < 3; ++j) + cfqd->service_trees[i][j] = CFQ_RB_ROOT; cfqd->service_tree_idle = CFQ_RB_ROOT; /* |