diff options
author | Satya Tangirala <satyat@google.com> | 2020-05-14 00:37:20 +0000 |
---|---|---|
committer | Jens Axboe <axboe@kernel.dk> | 2020-05-14 09:48:03 -0600 |
commit | 488f6682c832e9549d28b30075f00c76328eb1be (patch) | |
tree | da8aeb7ca2c295811a9b3cc209470064cec5fe75 /block/blk-crypto.c | |
parent | d145dc23030bbf2de3a8ca5e0c29c2e568f69737 (diff) | |
download | lwn-488f6682c832e9549d28b30075f00c76328eb1be.tar.gz lwn-488f6682c832e9549d28b30075f00c76328eb1be.zip |
block: blk-crypto-fallback for Inline Encryption
Blk-crypto delegates crypto operations to inline encryption hardware
when available. The separately configurable blk-crypto-fallback contains
a software fallback to the kernel crypto API - when enabled, blk-crypto
will use this fallback for en/decryption when inline encryption hardware
is not available.
This lets upper layers not have to worry about whether or not the
underlying device has support for inline encryption before deciding to
specify an encryption context for a bio. It also allows for testing
without actual inline encryption hardware - in particular, it makes it
possible to test the inline encryption code in ext4 and f2fs simply by
running xfstests with the inlinecrypt mount option, which in turn allows
for things like the regular upstream regression testing of ext4 to cover
the inline encryption code paths.
For more details, refer to Documentation/block/inline-encryption.rst.
Signed-off-by: Satya Tangirala <satyat@google.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Diffstat (limited to 'block/blk-crypto.c')
-rw-r--r-- | block/blk-crypto.c | 68 |
1 files changed, 48 insertions, 20 deletions
diff --git a/block/blk-crypto.c b/block/blk-crypto.c index 25b981257f5f..6533c9b36ab8 100644 --- a/block/blk-crypto.c +++ b/block/blk-crypto.c @@ -19,14 +19,17 @@ const struct blk_crypto_mode blk_crypto_modes[] = { [BLK_ENCRYPTION_MODE_AES_256_XTS] = { + .cipher_str = "xts(aes)", .keysize = 64, .ivsize = 16, }, [BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV] = { + .cipher_str = "essiv(cbc(aes),sha256)", .keysize = 16, .ivsize = 16, }, [BLK_ENCRYPTION_MODE_ADIANTUM] = { + .cipher_str = "adiantum(xchacha12,aes)", .keysize = 32, .ivsize = 32, }, @@ -229,9 +232,16 @@ void __blk_crypto_free_request(struct request *rq) * * @bio_ptr: pointer to original bio pointer * - * Succeeds if the bio doesn't have inline encryption enabled or if the bio - * crypt context provided for the bio is supported by the underlying device's - * inline encryption hardware. Ends the bio with error otherwise. + * If the bio crypt context provided for the bio is supported by the underlying + * device's inline encryption hardware, do nothing. + * + * Otherwise, try to perform en/decryption for this bio by falling back to the + * kernel crypto API. When the crypto API fallback is used for encryption, + * blk-crypto may choose to split the bio into 2 - the first one that will + * continue to be processed and the second one that will be resubmitted via + * generic_make_request. A bounce bio will be allocated to encrypt the contents + * of the aforementioned "first one", and *bio_ptr will be updated to this + * bounce bio. * * Caller must ensure bio has bio_crypt_ctx. * @@ -243,27 +253,29 @@ bool __blk_crypto_bio_prep(struct bio **bio_ptr) { struct bio *bio = *bio_ptr; const struct blk_crypto_key *bc_key = bio->bi_crypt_context->bc_key; - blk_status_t blk_st = BLK_STS_IOERR; /* Error if bio has no data. */ - if (WARN_ON_ONCE(!bio_has_data(bio))) + if (WARN_ON_ONCE(!bio_has_data(bio))) { + bio->bi_status = BLK_STS_IOERR; goto fail; + } - if (!bio_crypt_check_alignment(bio)) + if (!bio_crypt_check_alignment(bio)) { + bio->bi_status = BLK_STS_IOERR; goto fail; + } /* - * Success if device supports the encryption context. + * Success if device supports the encryption context, or if we succeeded + * in falling back to the crypto API. */ - if (!blk_ksm_crypto_cfg_supported(bio->bi_disk->queue->ksm, - &bc_key->crypto_cfg)) { - blk_st = BLK_STS_NOTSUPP; - goto fail; - } + if (blk_ksm_crypto_cfg_supported(bio->bi_disk->queue->ksm, + &bc_key->crypto_cfg)) + return true; - return true; + if (blk_crypto_fallback_bio_prep(bio_ptr)) + return true; fail: - (*bio_ptr)->bi_status = blk_st; bio_endio(*bio_ptr); return false; } @@ -329,10 +341,16 @@ int blk_crypto_init_key(struct blk_crypto_key *blk_key, const u8 *raw_key, return 0; } +/* + * Check if bios with @cfg can be en/decrypted by blk-crypto (i.e. either the + * request queue it's submitted to supports inline crypto, or the + * blk-crypto-fallback is enabled and supports the cfg). + */ bool blk_crypto_config_supported(struct request_queue *q, const struct blk_crypto_config *cfg) { - return blk_ksm_crypto_cfg_supported(q->ksm, cfg); + return IS_ENABLED(CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK) || + blk_ksm_crypto_cfg_supported(q->ksm, cfg); } /** @@ -340,17 +358,22 @@ bool blk_crypto_config_supported(struct request_queue *q, * @key: A key to use on the device * @q: the request queue for the device * - * Upper layers must call this function to ensure that the hardware supports - * the key's crypto settings. + * Upper layers must call this function to ensure that either the hardware + * supports the key's crypto settings, or the crypto API fallback has transforms + * for the needed mode allocated and ready to go. This function may allocate + * an skcipher, and *should not* be called from the data path, since that might + * cause a deadlock * - * Return: 0 on success; -ENOPKG if the hardware doesn't support the key + * Return: 0 on success; -ENOPKG if the hardware doesn't support the key and + * blk-crypto-fallback is either disabled or the needed algorithm + * is disabled in the crypto API; or another -errno code. */ int blk_crypto_start_using_key(const struct blk_crypto_key *key, struct request_queue *q) { if (blk_ksm_crypto_cfg_supported(q->ksm, &key->crypto_cfg)) return 0; - return -ENOPKG; + return blk_crypto_fallback_start_using_mode(key->crypto_cfg.crypto_mode); } /** @@ -372,5 +395,10 @@ int blk_crypto_evict_key(struct request_queue *q, if (blk_ksm_crypto_cfg_supported(q->ksm, &key->crypto_cfg)) return blk_ksm_evict_key(q->ksm, key); - return 0; + /* + * If the request queue's associated inline encryption hardware didn't + * have support for the key, then the key might have been programmed + * into the fallback keyslot manager, so try to evict from there. + */ + return blk_crypto_fallback_evict_key(key); } |