diff options
author | Andy Lutomirski <luto@kernel.org> | 2017-05-28 10:00:15 -0700 |
---|---|---|
committer | Ingo Molnar <mingo@kernel.org> | 2017-06-05 09:59:44 +0200 |
commit | 3d28ebceaffab40f30afa87e33331560148d7b8b (patch) | |
tree | 2c1be6cfcb300f9609a07ac4cc1c5969bf96e27e /arch/x86/kernel/ldt.c | |
parent | ce4a4e565f5264909a18c733b864c3f74467f69e (diff) | |
download | lwn-3d28ebceaffab40f30afa87e33331560148d7b8b.tar.gz lwn-3d28ebceaffab40f30afa87e33331560148d7b8b.zip |
x86/mm: Rework lazy TLB to track the actual loaded mm
Lazy TLB state is currently managed in a rather baroque manner.
AFAICT, there are three possible states:
- Non-lazy. This means that we're running a user thread or a
kernel thread that has called use_mm(). current->mm ==
current->active_mm == cpu_tlbstate.active_mm and
cpu_tlbstate.state == TLBSTATE_OK.
- Lazy with user mm. We're running a kernel thread without an mm
and we're borrowing an mm_struct. We have current->mm == NULL,
current->active_mm == cpu_tlbstate.active_mm, cpu_tlbstate.state
!= TLBSTATE_OK (i.e. TLBSTATE_LAZY or 0). The current cpu is set
in mm_cpumask(current->active_mm). CR3 points to
current->active_mm->pgd. The TLB is up to date.
- Lazy with init_mm. This happens when we call leave_mm(). We
have current->mm == NULL, current->active_mm ==
cpu_tlbstate.active_mm, but that mm is only relelvant insofar as
the scheduler is tracking it for refcounting. cpu_tlbstate.state
!= TLBSTATE_OK. The current cpu is clear in
mm_cpumask(current->active_mm). CR3 points to swapper_pg_dir,
i.e. init_mm->pgd.
This patch simplifies the situation. Other than perf, x86 stops
caring about current->active_mm at all. We have
cpu_tlbstate.loaded_mm pointing to the mm that CR3 references. The
TLB is always up to date for that mm. leave_mm() just switches us
to init_mm. There are no longer any special cases for mm_cpumask,
and switch_mm() switches mms without worrying about laziness.
After this patch, cpu_tlbstate.state serves only to tell the TLB
flush code whether it may switch to init_mm instead of doing a
normal flush.
This makes fairly extensive changes to xen_exit_mmap(), which used
to look a bit like black magic.
Perf is unchanged. With or without this change, perf may behave a bit
erratically if it tries to read user memory in kernel thread context.
We should build on this patch to teach perf to never look at user
memory when cpu_tlbstate.loaded_mm != current->mm.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'arch/x86/kernel/ldt.c')
-rw-r--r-- | arch/x86/kernel/ldt.c | 7 |
1 files changed, 4 insertions, 3 deletions
diff --git a/arch/x86/kernel/ldt.c b/arch/x86/kernel/ldt.c index d4a15831ac58..de503e7a64ad 100644 --- a/arch/x86/kernel/ldt.c +++ b/arch/x86/kernel/ldt.c @@ -22,14 +22,15 @@ #include <asm/syscalls.h> /* context.lock is held for us, so we don't need any locking. */ -static void flush_ldt(void *current_mm) +static void flush_ldt(void *__mm) { + struct mm_struct *mm = __mm; mm_context_t *pc; - if (current->active_mm != current_mm) + if (this_cpu_read(cpu_tlbstate.loaded_mm) != mm) return; - pc = ¤t->active_mm->context; + pc = &mm->context; set_ldt(pc->ldt->entries, pc->ldt->size); } |