summaryrefslogtreecommitdiff
path: root/arch/s390/kvm/kvm-s390.c
diff options
context:
space:
mode:
authorPaolo Bonzini <pbonzini@redhat.com>2015-02-04 18:20:58 +0100
committerPaolo Bonzini <pbonzini@redhat.com>2015-02-06 13:08:37 +0100
commitf7819512996361280b86259222456fcf15aad926 (patch)
tree2053c7f0a1acef58ba0987e1002b1ef18e048e4f /arch/s390/kvm/kvm-s390.c
parent1c2b364b225a5a93dbd1f317bd000d2fec2694be (diff)
downloadlwn-f7819512996361280b86259222456fcf15aad926.tar.gz
lwn-f7819512996361280b86259222456fcf15aad926.zip
kvm: add halt_poll_ns module parameter
This patch introduces a new module parameter for the KVM module; when it is present, KVM attempts a bit of polling on every HLT before scheduling itself out via kvm_vcpu_block. This parameter helps a lot for latency-bound workloads---in particular I tested it with O_DSYNC writes with a battery-backed disk in the host. In this case, writes are fast (because the data doesn't have to go all the way to the platters) but they cannot be merged by either the host or the guest. KVM's performance here is usually around 30% of bare metal, or 50% if you use cache=directsync or cache=writethrough (these parameters avoid that the guest sends pointless flush requests, and at the same time they are not slow because of the battery-backed cache). The bad performance happens because on every halt the host CPU decides to halt itself too. When the interrupt comes, the vCPU thread is then migrated to a new physical CPU, and in general the latency is horrible because the vCPU thread has to be scheduled back in. With this patch performance reaches 60-65% of bare metal and, more important, 99% of what you get if you use idle=poll in the guest. This means that the tunable gets rid of this particular bottleneck, and more work can be done to improve performance in the kernel or QEMU. Of course there is some price to pay; every time an otherwise idle vCPUs is interrupted by an interrupt, it will poll unnecessarily and thus impose a little load on the host. The above results were obtained with a mostly random value of the parameter (500000), and the load was around 1.5-2.5% CPU usage on one of the host's core for each idle guest vCPU. The patch also adds a new stat, /sys/kernel/debug/kvm/halt_successful_poll, that can be used to tune the parameter. It counts how many HLT instructions received an interrupt during the polling period; each successful poll avoids that Linux schedules the VCPU thread out and back in, and may also avoid a likely trip to C1 and back for the physical CPU. While the VM is idle, a Linux 4 VCPU VM halts around 10 times per second. Of these halts, almost all are failed polls. During the benchmark, instead, basically all halts end within the polling period, except a more or less constant stream of 50 per second coming from vCPUs that are not running the benchmark. The wasted time is thus very low. Things may be slightly different for Windows VMs, which have a ~10 ms timer tick. The effect is also visible on Marcelo's recently-introduced latency test for the TSC deadline timer. Though of course a non-RT kernel has awful latency bounds, the latency of the timer is around 8000-10000 clock cycles compared to 20000-120000 without setting halt_poll_ns. For the TSC deadline timer, thus, the effect is both a smaller average latency and a smaller variance. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Diffstat (limited to 'arch/s390/kvm/kvm-s390.c')
-rw-r--r--arch/s390/kvm/kvm-s390.c1
1 files changed, 1 insertions, 0 deletions
diff --git a/arch/s390/kvm/kvm-s390.c b/arch/s390/kvm/kvm-s390.c
index b2371c0fd1f8..1dbab2340a66 100644
--- a/arch/s390/kvm/kvm-s390.c
+++ b/arch/s390/kvm/kvm-s390.c
@@ -51,6 +51,7 @@ struct kvm_stats_debugfs_item debugfs_entries[] = {
{ "exit_instruction", VCPU_STAT(exit_instruction) },
{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
+ { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
{ "instruction_lctl", VCPU_STAT(instruction_lctl) },