diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2019-03-05 09:09:55 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2019-03-05 09:09:55 -0800 |
commit | 63bdf4284c38a48af21745ceb148a087b190cd21 (patch) | |
tree | ffbf9e69ed457e776db0317903ccb0addbd1b276 /arch/arm | |
parent | 6456300356433873309a1cae6aa05e77d6b59153 (diff) | |
parent | 0918f18c7179e8cdf718d01531a81b28130b4217 (diff) | |
download | lwn-63bdf4284c38a48af21745ceb148a087b190cd21.tar.gz lwn-63bdf4284c38a48af21745ceb148a087b190cd21.zip |
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto update from Herbert Xu:
"API:
- Add helper for simple skcipher modes.
- Add helper to register multiple templates.
- Set CRYPTO_TFM_NEED_KEY when setkey fails.
- Require neither or both of export/import in shash.
- AEAD decryption test vectors are now generated from encryption
ones.
- New option CONFIG_CRYPTO_MANAGER_EXTRA_TESTS that includes random
fuzzing.
Algorithms:
- Conversions to skcipher and helper for many templates.
- Add more test vectors for nhpoly1305 and adiantum.
Drivers:
- Add crypto4xx prng support.
- Add xcbc/cmac/ecb support in caam.
- Add AES support for Exynos5433 in s5p.
- Remove sha384/sha512 from artpec7 as hardware cannot do partial
hash"
[ There is a merge of the Freescale SoC tree in order to pull in changes
required by patches to the caam/qi2 driver. ]
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (174 commits)
crypto: s5p - add AES support for Exynos5433
dt-bindings: crypto: document Exynos5433 SlimSSS
crypto: crypto4xx - add missing of_node_put after of_device_is_available
crypto: cavium/zip - fix collision with generic cra_driver_name
crypto: af_alg - use struct_size() in sock_kfree_s()
crypto: caam - remove redundant likely/unlikely annotation
crypto: s5p - update iv after AES-CBC op end
crypto: x86/poly1305 - Clear key material from stack in SSE2 variant
crypto: caam - generate hash keys in-place
crypto: caam - fix DMA mapping xcbc key twice
crypto: caam - fix hash context DMA unmap size
hwrng: bcm2835 - fix probe as platform device
crypto: s5p-sss - Use AES_BLOCK_SIZE define instead of number
crypto: stm32 - drop pointless static qualifier in stm32_hash_remove()
crypto: chelsio - Fixed Traffic Stall
crypto: marvell - Remove set but not used variable 'ivsize'
crypto: ccp - Update driver messages to remove some confusion
crypto: adiantum - add 1536 and 4096-byte test vectors
crypto: nhpoly1305 - add a test vector with len % 16 != 0
crypto: arm/aes-ce - update IV after partial final CTR block
...
Diffstat (limited to 'arch/arm')
-rw-r--r-- | arch/arm/crypto/aes-ce-core.S | 26 | ||||
-rw-r--r-- | arch/arm/crypto/crct10dif-ce-core.S | 568 | ||||
-rw-r--r-- | arch/arm/crypto/crct10dif-ce-glue.c | 25 |
3 files changed, 281 insertions, 338 deletions
diff --git a/arch/arm/crypto/aes-ce-core.S b/arch/arm/crypto/aes-ce-core.S index ba8e6a32fdc9..bc53bcaa772e 100644 --- a/arch/arm/crypto/aes-ce-core.S +++ b/arch/arm/crypto/aes-ce-core.S @@ -317,25 +317,27 @@ ENTRY(ce_aes_ctr_encrypt) .Lctrloop: vmov q0, q6 bl aes_encrypt - subs r4, r4, #1 - bmi .Lctrtailblock @ blocks < 0 means tail block - vld1.8 {q3}, [r1]! - veor q3, q0, q3 - vst1.8 {q3}, [r0]! adds r6, r6, #1 @ increment BE ctr rev ip, r6 vmov s27, ip bcs .Lctrcarry - teq r4, #0 + +.Lctrcarrydone: + subs r4, r4, #1 + bmi .Lctrtailblock @ blocks < 0 means tail block + vld1.8 {q3}, [r1]! + veor q3, q0, q3 + vst1.8 {q3}, [r0]! bne .Lctrloop + .Lctrout: - vst1.8 {q6}, [r5] + vst1.8 {q6}, [r5] @ return next CTR value pop {r4-r6, pc} .Lctrtailblock: - vst1.8 {q0}, [r0, :64] @ return just the key stream - pop {r4-r6, pc} + vst1.8 {q0}, [r0, :64] @ return the key stream + b .Lctrout .Lctrcarry: .irp sreg, s26, s25, s24 @@ -344,11 +346,9 @@ ENTRY(ce_aes_ctr_encrypt) adds ip, ip, #1 rev ip, ip vmov \sreg, ip - bcc 0f + bcc .Lctrcarrydone .endr -0: teq r4, #0 - beq .Lctrout - b .Lctrloop + b .Lctrcarrydone ENDPROC(ce_aes_ctr_encrypt) /* diff --git a/arch/arm/crypto/crct10dif-ce-core.S b/arch/arm/crypto/crct10dif-ce-core.S index ce45ba0c0687..86be258a803f 100644 --- a/arch/arm/crypto/crct10dif-ce-core.S +++ b/arch/arm/crypto/crct10dif-ce-core.S @@ -2,12 +2,14 @@ // Accelerated CRC-T10DIF using ARM NEON and Crypto Extensions instructions // // Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org> +// Copyright (C) 2019 Google LLC <ebiggers@google.com> // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License version 2 as // published by the Free Software Foundation. // +// Derived from the x86 version: // // Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions // @@ -54,19 +56,11 @@ // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // -// Function API: -// UINT16 crc_t10dif_pcl( -// UINT16 init_crc, //initial CRC value, 16 bits -// const unsigned char *buf, //buffer pointer to calculate CRC on -// UINT64 len //buffer length in bytes (64-bit data) -// ); -// // Reference paper titled "Fast CRC Computation for Generic // Polynomials Using PCLMULQDQ Instruction" // URL: http://www.intel.com/content/dam/www/public/us/en/documents // /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf // -// #include <linux/linkage.h> #include <asm/assembler.h> @@ -78,13 +72,14 @@ #endif .text + .arch armv7-a .fpu crypto-neon-fp-armv8 - arg1_low32 .req r0 - arg2 .req r1 - arg3 .req r2 + init_crc .req r0 + buf .req r1 + len .req r2 - qzr .req q13 + fold_consts_ptr .req ip q0l .req d0 q0h .req d1 @@ -102,82 +97,35 @@ q6h .req d13 q7l .req d14 q7h .req d15 - -ENTRY(crc_t10dif_pmull) - vmov.i8 qzr, #0 // init zero register - - // adjust the 16-bit initial_crc value, scale it to 32 bits - lsl arg1_low32, arg1_low32, #16 - - // check if smaller than 256 - cmp arg3, #256 - - // for sizes less than 128, we can't fold 64B at a time... - blt _less_than_128 - - // load the initial crc value - // crc value does not need to be byte-reflected, but it needs - // to be moved to the high part of the register. - // because data will be byte-reflected and will align with - // initial crc at correct place. - vmov s0, arg1_low32 // initial crc - vext.8 q10, qzr, q0, #4 - - // receive the initial 64B data, xor the initial crc value - vld1.64 {q0-q1}, [arg2, :128]! - vld1.64 {q2-q3}, [arg2, :128]! - vld1.64 {q4-q5}, [arg2, :128]! - vld1.64 {q6-q7}, [arg2, :128]! -CPU_LE( vrev64.8 q0, q0 ) -CPU_LE( vrev64.8 q1, q1 ) -CPU_LE( vrev64.8 q2, q2 ) -CPU_LE( vrev64.8 q3, q3 ) -CPU_LE( vrev64.8 q4, q4 ) -CPU_LE( vrev64.8 q5, q5 ) -CPU_LE( vrev64.8 q6, q6 ) -CPU_LE( vrev64.8 q7, q7 ) - - vswp d0, d1 - vswp d2, d3 - vswp d4, d5 - vswp d6, d7 - vswp d8, d9 - vswp d10, d11 - vswp d12, d13 - vswp d14, d15 - - // XOR the initial_crc value - veor.8 q0, q0, q10 - - adr ip, rk3 - vld1.64 {q10}, [ip, :128] // xmm10 has rk3 and rk4 - - // - // we subtract 256 instead of 128 to save one instruction from the loop - // - sub arg3, arg3, #256 - - // at this section of the code, there is 64*x+y (0<=y<64) bytes of - // buffer. The _fold_64_B_loop will fold 64B at a time - // until we have 64+y Bytes of buffer - - - // fold 64B at a time. This section of the code folds 4 vector - // registers in parallel -_fold_64_B_loop: - - .macro fold64, reg1, reg2 - vld1.64 {q11-q12}, [arg2, :128]! - - vmull.p64 q8, \reg1\()h, d21 - vmull.p64 \reg1, \reg1\()l, d20 - vmull.p64 q9, \reg2\()h, d21 - vmull.p64 \reg2, \reg2\()l, d20 - -CPU_LE( vrev64.8 q11, q11 ) -CPU_LE( vrev64.8 q12, q12 ) - vswp d22, d23 - vswp d24, d25 + q8l .req d16 + q8h .req d17 + q9l .req d18 + q9h .req d19 + q10l .req d20 + q10h .req d21 + q11l .req d22 + q11h .req d23 + q12l .req d24 + q12h .req d25 + + FOLD_CONSTS .req q10 + FOLD_CONST_L .req q10l + FOLD_CONST_H .req q10h + + // Fold reg1, reg2 into the next 32 data bytes, storing the result back + // into reg1, reg2. + .macro fold_32_bytes, reg1, reg2 + vld1.64 {q11-q12}, [buf]! + + vmull.p64 q8, \reg1\()h, FOLD_CONST_H + vmull.p64 \reg1, \reg1\()l, FOLD_CONST_L + vmull.p64 q9, \reg2\()h, FOLD_CONST_H + vmull.p64 \reg2, \reg2\()l, FOLD_CONST_L + +CPU_LE( vrev64.8 q11, q11 ) +CPU_LE( vrev64.8 q12, q12 ) + vswp q11l, q11h + vswp q12l, q12h veor.8 \reg1, \reg1, q8 veor.8 \reg2, \reg2, q9 @@ -185,242 +133,248 @@ CPU_LE( vrev64.8 q12, q12 ) veor.8 \reg2, \reg2, q12 .endm - fold64 q0, q1 - fold64 q2, q3 - fold64 q4, q5 - fold64 q6, q7 - - subs arg3, arg3, #128 - - // check if there is another 64B in the buffer to be able to fold - bge _fold_64_B_loop - - // at this point, the buffer pointer is pointing at the last y Bytes - // of the buffer the 64B of folded data is in 4 of the vector - // registers: v0, v1, v2, v3 - - // fold the 8 vector registers to 1 vector register with different - // constants - - adr ip, rk9 - vld1.64 {q10}, [ip, :128]! - - .macro fold16, reg, rk - vmull.p64 q8, \reg\()l, d20 - vmull.p64 \reg, \reg\()h, d21 - .ifnb \rk - vld1.64 {q10}, [ip, :128]! + // Fold src_reg into dst_reg, optionally loading the next fold constants + .macro fold_16_bytes, src_reg, dst_reg, load_next_consts + vmull.p64 q8, \src_reg\()l, FOLD_CONST_L + vmull.p64 \src_reg, \src_reg\()h, FOLD_CONST_H + .ifnb \load_next_consts + vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]! .endif - veor.8 q7, q7, q8 - veor.8 q7, q7, \reg + veor.8 \dst_reg, \dst_reg, q8 + veor.8 \dst_reg, \dst_reg, \src_reg .endm - fold16 q0, rk11 - fold16 q1, rk13 - fold16 q2, rk15 - fold16 q3, rk17 - fold16 q4, rk19 - fold16 q5, rk1 - fold16 q6 - - // instead of 64, we add 48 to the loop counter to save 1 instruction - // from the loop instead of a cmp instruction, we use the negative - // flag with the jl instruction - adds arg3, arg3, #(128-16) - blt _final_reduction_for_128 - - // now we have 16+y bytes left to reduce. 16 Bytes is in register v7 - // and the rest is in memory. We can fold 16 bytes at a time if y>=16 - // continue folding 16B at a time - -_16B_reduction_loop: - vmull.p64 q8, d14, d20 - vmull.p64 q7, d15, d21 - veor.8 q7, q7, q8 + .macro __adrl, out, sym + movw \out, #:lower16:\sym + movt \out, #:upper16:\sym + .endm - vld1.64 {q0}, [arg2, :128]! -CPU_LE( vrev64.8 q0, q0 ) - vswp d0, d1 - veor.8 q7, q7, q0 - subs arg3, arg3, #16 - - // instead of a cmp instruction, we utilize the flags with the - // jge instruction equivalent of: cmp arg3, 16-16 - // check if there is any more 16B in the buffer to be able to fold - bge _16B_reduction_loop - - // now we have 16+z bytes left to reduce, where 0<= z < 16. - // first, we reduce the data in the xmm7 register - -_final_reduction_for_128: - // check if any more data to fold. If not, compute the CRC of - // the final 128 bits - adds arg3, arg3, #16 - beq _128_done - - // here we are getting data that is less than 16 bytes. - // since we know that there was data before the pointer, we can - // offset the input pointer before the actual point, to receive - // exactly 16 bytes. after that the registers need to be adjusted. -_get_last_two_regs: - add arg2, arg2, arg3 - sub arg2, arg2, #16 - vld1.64 {q1}, [arg2] -CPU_LE( vrev64.8 q1, q1 ) - vswp d2, d3 - - // get rid of the extra data that was loaded before - // load the shift constant - adr ip, tbl_shf_table + 16 - sub ip, ip, arg3 - vld1.8 {q0}, [ip] - - // shift v2 to the left by arg3 bytes - vtbl.8 d4, {d14-d15}, d0 - vtbl.8 d5, {d14-d15}, d1 - - // shift v7 to the right by 16-arg3 bytes - vmov.i8 q9, #0x80 - veor.8 q0, q0, q9 - vtbl.8 d18, {d14-d15}, d0 - vtbl.8 d19, {d14-d15}, d1 - - // blend - vshr.s8 q0, q0, #7 // convert to 8-bit mask - vbsl.8 q0, q2, q1 - - // fold 16 Bytes - vmull.p64 q8, d18, d20 - vmull.p64 q7, d19, d21 +// +// u16 crc_t10dif_pmull(u16 init_crc, const u8 *buf, size_t len); +// +// Assumes len >= 16. +// +ENTRY(crc_t10dif_pmull) + + // For sizes less than 256 bytes, we can't fold 128 bytes at a time. + cmp len, #256 + blt .Lless_than_256_bytes + + __adrl fold_consts_ptr, .Lfold_across_128_bytes_consts + + // Load the first 128 data bytes. Byte swapping is necessary to make + // the bit order match the polynomial coefficient order. + vld1.64 {q0-q1}, [buf]! + vld1.64 {q2-q3}, [buf]! + vld1.64 {q4-q5}, [buf]! + vld1.64 {q6-q7}, [buf]! +CPU_LE( vrev64.8 q0, q0 ) +CPU_LE( vrev64.8 q1, q1 ) +CPU_LE( vrev64.8 q2, q2 ) +CPU_LE( vrev64.8 q3, q3 ) +CPU_LE( vrev64.8 q4, q4 ) +CPU_LE( vrev64.8 q5, q5 ) +CPU_LE( vrev64.8 q6, q6 ) +CPU_LE( vrev64.8 q7, q7 ) + vswp q0l, q0h + vswp q1l, q1h + vswp q2l, q2h + vswp q3l, q3h + vswp q4l, q4h + vswp q5l, q5h + vswp q6l, q6h + vswp q7l, q7h + + // XOR the first 16 data *bits* with the initial CRC value. + vmov.i8 q8h, #0 + vmov.u16 q8h[3], init_crc + veor q0h, q0h, q8h + + // Load the constants for folding across 128 bytes. + vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]! + + // Subtract 128 for the 128 data bytes just consumed. Subtract another + // 128 to simplify the termination condition of the following loop. + sub len, len, #256 + + // While >= 128 data bytes remain (not counting q0-q7), fold the 128 + // bytes q0-q7 into them, storing the result back into q0-q7. +.Lfold_128_bytes_loop: + fold_32_bytes q0, q1 + fold_32_bytes q2, q3 + fold_32_bytes q4, q5 + fold_32_bytes q6, q7 + subs len, len, #128 + bge .Lfold_128_bytes_loop + + // Now fold the 112 bytes in q0-q6 into the 16 bytes in q7. + + // Fold across 64 bytes. + vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]! + fold_16_bytes q0, q4 + fold_16_bytes q1, q5 + fold_16_bytes q2, q6 + fold_16_bytes q3, q7, 1 + // Fold across 32 bytes. + fold_16_bytes q4, q6 + fold_16_bytes q5, q7, 1 + // Fold across 16 bytes. + fold_16_bytes q6, q7 + + // Add 128 to get the correct number of data bytes remaining in 0...127 + // (not counting q7), following the previous extra subtraction by 128. + // Then subtract 16 to simplify the termination condition of the + // following loop. + adds len, len, #(128-16) + + // While >= 16 data bytes remain (not counting q7), fold the 16 bytes q7 + // into them, storing the result back into q7. + blt .Lfold_16_bytes_loop_done +.Lfold_16_bytes_loop: + vmull.p64 q8, q7l, FOLD_CONST_L + vmull.p64 q7, q7h, FOLD_CONST_H veor.8 q7, q7, q8 + vld1.64 {q0}, [buf]! +CPU_LE( vrev64.8 q0, q0 ) + vswp q0l, q0h veor.8 q7, q7, q0 - -_128_done: - // compute crc of a 128-bit value - vldr d20, rk5 - vldr d21, rk6 // rk5 and rk6 in xmm10 - - // 64b fold - vext.8 q0, qzr, q7, #8 - vmull.p64 q7, d15, d20 + subs len, len, #16 + bge .Lfold_16_bytes_loop + +.Lfold_16_bytes_loop_done: + // Add 16 to get the correct number of data bytes remaining in 0...15 + // (not counting q7), following the previous extra subtraction by 16. + adds len, len, #16 + beq .Lreduce_final_16_bytes + +.Lhandle_partial_segment: + // Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first + // 16 bytes are in q7 and the rest are the remaining data in 'buf'. To + // do this without needing a fold constant for each possible 'len', + // redivide the bytes into a first chunk of 'len' bytes and a second + // chunk of 16 bytes, then fold the first chunk into the second. + + // q0 = last 16 original data bytes + add buf, buf, len + sub buf, buf, #16 + vld1.64 {q0}, [buf] +CPU_LE( vrev64.8 q0, q0 ) + vswp q0l, q0h + + // q1 = high order part of second chunk: q7 left-shifted by 'len' bytes. + __adrl r3, .Lbyteshift_table + 16 + sub r3, r3, len + vld1.8 {q2}, [r3] + vtbl.8 q1l, {q7l-q7h}, q2l + vtbl.8 q1h, {q7l-q7h}, q2h + + // q3 = first chunk: q7 right-shifted by '16-len' bytes. + vmov.i8 q3, #0x80 + veor.8 q2, q2, q3 + vtbl.8 q3l, {q7l-q7h}, q2l + vtbl.8 q3h, {q7l-q7h}, q2h + + // Convert to 8-bit masks: 'len' 0x00 bytes, then '16-len' 0xff bytes. + vshr.s8 q2, q2, #7 + + // q2 = second chunk: 'len' bytes from q0 (low-order bytes), + // then '16-len' bytes from q1 (high-order bytes). + vbsl.8 q2, q1, q0 + + // Fold the first chunk into the second chunk, storing the result in q7. + vmull.p64 q0, q3l, FOLD_CONST_L + vmull.p64 q7, q3h, FOLD_CONST_H veor.8 q7, q7, q0 + veor.8 q7, q7, q2 + +.Lreduce_final_16_bytes: + // Reduce the 128-bit value M(x), stored in q7, to the final 16-bit CRC. + + // Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'. + vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]! + + // Fold the high 64 bits into the low 64 bits, while also multiplying by + // x^64. This produces a 128-bit value congruent to x^64 * M(x) and + // whose low 48 bits are 0. + vmull.p64 q0, q7h, FOLD_CONST_H // high bits * x^48 * (x^80 mod G(x)) + veor.8 q0h, q0h, q7l // + low bits * x^64 + + // Fold the high 32 bits into the low 96 bits. This produces a 96-bit + // value congruent to x^64 * M(x) and whose low 48 bits are 0. + vmov.i8 q1, #0 + vmov s4, s3 // extract high 32 bits + vmov s3, s5 // zero high 32 bits + vmull.p64 q1, q1l, FOLD_CONST_L // high 32 bits * x^48 * (x^48 mod G(x)) + veor.8 q0, q0, q1 // + low bits + + // Load G(x) and floor(x^48 / G(x)). + vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128] + + // Use Barrett reduction to compute the final CRC value. + vmull.p64 q1, q0h, FOLD_CONST_H // high 32 bits * floor(x^48 / G(x)) + vshr.u64 q1l, q1l, #32 // /= x^32 + vmull.p64 q1, q1l, FOLD_CONST_L // *= G(x) + vshr.u64 q0l, q0l, #48 + veor.8 q0l, q0l, q1l // + low 16 nonzero bits + // Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of q0. + + vmov.u16 r0, q0l[0] + bx lr - // 32b fold - vext.8 q0, q7, qzr, #12 - vmov s31, s3 - vmull.p64 q0, d0, d21 - veor.8 q7, q0, q7 - - // barrett reduction -_barrett: - vldr d20, rk7 - vldr d21, rk8 - - vmull.p64 q0, d15, d20 - vext.8 q0, qzr, q0, #12 - vmull.p64 q0, d1, d21 - vext.8 q0, qzr, q0, #12 - veor.8 q7, q7, q0 - vmov r0, s29 +.Lless_than_256_bytes: + // Checksumming a buffer of length 16...255 bytes -_cleanup: - // scale the result back to 16 bits - lsr r0, r0, #16 - bx lr + __adrl fold_consts_ptr, .Lfold_across_16_bytes_consts -_less_than_128: - teq arg3, #0 - beq _cleanup + // Load the first 16 data bytes. + vld1.64 {q7}, [buf]! +CPU_LE( vrev64.8 q7, q7 ) + vswp q7l, q7h - vmov.i8 q0, #0 - vmov s3, arg1_low32 // get the initial crc value + // XOR the first 16 data *bits* with the initial CRC value. + vmov.i8 q0h, #0 + vmov.u16 q0h[3], init_crc + veor.8 q7h, q7h, q0h - vld1.64 {q7}, [arg2, :128]! -CPU_LE( vrev64.8 q7, q7 ) - vswp d14, d15 - veor.8 q7, q7, q0 + // Load the fold-across-16-bytes constants. + vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]! - cmp arg3, #16 - beq _128_done // exactly 16 left - blt _less_than_16_left - - // now if there is, load the constants - vldr d20, rk1 - vldr d21, rk2 // rk1 and rk2 in xmm10 - - // check if there is enough buffer to be able to fold 16B at a time - subs arg3, arg3, #32 - addlt arg3, arg3, #16 - blt _get_last_two_regs - b _16B_reduction_loop - -_less_than_16_left: - // shl r9, 4 - adr ip, tbl_shf_table + 16 - sub ip, ip, arg3 - vld1.8 {q0}, [ip] - vmov.i8 q9, #0x80 - veor.8 q0, q0, q9 - vtbl.8 d18, {d14-d15}, d0 - vtbl.8 d15, {d14-d15}, d1 - vmov d14, d18 - b _128_done + cmp len, #16 + beq .Lreduce_final_16_bytes // len == 16 + subs len, len, #32 + addlt len, len, #16 + blt .Lhandle_partial_segment // 17 <= len <= 31 + b .Lfold_16_bytes_loop // 32 <= len <= 255 ENDPROC(crc_t10dif_pmull) -// precomputed constants -// these constants are precomputed from the poly: -// 0x8bb70000 (0x8bb7 scaled to 32 bits) + .section ".rodata", "a" .align 4 -// Q = 0x18BB70000 -// rk1 = 2^(32*3) mod Q << 32 -// rk2 = 2^(32*5) mod Q << 32 -// rk3 = 2^(32*15) mod Q << 32 -// rk4 = 2^(32*17) mod Q << 32 -// rk5 = 2^(32*3) mod Q << 32 -// rk6 = 2^(32*2) mod Q << 32 -// rk7 = floor(2^64/Q) -// rk8 = Q - -rk3: .quad 0x9d9d000000000000 -rk4: .quad 0x7cf5000000000000 -rk5: .quad 0x2d56000000000000 -rk6: .quad 0x1368000000000000 -rk7: .quad 0x00000001f65a57f8 -rk8: .quad 0x000000018bb70000 -rk9: .quad 0xceae000000000000 -rk10: .quad 0xbfd6000000000000 -rk11: .quad 0x1e16000000000000 -rk12: .quad 0x713c000000000000 -rk13: .quad 0xf7f9000000000000 -rk14: .quad 0x80a6000000000000 -rk15: .quad 0x044c000000000000 -rk16: .quad 0xe658000000000000 -rk17: .quad 0xad18000000000000 -rk18: .quad 0xa497000000000000 -rk19: .quad 0x6ee3000000000000 -rk20: .quad 0xe7b5000000000000 -rk1: .quad 0x2d56000000000000 -rk2: .quad 0x06df000000000000 - -tbl_shf_table: -// use these values for shift constants for the tbl/tbx instruction -// different alignments result in values as shown: -// DDQ 0x008f8e8d8c8b8a898887868584838281 # shl 15 (16-1) / shr1 -// DDQ 0x01008f8e8d8c8b8a8988878685848382 # shl 14 (16-3) / shr2 -// DDQ 0x0201008f8e8d8c8b8a89888786858483 # shl 13 (16-4) / shr3 -// DDQ 0x030201008f8e8d8c8b8a898887868584 # shl 12 (16-4) / shr4 -// DDQ 0x04030201008f8e8d8c8b8a8988878685 # shl 11 (16-5) / shr5 -// DDQ 0x0504030201008f8e8d8c8b8a89888786 # shl 10 (16-6) / shr6 -// DDQ 0x060504030201008f8e8d8c8b8a898887 # shl 9 (16-7) / shr7 -// DDQ 0x07060504030201008f8e8d8c8b8a8988 # shl 8 (16-8) / shr8 -// DDQ 0x0807060504030201008f8e8d8c8b8a89 # shl 7 (16-9) / shr9 -// DDQ 0x090807060504030201008f8e8d8c8b8a # shl 6 (16-10) / shr10 -// DDQ 0x0a090807060504030201008f8e8d8c8b # shl 5 (16-11) / shr11 -// DDQ 0x0b0a090807060504030201008f8e8d8c # shl 4 (16-12) / shr12 -// DDQ 0x0c0b0a090807060504030201008f8e8d # shl 3 (16-13) / shr13 -// DDQ 0x0d0c0b0a090807060504030201008f8e # shl 2 (16-14) / shr14 -// DDQ 0x0e0d0c0b0a090807060504030201008f # shl 1 (16-15) / shr15 +// Fold constants precomputed from the polynomial 0x18bb7 +// G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0 +.Lfold_across_128_bytes_consts: + .quad 0x0000000000006123 // x^(8*128) mod G(x) + .quad 0x0000000000002295 // x^(8*128+64) mod G(x) +// .Lfold_across_64_bytes_consts: + .quad 0x0000000000001069 // x^(4*128) mod G(x) + .quad 0x000000000000dd31 // x^(4*128+64) mod G(x) +// .Lfold_across_32_bytes_consts: + .quad 0x000000000000857d // x^(2*128) mod G(x) + .quad 0x0000000000007acc // x^(2*128+64) mod G(x) +.Lfold_across_16_bytes_consts: + .quad 0x000000000000a010 // x^(1*128) mod G(x) + .quad 0x0000000000001faa // x^(1*128+64) mod G(x) +// .Lfinal_fold_consts: + .quad 0x1368000000000000 // x^48 * (x^48 mod G(x)) + .quad 0x2d56000000000000 // x^48 * (x^80 mod G(x)) +// .Lbarrett_reduction_consts: + .quad 0x0000000000018bb7 // G(x) + .quad 0x00000001f65a57f8 // floor(x^48 / G(x)) + +// For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 - +// len] is the index vector to shift left by 'len' bytes, and is also {0x80, +// ..., 0x80} XOR the index vector to shift right by '16 - len' bytes. +.Lbyteshift_table: .byte 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87 .byte 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f .byte 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7 diff --git a/arch/arm/crypto/crct10dif-ce-glue.c b/arch/arm/crypto/crct10dif-ce-glue.c index d428355cf38d..3d6b800b8396 100644 --- a/arch/arm/crypto/crct10dif-ce-glue.c +++ b/arch/arm/crypto/crct10dif-ce-glue.c @@ -21,7 +21,7 @@ #define CRC_T10DIF_PMULL_CHUNK_SIZE 16U -asmlinkage u16 crc_t10dif_pmull(u16 init_crc, const u8 buf[], u32 len); +asmlinkage u16 crc_t10dif_pmull(u16 init_crc, const u8 *buf, size_t len); static int crct10dif_init(struct shash_desc *desc) { @@ -35,26 +35,15 @@ static int crct10dif_update(struct shash_desc *desc, const u8 *data, unsigned int length) { u16 *crc = shash_desc_ctx(desc); - unsigned int l; - if (!may_use_simd()) { - *crc = crc_t10dif_generic(*crc, data, length); + if (length >= CRC_T10DIF_PMULL_CHUNK_SIZE && may_use_simd()) { + kernel_neon_begin(); + *crc = crc_t10dif_pmull(*crc, data, length); + kernel_neon_end(); } else { - if (unlikely((u32)data % CRC_T10DIF_PMULL_CHUNK_SIZE)) { - l = min_t(u32, length, CRC_T10DIF_PMULL_CHUNK_SIZE - - ((u32)data % CRC_T10DIF_PMULL_CHUNK_SIZE)); - - *crc = crc_t10dif_generic(*crc, data, l); - - length -= l; - data += l; - } - if (length > 0) { - kernel_neon_begin(); - *crc = crc_t10dif_pmull(*crc, data, length); - kernel_neon_end(); - } + *crc = crc_t10dif_generic(*crc, data, length); } + return 0; } |