diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2013-11-19 11:44:15 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2013-11-19 11:44:15 -0800 |
commit | dec8e46178bad9f1717a948572d76e0f804be801 (patch) | |
tree | d0feaa9474f4406cb220cccdb7d39a3d031f00a6 /arch/arc/include | |
parent | 806dace637e4d37a5569c3e2345adcbd473b3d12 (diff) | |
parent | cd5dfd0e1685530cb3159dec2d2a95421104093d (diff) | |
download | lwn-dec8e46178bad9f1717a948572d76e0f804be801.tar.gz lwn-dec8e46178bad9f1717a948572d76e0f804be801.zip |
Merge tag 'arc-v3.13-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
Pull second set of ARC changes from Vineet Gupta:
- Support for Perf from Mischa
- Enabling GPIO/Pinctrl drivers for Abilis TB10x platform
- New defconfig for buildroot
* tag 'arc-v3.13-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc:
ARC: [plat-arcfpga] Add defconfig without initramfs location
ARC: perf: ARC 700 PMU doesn't support sampling events
ARC: Add documentation on DT binding for ARC700 PMU
ARC: Add perf support for ARC700 cores
ARC: [TB10x] Updates for GPIO and pinctrl
Diffstat (limited to 'arch/arc/include')
-rw-r--r-- | arch/arc/include/asm/perf_event.h | 204 |
1 files changed, 203 insertions, 1 deletions
diff --git a/arch/arc/include/asm/perf_event.h b/arch/arc/include/asm/perf_event.h index 115ad96480e6..cbf755e32a03 100644 --- a/arch/arc/include/asm/perf_event.h +++ b/arch/arc/include/asm/perf_event.h @@ -1,5 +1,7 @@ /* - * Copyright (C) 2011-2012 Synopsys, Inc. (www.synopsys.com) + * Linux performance counter support for ARC + * + * Copyright (C) 2011-2013 Synopsys, Inc. (www.synopsys.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as @@ -10,4 +12,204 @@ #ifndef __ASM_PERF_EVENT_H #define __ASM_PERF_EVENT_H +/* real maximum varies per CPU, this is the maximum supported by the driver */ +#define ARC_PMU_MAX_HWEVENTS 64 + +#define ARC_REG_CC_BUILD 0xF6 +#define ARC_REG_CC_INDEX 0x240 +#define ARC_REG_CC_NAME0 0x241 +#define ARC_REG_CC_NAME1 0x242 + +#define ARC_REG_PCT_BUILD 0xF5 +#define ARC_REG_PCT_COUNTL 0x250 +#define ARC_REG_PCT_COUNTH 0x251 +#define ARC_REG_PCT_SNAPL 0x252 +#define ARC_REG_PCT_SNAPH 0x253 +#define ARC_REG_PCT_CONFIG 0x254 +#define ARC_REG_PCT_CONTROL 0x255 +#define ARC_REG_PCT_INDEX 0x256 + +#define ARC_REG_PCT_CONTROL_CC (1 << 16) /* clear counts */ +#define ARC_REG_PCT_CONTROL_SN (1 << 17) /* snapshot */ + +struct arc_reg_pct_build { +#ifdef CONFIG_CPU_BIG_ENDIAN + unsigned int m:8, c:8, r:6, s:2, v:8; +#else + unsigned int v:8, s:2, r:6, c:8, m:8; +#endif +}; + +struct arc_reg_cc_build { +#ifdef CONFIG_CPU_BIG_ENDIAN + unsigned int c:16, r:8, v:8; +#else + unsigned int v:8, r:8, c:16; +#endif +}; + +#define PERF_COUNT_ARC_DCLM (PERF_COUNT_HW_MAX + 0) +#define PERF_COUNT_ARC_DCSM (PERF_COUNT_HW_MAX + 1) +#define PERF_COUNT_ARC_ICM (PERF_COUNT_HW_MAX + 2) +#define PERF_COUNT_ARC_BPOK (PERF_COUNT_HW_MAX + 3) +#define PERF_COUNT_ARC_EDTLB (PERF_COUNT_HW_MAX + 4) +#define PERF_COUNT_ARC_EITLB (PERF_COUNT_HW_MAX + 5) +#define PERF_COUNT_ARC_HW_MAX (PERF_COUNT_HW_MAX + 6) + +/* + * The "generalized" performance events seem to really be a copy + * of the available events on x86 processors; the mapping to ARC + * events is not always possible 1-to-1. Fortunately, there doesn't + * seem to be an exact definition for these events, so we can cheat + * a bit where necessary. + * + * In particular, the following PERF events may behave a bit differently + * compared to other architectures: + * + * PERF_COUNT_HW_CPU_CYCLES + * Cycles not in halted state + * + * PERF_COUNT_HW_REF_CPU_CYCLES + * Reference cycles not in halted state, same as PERF_COUNT_HW_CPU_CYCLES + * for now as we don't do Dynamic Voltage/Frequency Scaling (yet) + * + * PERF_COUNT_HW_BUS_CYCLES + * Unclear what this means, Intel uses 0x013c, which according to + * their datasheet means "unhalted reference cycles". It sounds similar + * to PERF_COUNT_HW_REF_CPU_CYCLES, and we use the same counter for it. + * + * PERF_COUNT_HW_STALLED_CYCLES_BACKEND + * PERF_COUNT_HW_STALLED_CYCLES_FRONTEND + * The ARC 700 can either measure stalls per pipeline stage, or all stalls + * combined; for now we assign all stalls to STALLED_CYCLES_BACKEND + * and all pipeline flushes (e.g. caused by mispredicts, etc.) to + * STALLED_CYCLES_FRONTEND. + * + * We could start multiple performance counters and combine everything + * afterwards, but that makes it complicated. + * + * Note that I$ cache misses aren't counted by either of the two! + */ + +static const char * const arc_pmu_ev_hw_map[] = { + [PERF_COUNT_HW_CPU_CYCLES] = "crun", + [PERF_COUNT_HW_REF_CPU_CYCLES] = "crun", + [PERF_COUNT_HW_BUS_CYCLES] = "crun", + [PERF_COUNT_HW_INSTRUCTIONS] = "iall", + [PERF_COUNT_HW_BRANCH_MISSES] = "bpfail", + [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = "ijmp", + [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = "bflush", + [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = "bstall", + [PERF_COUNT_ARC_DCLM] = "dclm", + [PERF_COUNT_ARC_DCSM] = "dcsm", + [PERF_COUNT_ARC_ICM] = "icm", + [PERF_COUNT_ARC_BPOK] = "bpok", + [PERF_COUNT_ARC_EDTLB] = "edtlb", + [PERF_COUNT_ARC_EITLB] = "eitlb", +}; + +#define C(_x) PERF_COUNT_HW_CACHE_##_x +#define CACHE_OP_UNSUPPORTED 0xffff + +static const unsigned arc_pmu_cache_map[C(MAX)][C(OP_MAX)][C(RESULT_MAX)] = { + [C(L1D)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, + [C(RESULT_MISS)] = PERF_COUNT_ARC_DCLM, + }, + [C(OP_WRITE)] = { + [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, + [C(RESULT_MISS)] = PERF_COUNT_ARC_DCSM, + }, + [C(OP_PREFETCH)] = { + [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, + [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, + }, + }, + [C(L1I)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, + [C(RESULT_MISS)] = PERF_COUNT_ARC_ICM, + }, + [C(OP_WRITE)] = { + [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, + [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, + }, + [C(OP_PREFETCH)] = { + [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, + [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, + }, + }, + [C(LL)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, + [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, + }, + [C(OP_WRITE)] = { + [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, + [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, + }, + [C(OP_PREFETCH)] = { + [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, + [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, + }, + }, + [C(DTLB)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, + [C(RESULT_MISS)] = PERF_COUNT_ARC_EDTLB, + }, + [C(OP_WRITE)] = { + [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, + [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, + }, + [C(OP_PREFETCH)] = { + [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, + [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, + }, + }, + [C(ITLB)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, + [C(RESULT_MISS)] = PERF_COUNT_ARC_EITLB, + }, + [C(OP_WRITE)] = { + [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, + [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, + }, + [C(OP_PREFETCH)] = { + [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, + [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, + }, + }, + [C(BPU)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = PERF_COUNT_HW_BRANCH_INSTRUCTIONS, + [C(RESULT_MISS)] = PERF_COUNT_HW_BRANCH_MISSES, + }, + [C(OP_WRITE)] = { + [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, + [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, + }, + [C(OP_PREFETCH)] = { + [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, + [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, + }, + }, + [C(NODE)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, + [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, + }, + [C(OP_WRITE)] = { + [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, + [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, + }, + [C(OP_PREFETCH)] = { + [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, + [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, + }, + }, +}; + #endif /* __ASM_PERF_EVENT_H */ |