diff options
author | Will Deacon <will.deacon@arm.com> | 2018-11-19 11:02:45 +0000 |
---|---|---|
committer | Jonathan Corbet <corbet@lwn.net> | 2018-11-20 09:30:43 -0700 |
commit | 806654a9667c6f60a65f1a4a4406082b5de51233 (patch) | |
tree | 08b92f004840fb39bd563db58d0fb8bd5c6cc95a /Documentation | |
parent | 48c465d23d5ce55a84062e556e07a8a663349536 (diff) | |
download | lwn-806654a9667c6f60a65f1a4a4406082b5de51233.tar.gz lwn-806654a9667c6f60a65f1a4a4406082b5de51233.zip |
Documentation: Use "while" instead of "whilst"
Whilst making an unrelated change to some Documentation, Linus sayeth:
| Afaik, even in Britain, "whilst" is unusual and considered more
| formal, and "while" is the common word.
|
| [...]
|
| Can we just admit that we work with computers, and we don't need to
| use þe eald Englisc spelling of words that most of the world never
| uses?
dictionary.com refers to the word as "Chiefly British", which is
probably an undesirable attribute for technical documentation.
Replace all occurrences under Documentation/ with "while".
Cc: David Howells <dhowells@redhat.com>
Cc: Liam Girdwood <lgirdwood@gmail.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Michael Halcrow <mhalcrow@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Diffstat (limited to 'Documentation')
33 files changed, 56 insertions, 56 deletions
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt index 81d1d5a74728..91a2b41137a7 100644 --- a/Documentation/admin-guide/kernel-parameters.txt +++ b/Documentation/admin-guide/kernel-parameters.txt @@ -331,7 +331,7 @@ APC and your system crashes randomly. apic= [APIC,X86] Advanced Programmable Interrupt Controller - Change the output verbosity whilst booting + Change the output verbosity while booting Format: { quiet (default) | verbose | debug } Change the amount of debugging information output when initialising the APIC and IO-APIC components. diff --git a/Documentation/admin-guide/security-bugs.rst b/Documentation/admin-guide/security-bugs.rst index 164bf71149fd..410602752dc4 100644 --- a/Documentation/admin-guide/security-bugs.rst +++ b/Documentation/admin-guide/security-bugs.rst @@ -43,7 +43,7 @@ embargo has lifted; whichever comes first. The only exception to that rule is if the bug is publicly known, in which case the preference is to release the fix as soon as it's available. -Whilst embargoed information may be shared with trusted individuals in +While embargoed information may be shared with trusted individuals in order to develop a fix, such information will not be published alongside the fix or on any other disclosure channel without the permission of the reporter. This includes but is not limited to the original bug report diff --git a/Documentation/arm/Booting b/Documentation/arm/Booting index 259f00af3ab3..f1f965ce93d6 100644 --- a/Documentation/arm/Booting +++ b/Documentation/arm/Booting @@ -126,7 +126,7 @@ tagged list. The boot loader must pass at a minimum the size and location of the system memory, and the root filesystem location. The dtb must be placed in a region of memory where the kernel decompressor will not -overwrite it, whilst remaining within the region which will be covered +overwrite it, while remaining within the region which will be covered by the kernel's low-memory mapping. A safe location is just above the 128MiB boundary from start of RAM. diff --git a/Documentation/arm/Samsung-S3C24XX/GPIO.txt b/Documentation/arm/Samsung-S3C24XX/GPIO.txt index 0ebd7e2244d0..e8f918b96123 100644 --- a/Documentation/arm/Samsung-S3C24XX/GPIO.txt +++ b/Documentation/arm/Samsung-S3C24XX/GPIO.txt @@ -55,7 +55,7 @@ out s3c2410 API, then here are some notes on the process. as they have the same arguments, and can either take the pin specific values, or the more generic special-function-number arguments. -3) s3c2410_gpio_pullup() changes have the problem that whilst the +3) s3c2410_gpio_pullup() changes have the problem that while the s3c2410_gpio_pullup(x, 1) can be easily translated to the s3c_gpio_setpull(x, S3C_GPIO_PULL_NONE), the s3c2410_gpio_pullup(x, 0) are not so easy. diff --git a/Documentation/arm/Samsung-S3C24XX/Overview.txt b/Documentation/arm/Samsung-S3C24XX/Overview.txt index 359587b2367b..00d3c3141e21 100644 --- a/Documentation/arm/Samsung-S3C24XX/Overview.txt +++ b/Documentation/arm/Samsung-S3C24XX/Overview.txt @@ -17,7 +17,7 @@ Introduction versions. The S3C2416 and S3C2450 devices are very similar and S3C2450 support is - included under the arch/arm/mach-s3c2416 directory. Note, whilst core + included under the arch/arm/mach-s3c2416 directory. Note, while core support for these SoCs is in, work on some of the extra peripherals and extra interrupts is still ongoing. diff --git a/Documentation/arm/Samsung-S3C24XX/Suspend.txt b/Documentation/arm/Samsung-S3C24XX/Suspend.txt index 1ca63b3e5635..cb4f0c0cdf9d 100644 --- a/Documentation/arm/Samsung-S3C24XX/Suspend.txt +++ b/Documentation/arm/Samsung-S3C24XX/Suspend.txt @@ -87,7 +87,7 @@ Debugging suspending, which means that use of printascii() or similar direct access to the UARTs will cause the debug to stop. - 2) Whilst the pm code itself will attempt to re-enable the UART clocks, + 2) While the pm code itself will attempt to re-enable the UART clocks, care should be taken that any external clock sources that the UARTs rely on are still enabled at that point. diff --git a/Documentation/core-api/assoc_array.rst b/Documentation/core-api/assoc_array.rst index 8231b915c939..792bbf9939e1 100644 --- a/Documentation/core-api/assoc_array.rst +++ b/Documentation/core-api/assoc_array.rst @@ -34,7 +34,7 @@ properties: 8. The array can iterated over. The objects will not necessarily come out in key order. -9. The array can be iterated over whilst it is being modified, provided the +9. The array can be iterated over while it is being modified, provided the RCU readlock is being held by the iterator. Note, however, under these circumstances, some objects may be seen more than once. If this is a problem, the iterator should lock against modification. Objects will not @@ -42,7 +42,7 @@ properties: 10. Objects in the array can be looked up by means of their index key. -11. Objects can be looked up whilst the array is being modified, provided the +11. Objects can be looked up while the array is being modified, provided the RCU readlock is being held by the thread doing the look up. The implementation uses a tree of 16-pointer nodes internally that are indexed @@ -273,7 +273,7 @@ The function will return ``0`` if successful and ``-ENOMEM`` if there wasn't enough memory. It is possible for other threads to iterate over or search the array under -the RCU read lock whilst this function is in progress. The caller should +the RCU read lock while this function is in progress. The caller should lock exclusively against other modifiers of the array. diff --git a/Documentation/device-mapper/dm-raid.txt b/Documentation/device-mapper/dm-raid.txt index 52a719b49afd..2355bef14653 100644 --- a/Documentation/device-mapper/dm-raid.txt +++ b/Documentation/device-mapper/dm-raid.txt @@ -146,7 +146,7 @@ The target is named "raid" and it accepts the following parameters: [data_offset <sectors>] This option value defines the offset into each data device where the data starts. This is used to provide out-of-place - reshaping space to avoid writing over data whilst + reshaping space to avoid writing over data while changing the layout of stripes, hence an interruption/crash may happen at any time without the risk of losing data. E.g. when adding devices to an existing raid set during diff --git a/Documentation/devicetree/bindings/arm/idle-states.txt b/Documentation/devicetree/bindings/arm/idle-states.txt index 2c73847499ab..8f0937db55c5 100644 --- a/Documentation/devicetree/bindings/arm/idle-states.txt +++ b/Documentation/devicetree/bindings/arm/idle-states.txt @@ -142,7 +142,7 @@ characterised by the following graph: The graph is split in two parts delimited by time 1ms on the X-axis. The graph curve with X-axis values = { x | 0 < x < 1ms } has a steep slope -and denotes the energy costs incurred whilst entering and leaving the idle +and denotes the energy costs incurred while entering and leaving the idle state. The graph curve in the area delimited by X-axis values = {x | x > 1ms } has shallower slope and essentially represents the energy consumption of the idle diff --git a/Documentation/devicetree/bindings/pci/host-generic-pci.txt b/Documentation/devicetree/bindings/pci/host-generic-pci.txt index 3f1d3fca62bb..614b594f4e72 100644 --- a/Documentation/devicetree/bindings/pci/host-generic-pci.txt +++ b/Documentation/devicetree/bindings/pci/host-generic-pci.txt @@ -56,7 +56,7 @@ For CAM, this 24-bit offset is: cfg_offset(bus, device, function, register) = bus << 16 | device << 11 | function << 8 | register -Whilst ECAM extends this by 4 bits to accommodate 4k of function space: +While ECAM extends this by 4 bits to accommodate 4k of function space: cfg_offset(bus, device, function, register) = bus << 20 | device << 15 | function << 12 | register diff --git a/Documentation/devicetree/bindings/serial/rs485.txt b/Documentation/devicetree/bindings/serial/rs485.txt index b7c29f74ebb2..b92592dff6dd 100644 --- a/Documentation/devicetree/bindings/serial/rs485.txt +++ b/Documentation/devicetree/bindings/serial/rs485.txt @@ -16,7 +16,7 @@ Optional properties: - linux,rs485-enabled-at-boot-time: empty property telling to enable the rs485 feature at boot time. It can be disabled later with proper ioctl. - rs485-rx-during-tx: empty property that enables the receiving of data even - whilst sending data. + while sending data. RS485 example for Atmel USART: usart0: serial@fff8c000 { diff --git a/Documentation/filesystems/caching/backend-api.txt b/Documentation/filesystems/caching/backend-api.txt index c0bd5677271b..c418280c915f 100644 --- a/Documentation/filesystems/caching/backend-api.txt +++ b/Documentation/filesystems/caching/backend-api.txt @@ -704,7 +704,7 @@ FS-Cache provides some utilities that a cache backend may make use of: void fscache_get_retrieval(struct fscache_retrieval *op); void fscache_put_retrieval(struct fscache_retrieval *op); - These two functions are used to retain a retrieval record whilst doing + These two functions are used to retain a retrieval record while doing asynchronous data retrieval and block allocation. diff --git a/Documentation/filesystems/caching/cachefiles.txt b/Documentation/filesystems/caching/cachefiles.txt index 748a1ae49e12..28aefcbb1442 100644 --- a/Documentation/filesystems/caching/cachefiles.txt +++ b/Documentation/filesystems/caching/cachefiles.txt @@ -45,7 +45,7 @@ filesystems are very specific in nature. CacheFiles creates a misc character device - "/dev/cachefiles" - that is used to communication with the daemon. Only one thing may have this open at once, -and whilst it is open, a cache is at least partially in existence. The daemon +and while it is open, a cache is at least partially in existence. The daemon opens this and sends commands down it to control the cache. CacheFiles is currently limited to a single cache. @@ -163,7 +163,7 @@ Do not mount other things within the cache as this will cause problems. The kernel module contains its own very cut-down path walking facility that ignores mountpoints, but the daemon can't avoid them. -Do not create, rename or unlink files and directories in the cache whilst the +Do not create, rename or unlink files and directories in the cache while the cache is active, as this may cause the state to become uncertain. Renaming files in the cache might make objects appear to be other objects (the diff --git a/Documentation/filesystems/caching/netfs-api.txt b/Documentation/filesystems/caching/netfs-api.txt index 2a6f7399c1f3..ba968e8f5704 100644 --- a/Documentation/filesystems/caching/netfs-api.txt +++ b/Documentation/filesystems/caching/netfs-api.txt @@ -382,7 +382,7 @@ MISCELLANEOUS OBJECT REGISTRATION An optional step is to request an object of miscellaneous type be created in the cache. This is almost identical to index cookie acquisition. The only difference is that the type in the object definition should be something other -than index type. Whilst the parent object could be an index, it's more likely +than index type. While the parent object could be an index, it's more likely it would be some other type of object such as a data file. xattr->cache = diff --git a/Documentation/filesystems/caching/operations.txt b/Documentation/filesystems/caching/operations.txt index a1c052cbba35..d8976c434718 100644 --- a/Documentation/filesystems/caching/operations.txt +++ b/Documentation/filesystems/caching/operations.txt @@ -171,7 +171,7 @@ Operations are used through the following procedure: (3) If the submitting thread wants to do the work itself, and has marked the operation with FSCACHE_OP_MYTHREAD, then it should monitor FSCACHE_OP_WAITING as described above and check the state of the object if - necessary (the object might have died whilst the thread was waiting). + necessary (the object might have died while the thread was waiting). When it has finished doing its processing, it should call fscache_op_complete() and fscache_put_operation() on it. diff --git a/Documentation/filesystems/qnx6.txt b/Documentation/filesystems/qnx6.txt index 4f3d6a882bdc..48ea68f15845 100644 --- a/Documentation/filesystems/qnx6.txt +++ b/Documentation/filesystems/qnx6.txt @@ -87,7 +87,7 @@ addressed with 16 direct blocks. For more than 16 blocks an indirect addressing in form of another tree is used. (scheme is the same as the one used for the superblock root nodes) -The filesize is stored 64bit. Inode counting starts with 1. (whilst long +The filesize is stored 64bit. Inode counting starts with 1. (while long filename inodes start with 0) Directories @@ -155,7 +155,7 @@ Then userspace. The requirement for a static, fixed preallocated system area comes from how qnx6fs deals with writes. Each superblock got it's own half of the system area. So superblock #1 -always uses blocks from the lower half whilst superblock #2 just writes to +always uses blocks from the lower half while superblock #2 just writes to blocks represented by the upper half bitmap system area bits. Bitmap blocks, Inode blocks and indirect addressing blocks for those two diff --git a/Documentation/filesystems/vfs.txt b/Documentation/filesystems/vfs.txt index 5f71a252e2e0..8dc8e9c2913f 100644 --- a/Documentation/filesystems/vfs.txt +++ b/Documentation/filesystems/vfs.txt @@ -1131,7 +1131,7 @@ struct dentry_operations { d_manage: called to allow the filesystem to manage the transition from a dentry (optional). This allows autofs, for example, to hold up clients - waiting to explore behind a 'mountpoint' whilst letting the daemon go + waiting to explore behind a 'mountpoint' while letting the daemon go past and construct the subtree there. 0 should be returned to let the calling process continue. -EISDIR can be returned to tell pathwalk to use this directory as an ordinary directory and to ignore anything diff --git a/Documentation/filesystems/xfs-self-describing-metadata.txt b/Documentation/filesystems/xfs-self-describing-metadata.txt index 05aa455163e3..68604e67a495 100644 --- a/Documentation/filesystems/xfs-self-describing-metadata.txt +++ b/Documentation/filesystems/xfs-self-describing-metadata.txt @@ -110,7 +110,7 @@ owner field in the metadata object, we can immediately do top down validation to determine the scope of the problem. Different types of metadata have different owner identifiers. For example, -directory, attribute and extent tree blocks are all owned by an inode, whilst +directory, attribute and extent tree blocks are all owned by an inode, while freespace btree blocks are owned by an allocation group. Hence the size and contents of the owner field are determined by the type of metadata object we are looking at. The owner information can also identify misplaced writes (e.g. diff --git a/Documentation/filesystems/xfs.txt b/Documentation/filesystems/xfs.txt index a9ae82fb9d13..9ccfd1bc6201 100644 --- a/Documentation/filesystems/xfs.txt +++ b/Documentation/filesystems/xfs.txt @@ -417,7 +417,7 @@ level directory: filesystem from ever unmounting fully in the case of "retry forever" handler configurations. - Note: there is no guarantee that fail_at_unmount can be set whilst an + Note: there is no guarantee that fail_at_unmount can be set while an unmount is in progress. It is possible that the sysfs entries are removed by the unmounting filesystem before a "retry forever" error handler configuration causes unmount to hang, and hence the filesystem diff --git a/Documentation/leds/leds-class.txt b/Documentation/leds/leds-class.txt index 836cb16d6f09..8b39cc6b03ee 100644 --- a/Documentation/leds/leds-class.txt +++ b/Documentation/leds/leds-class.txt @@ -15,7 +15,7 @@ existing subsystems with minimal additional code. Examples are the disk-activity nand-disk and sharpsl-charge triggers. With led triggers disabled, the code optimises away. -Complex triggers whilst available to all LEDs have LED specific +Complex triggers while available to all LEDs have LED specific parameters and work on a per LED basis. The timer trigger is an example. The timer trigger will periodically change the LED brightness between LED_OFF and the current brightness setting. The "on" and "off" time can diff --git a/Documentation/media/uapi/v4l/extended-controls.rst b/Documentation/media/uapi/v4l/extended-controls.rst index 65a1d873196b..e60d4ed51d79 100644 --- a/Documentation/media/uapi/v4l/extended-controls.rst +++ b/Documentation/media/uapi/v4l/extended-controls.rst @@ -3980,7 +3980,7 @@ demodulator. It receives radio frequency (RF) from the antenna and converts that received signal to lower intermediate frequency (IF) or baseband frequency (BB). Tuners that could do baseband output are often called Zero-IF tuners. Older tuners were typically simple PLL tuners -inside a metal box, whilst newer ones are highly integrated chips +inside a metal box, while newer ones are highly integrated chips without a metal box "silicon tuners". These controls are mostly applicable for new feature rich silicon tuners, just because older tuners does not have much adjustable features. diff --git a/Documentation/memory-barriers.txt b/Documentation/memory-barriers.txt index c1d913944ad8..1c22b21ae922 100644 --- a/Documentation/memory-barriers.txt +++ b/Documentation/memory-barriers.txt @@ -587,7 +587,7 @@ leading to the following situation: (Q == &B) and (D == 2) ???? -Whilst this may seem like a failure of coherency or causality maintenance, it +While this may seem like a failure of coherency or causality maintenance, it isn't, and this behaviour can be observed on certain real CPUs (such as the DEC Alpha). @@ -2008,7 +2008,7 @@ for each construct. These operations all imply certain barriers: Certain locking variants of the ACQUIRE operation may fail, either due to being unable to get the lock immediately, or due to receiving an unblocked - signal whilst asleep waiting for the lock to become available. Failed + signal while asleep waiting for the lock to become available. Failed locks do not imply any sort of barrier. [!] Note: one of the consequences of lock ACQUIREs and RELEASEs being only @@ -2508,7 +2508,7 @@ CPU, that CPU's dependency ordering logic will take care of everything else. ATOMIC OPERATIONS ----------------- -Whilst they are technically interprocessor interaction considerations, atomic +While they are technically interprocessor interaction considerations, atomic operations are noted specially as some of them imply full memory barriers and some don't, but they're very heavily relied on as a group throughout the kernel. @@ -2531,7 +2531,7 @@ the device to malfunction. Inside of the Linux kernel, I/O should be done through the appropriate accessor routines - such as inb() or writel() - which know how to make such accesses -appropriately sequential. Whilst this, for the most part, renders the explicit +appropriately sequential. While this, for the most part, renders the explicit use of memory barriers unnecessary, there are a couple of situations where they might be needed: @@ -2555,7 +2555,7 @@ access the device. This may be alleviated - at least in part - by disabling local interrupts (a form of locking), such that the critical operations are all contained within -the interrupt-disabled section in the driver. Whilst the driver's interrupt +the interrupt-disabled section in the driver. While the driver's interrupt routine is executing, the driver's core may not run on the same CPU, and its interrupt is not permitted to happen again until the current interrupt has been handled, thus the interrupt handler does not need to lock against that. @@ -2763,7 +2763,7 @@ CACHE COHERENCY Life isn't quite as simple as it may appear above, however: for while the caches are expected to be coherent, there's no guarantee that that coherency -will be ordered. This means that whilst changes made on one CPU will +will be ordered. This means that while changes made on one CPU will eventually become visible on all CPUs, there's no guarantee that they will become apparent in the same order on those other CPUs. @@ -2799,7 +2799,7 @@ Imagine the system has the following properties: (*) an even-numbered cache line may be in cache B, cache D or it may still be resident in memory; - (*) whilst the CPU core is interrogating one cache, the other cache may be + (*) while the CPU core is interrogating one cache, the other cache may be making use of the bus to access the rest of the system - perhaps to displace a dirty cacheline or to do a speculative load; @@ -2835,7 +2835,7 @@ now imagine that the second CPU wants to read those values: x = *q; The above pair of reads may then fail to happen in the expected order, as the -cacheline holding p may get updated in one of the second CPU's caches whilst +cacheline holding p may get updated in one of the second CPU's caches while the update to the cacheline holding v is delayed in the other of the second CPU's caches by some other cache event: @@ -2855,7 +2855,7 @@ CPU's caches by some other cache event: <C:unbusy> <C:commit v=2> -Basically, whilst both cachelines will be updated on CPU 2 eventually, there's +Basically, while both cachelines will be updated on CPU 2 eventually, there's no guarantee that, without intervention, the order of update will be the same as that committed on CPU 1. @@ -2885,7 +2885,7 @@ coherency queue before processing any further requests: This sort of problem can be encountered on DEC Alpha processors as they have a split cache that improves performance by making better use of the data bus. -Whilst most CPUs do imply a data dependency barrier on the read when a memory +While most CPUs do imply a data dependency barrier on the read when a memory access depends on a read, not all do, so it may not be relied on. Other CPUs may also have split caches, but must coordinate between the various @@ -2974,7 +2974,7 @@ assumption doesn't hold because: thus cutting down on transaction setup costs (memory and PCI devices may both be able to do this); and - (*) the CPU's data cache may affect the ordering, and whilst cache-coherency + (*) the CPU's data cache may affect the ordering, and while cache-coherency mechanisms may alleviate this - once the store has actually hit the cache - there's no guarantee that the coherency management will be propagated in order to other CPUs. diff --git a/Documentation/networking/de4x5.txt b/Documentation/networking/de4x5.txt index c8e4ca9b2c3e..452aac58341d 100644 --- a/Documentation/networking/de4x5.txt +++ b/Documentation/networking/de4x5.txt @@ -84,7 +84,7 @@ Automedia detection is included so that in principle you can disconnect from, e.g. TP, reconnect to BNC and things will still work (after a - pause whilst the driver figures out where its media went). My tests + pause while the driver figures out where its media went). My tests using ping showed that it appears to work.... By default, the driver will now autodetect any DECchip based card. diff --git a/Documentation/networking/rxrpc.txt b/Documentation/networking/rxrpc.txt index 605e00cdd6be..aab3c393c10d 100644 --- a/Documentation/networking/rxrpc.txt +++ b/Documentation/networking/rxrpc.txt @@ -661,7 +661,7 @@ A server would be set up to accept operations in the following manner: setsockopt(server, SOL_RXRPC, RXRPC_SECURITY_KEYRING, "AFSkeys", 7); The keyring can be manipulated after it has been given to the socket. This - permits the server to add more keys, replace keys, etc. whilst it is live. + permits the server to add more keys, replace keys, etc. while it is live. (3) A local address must then be bound: @@ -1032,7 +1032,7 @@ The kernel interface functions are as follows: struct sockaddr_rxrpc *srx, struct key *key); - This attempts to partially reinitialise a call and submit it again whilst + This attempts to partially reinitialise a call and submit it again while reusing the original call's Tx queue to avoid the need to repackage and re-encrypt the data to be sent. call indicates the call to retry, srx the new address to send it to and key the encryption key to use for signing or @@ -1064,7 +1064,7 @@ The kernel interface functions are as follows: waiting for a suitable interval. This allows the caller to work out if the server is still contactable and - if the call is still alive on the server whilst waiting for the server to + if the call is still alive on the server while waiting for the server to process a client operation. This function may transmit a PING ACK. @@ -1144,14 +1144,14 @@ adjusted through sysctls in /proc/net/rxrpc/: (*) connection_expiry The amount of time in seconds after a connection was last used before we - remove it from the connection list. Whilst a connection is in existence, + remove it from the connection list. While a connection is in existence, it serves as a placeholder for negotiated security; when it is deleted, the security must be renegotiated. (*) transport_expiry The amount of time in seconds after a transport was last used before we - remove it from the transport list. Whilst a transport is in existence, it + remove it from the transport list. While a transport is in existence, it serves to anchor the peer data and keeps the connection ID counter. (*) rxrpc_rx_window_size diff --git a/Documentation/power/regulator/overview.txt b/Documentation/power/regulator/overview.txt index 40ca2d6e2742..721b4739ec32 100644 --- a/Documentation/power/regulator/overview.txt +++ b/Documentation/power/regulator/overview.txt @@ -22,7 +22,7 @@ Nomenclature Some terms used in this document:- o Regulator - Electronic device that supplies power to other devices. - Most regulators can enable and disable their output whilst + Most regulators can enable and disable their output while some can control their output voltage and or current. Input Voltage -> Regulator -> Output Voltage diff --git a/Documentation/s390/3270.ChangeLog b/Documentation/s390/3270.ChangeLog index 031c36081946..ecaf60b6c381 100644 --- a/Documentation/s390/3270.ChangeLog +++ b/Documentation/s390/3270.ChangeLog @@ -16,7 +16,7 @@ Sep 2002: Dynamically get 3270 input buffer Sep 2002: Fix tubfs kmalloc()s * Do read and write lengths correctly in fs3270_read() - and fs3270_write(), whilst never asking kmalloc() + and fs3270_write(), while never asking kmalloc() for more than 0x800 bytes. Affects tubfs.c and tubio.h. Sep 2002: Recognize 3270 control unit type 3174 diff --git a/Documentation/security/credentials.rst b/Documentation/security/credentials.rst index 5bb7125faeee..282e79feee6a 100644 --- a/Documentation/security/credentials.rst +++ b/Documentation/security/credentials.rst @@ -291,7 +291,7 @@ for example), it must be considered immutable, barring two exceptions: 1. The reference count may be altered. - 2. Whilst the keyring subscriptions of a set of credentials may not be + 2. While the keyring subscriptions of a set of credentials may not be changed, the keyrings subscribed to may have their contents altered. To catch accidental credential alteration at compile time, struct task_struct @@ -358,7 +358,7 @@ Once a reference has been obtained, it must be released with ``put_cred()``, Accessing Another Task's Credentials ------------------------------------ -Whilst a task may access its own credentials without the need for locking, the +While a task may access its own credentials without the need for locking, the same is not true of a task wanting to access another task's credentials. It must use the RCU read lock and ``rcu_dereference()``. @@ -382,7 +382,7 @@ This should be used inside the RCU read lock, as in the following example:: } Should it be necessary to hold another task's credentials for a long period of -time, and possibly to sleep whilst doing so, then the caller should get a +time, and possibly to sleep while doing so, then the caller should get a reference on them using:: const struct cred *get_task_cred(struct task_struct *task); @@ -442,7 +442,7 @@ duplicate of the current process's credentials, returning with the mutex still held if successful. It returns NULL if not successful (out of memory). The mutex prevents ``ptrace()`` from altering the ptrace state of a process -whilst security checks on credentials construction and changing is taking place +while security checks on credentials construction and changing is taking place as the ptrace state may alter the outcome, particularly in the case of ``execve()``. diff --git a/Documentation/security/keys/request-key.rst b/Documentation/security/keys/request-key.rst index 21e27238cec6..600ad67d1707 100644 --- a/Documentation/security/keys/request-key.rst +++ b/Documentation/security/keys/request-key.rst @@ -132,7 +132,7 @@ Negative Instantiation And Rejection Rather than instantiating a key, it is possible for the possessor of an authorisation key to negatively instantiate a key that's under construction. This is a short duration placeholder that causes any attempt at re-requesting -the key whilst it exists to fail with error ENOKEY if negated or the specified +the key while it exists to fail with error ENOKEY if negated or the specified error if rejected. This is provided to prevent excessive repeated spawning of /sbin/request-key diff --git a/Documentation/serial/serial-rs485.txt b/Documentation/serial/serial-rs485.txt index 389fcd4759e9..ce0c1a9b8aab 100644 --- a/Documentation/serial/serial-rs485.txt +++ b/Documentation/serial/serial-rs485.txt @@ -75,7 +75,7 @@ /* Set rts delay after send, if needed: */ rs485conf.delay_rts_after_send = ...; - /* Set this flag if you want to receive data even whilst sending data */ + /* Set this flag if you want to receive data even while sending data */ rs485conf.flags |= SER_RS485_RX_DURING_TX; if (ioctl (fd, TIOCSRS485, &rs485conf) < 0) { diff --git a/Documentation/sound/soc/dai.rst b/Documentation/sound/soc/dai.rst index 55820e51708f..2e99183a7a47 100644 --- a/Documentation/sound/soc/dai.rst +++ b/Documentation/sound/soc/dai.rst @@ -24,7 +24,7 @@ I2S === I2S is a common 4 wire DAI used in HiFi, STB and portable devices. The Tx and -Rx lines are used for audio transmission, whilst the bit clock (BCLK) and +Rx lines are used for audio transmission, while the bit clock (BCLK) and left/right clock (LRC) synchronise the link. I2S is flexible in that either the controller or CODEC can drive (master) the BCLK and LRC clock lines. Bit clock usually varies depending on the sample rate and the master system clock @@ -49,9 +49,9 @@ PCM PCM is another 4 wire interface, very similar to I2S, which can support a more flexible protocol. It has bit clock (BCLK) and sync (SYNC) lines that are used -to synchronise the link whilst the Tx and Rx lines are used to transmit and +to synchronise the link while the Tx and Rx lines are used to transmit and receive the audio data. Bit clock usually varies depending on sample rate -whilst sync runs at the sample rate. PCM also supports Time Division +while sync runs at the sample rate. PCM also supports Time Division Multiplexing (TDM) in that several devices can use the bus simultaneously (this is sometimes referred to as network mode). diff --git a/Documentation/sound/soc/dpcm.rst b/Documentation/sound/soc/dpcm.rst index fe61e02277f8..f6845b2278ea 100644 --- a/Documentation/sound/soc/dpcm.rst +++ b/Documentation/sound/soc/dpcm.rst @@ -218,7 +218,7 @@ like a BT phone call :- * * <----DAI5-----> FM ************* -This allows the host CPU to sleep whilst the DSP, MODEM DAI and the BT DAI are +This allows the host CPU to sleep while the DSP, MODEM DAI and the BT DAI are still in operation. A BE DAI link can also set the codec to a dummy device if the code is a device diff --git a/Documentation/static-keys.txt b/Documentation/static-keys.txt index ab16efe0c79d..d68135560895 100644 --- a/Documentation/static-keys.txt +++ b/Documentation/static-keys.txt @@ -156,7 +156,7 @@ or increment/decrement function. Note that switching branches results in some locks being taken, particularly the CPU hotplug lock (in order to avoid races against -CPUs being brought in the kernel whilst the kernel is getting +CPUs being brought in the kernel while the kernel is getting patched). Calling the static key API from within a hotplug notifier is thus a sure deadlock recipe. In order to still allow use of the functionnality, the following functions are provided: diff --git a/Documentation/thermal/power_allocator.txt b/Documentation/thermal/power_allocator.txt index a1ce2235f121..9fb0ff06dca9 100644 --- a/Documentation/thermal/power_allocator.txt +++ b/Documentation/thermal/power_allocator.txt @@ -110,7 +110,7 @@ the permitted thermal "ramp" of the system. For instance, a lower `k_pu` value will provide a slower ramp, at the cost of capping available capacity at a low temperature. On the other hand, a high value of `k_pu` will result in the governor granting very high power -whilst temperature is low, and may lead to temperature overshooting. +while temperature is low, and may lead to temperature overshooting. The default value for `k_pu` is: |