summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
authorRafael J. Wysocki <rafael.j.wysocki@intel.com>2015-06-22 14:23:44 +0200
committerRafael J. Wysocki <rafael.j.wysocki@intel.com>2015-06-22 14:23:44 +0200
commit1af858fdd2aa4107ff4e1c9fc1b23929d16a7491 (patch)
treef2de1adaf5887228a198eb6dce04443b603795b0 /Documentation
parenta8269d36a880c016f202260420d9abe6ef061ace (diff)
parent9f20d6815c6c537980b8a8fcb1a172c0b95bd99f (diff)
downloadlwn-1af858fdd2aa4107ff4e1c9fc1b23929d16a7491.tar.gz
lwn-1af858fdd2aa4107ff4e1c9fc1b23929d16a7491.zip
Merge branch 'pm-opp'
* pm-opp: PM / OPP: Add binding for 'opp-suspend' PM / OPP: Allow multiple OPP tables to be passed via DT PM / OPP: Add new bindings to address shortcomings of existing bindings
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/devicetree/bindings/power/opp.txt448
1 files changed, 444 insertions, 4 deletions
diff --git a/Documentation/devicetree/bindings/power/opp.txt b/Documentation/devicetree/bindings/power/opp.txt
index 74499e5033fc..0d5e7c978121 100644
--- a/Documentation/devicetree/bindings/power/opp.txt
+++ b/Documentation/devicetree/bindings/power/opp.txt
@@ -1,8 +1,19 @@
-* Generic OPP Interface
+Generic OPP (Operating Performance Points) Bindings
+----------------------------------------------------
-SoCs have a standard set of tuples consisting of frequency and
-voltage pairs that the device will support per voltage domain. These
-are called Operating Performance Points or OPPs.
+Devices work at voltage-current-frequency combinations and some implementations
+have the liberty of choosing these. These combinations are called Operating
+Performance Points aka OPPs. This document defines bindings for these OPPs
+applicable across wide range of devices. For illustration purpose, this document
+uses CPU as a device.
+
+This document contain multiple versions of OPP binding and only one of them
+should be used per device.
+
+Binding 1: operating-points
+============================
+
+This binding only supports voltage-frequency pairs.
Properties:
- operating-points: An array of 2-tuples items, and each item consists
@@ -23,3 +34,432 @@ cpu@0 {
198000 850000
>;
};
+
+
+Binding 2: operating-points-v2
+============================
+
+* Property: operating-points-v2
+
+Devices supporting OPPs must set their "operating-points-v2" property with
+phandle to a OPP table in their DT node. The OPP core will use this phandle to
+find the operating points for the device.
+
+Devices may want to choose OPP tables at runtime and so can provide a list of
+phandles here. But only *one* of them should be chosen at runtime. This must be
+accompanied by a corresponding "operating-points-names" property, to uniquely
+identify the OPP tables.
+
+If required, this can be extended for SoC vendor specfic bindings. Such bindings
+should be documented as Documentation/devicetree/bindings/power/<vendor>-opp.txt
+and should have a compatible description like: "operating-points-v2-<vendor>".
+
+Optional properties:
+- operating-points-names: Names of OPP tables (required if multiple OPP
+ tables are present), to uniquely identify them. The same list must be present
+ for all the CPUs which are sharing clock/voltage rails and hence the OPP
+ tables.
+
+* OPP Table Node
+
+This describes the OPPs belonging to a device. This node can have following
+properties:
+
+Required properties:
+- compatible: Allow OPPs to express their compatibility. It should be:
+ "operating-points-v2".
+
+- OPP nodes: One or more OPP nodes describing voltage-current-frequency
+ combinations. Their name isn't significant but their phandle can be used to
+ reference an OPP.
+
+Optional properties:
+- opp-shared: Indicates that device nodes using this OPP Table Node's phandle
+ switch their DVFS state together, i.e. they share clock/voltage/current lines.
+ Missing property means devices have independent clock/voltage/current lines,
+ but they share OPP tables.
+
+- status: Marks the OPP table enabled/disabled.
+
+
+* OPP Node
+
+This defines voltage-current-frequency combinations along with other related
+properties.
+
+Required properties:
+- opp-hz: Frequency in Hz
+
+Optional properties:
+- opp-microvolt: voltage in micro Volts.
+
+ A single regulator's voltage is specified with an array of size one or three.
+ Single entry is for target voltage and three entries are for <target min max>
+ voltages.
+
+ Entries for multiple regulators must be present in the same order as
+ regulators are specified in device's DT node.
+
+- opp-microamp: The maximum current drawn by the device in microamperes
+ considering system specific parameters (such as transients, process, aging,
+ maximum operating temperature range etc.) as necessary. This may be used to
+ set the most efficient regulator operating mode.
+
+ Should only be set if opp-microvolt is set for the OPP.
+
+ Entries for multiple regulators must be present in the same order as
+ regulators are specified in device's DT node. If this property isn't required
+ for few regulators, then this should be marked as zero for them. If it isn't
+ required for any regulator, then this property need not be present.
+
+- clock-latency-ns: Specifies the maximum possible transition latency (in
+ nanoseconds) for switching to this OPP from any other OPP.
+
+- turbo-mode: Marks the OPP to be used only for turbo modes. Turbo mode is
+ available on some platforms, where the device can run over its operating
+ frequency for a short duration of time limited by the device's power, current
+ and thermal limits.
+
+- opp-suspend: Marks the OPP to be used during device suspend. Only one OPP in
+ the table should have this.
+
+- status: Marks the node enabled/disabled.
+
+Example 1: Single cluster Dual-core ARM cortex A9, switch DVFS states together.
+
+/ {
+ cpus {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ cpu@0 {
+ compatible = "arm,cortex-a9";
+ reg = <0>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 0>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply0>;
+ operating-points-v2 = <&cpu0_opp_table>;
+ };
+
+ cpu@1 {
+ compatible = "arm,cortex-a9";
+ reg = <1>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 0>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply0>;
+ operating-points-v2 = <&cpu0_opp_table>;
+ };
+ };
+
+ cpu0_opp_table: opp_table0 {
+ compatible = "operating-points-v2";
+ opp-shared;
+
+ opp00 {
+ opp-hz = <1000000000>;
+ opp-microvolt = <970000 975000 985000>;
+ opp-microamp = <70000>;
+ clock-latency-ns = <300000>;
+ opp-suspend;
+ };
+ opp01 {
+ opp-hz = <1100000000>;
+ opp-microvolt = <980000 1000000 1010000>;
+ opp-microamp = <80000>;
+ clock-latency-ns = <310000>;
+ };
+ opp02 {
+ opp-hz = <1200000000>;
+ opp-microvolt = <1025000>;
+ clock-latency-ns = <290000>;
+ turbo-mode;
+ };
+ };
+};
+
+Example 2: Single cluster, Quad-core Qualcom-krait, switches DVFS states
+independently.
+
+/ {
+ cpus {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ cpu@0 {
+ compatible = "qcom,krait";
+ reg = <0>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 0>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply0>;
+ operating-points-v2 = <&cpu_opp_table>;
+ };
+
+ cpu@1 {
+ compatible = "qcom,krait";
+ reg = <1>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 1>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply1>;
+ operating-points-v2 = <&cpu_opp_table>;
+ };
+
+ cpu@2 {
+ compatible = "qcom,krait";
+ reg = <2>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 2>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply2>;
+ operating-points-v2 = <&cpu_opp_table>;
+ };
+
+ cpu@3 {
+ compatible = "qcom,krait";
+ reg = <3>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 3>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply3>;
+ operating-points-v2 = <&cpu_opp_table>;
+ };
+ };
+
+ cpu_opp_table: opp_table {
+ compatible = "operating-points-v2";
+
+ /*
+ * Missing opp-shared property means CPUs switch DVFS states
+ * independently.
+ */
+
+ opp00 {
+ opp-hz = <1000000000>;
+ opp-microvolt = <970000 975000 985000>;
+ opp-microamp = <70000>;
+ clock-latency-ns = <300000>;
+ opp-suspend;
+ };
+ opp01 {
+ opp-hz = <1100000000>;
+ opp-microvolt = <980000 1000000 1010000>;
+ opp-microamp = <80000>;
+ clock-latency-ns = <310000>;
+ };
+ opp02 {
+ opp-hz = <1200000000>;
+ opp-microvolt = <1025000>;
+ opp-microamp = <90000;
+ lock-latency-ns = <290000>;
+ turbo-mode;
+ };
+ };
+};
+
+Example 3: Dual-cluster, Dual-core per cluster. CPUs within a cluster switch
+DVFS state together.
+
+/ {
+ cpus {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ cpu@0 {
+ compatible = "arm,cortex-a7";
+ reg = <0>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 0>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply0>;
+ operating-points-v2 = <&cluster0_opp>;
+ };
+
+ cpu@1 {
+ compatible = "arm,cortex-a7";
+ reg = <1>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 0>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply0>;
+ operating-points-v2 = <&cluster0_opp>;
+ };
+
+ cpu@100 {
+ compatible = "arm,cortex-a15";
+ reg = <100>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 1>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply1>;
+ operating-points-v2 = <&cluster1_opp>;
+ };
+
+ cpu@101 {
+ compatible = "arm,cortex-a15";
+ reg = <101>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 1>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply1>;
+ operating-points-v2 = <&cluster1_opp>;
+ };
+ };
+
+ cluster0_opp: opp_table0 {
+ compatible = "operating-points-v2";
+ opp-shared;
+
+ opp00 {
+ opp-hz = <1000000000>;
+ opp-microvolt = <970000 975000 985000>;
+ opp-microamp = <70000>;
+ clock-latency-ns = <300000>;
+ opp-suspend;
+ };
+ opp01 {
+ opp-hz = <1100000000>;
+ opp-microvolt = <980000 1000000 1010000>;
+ opp-microamp = <80000>;
+ clock-latency-ns = <310000>;
+ };
+ opp02 {
+ opp-hz = <1200000000>;
+ opp-microvolt = <1025000>;
+ opp-microamp = <90000>;
+ clock-latency-ns = <290000>;
+ turbo-mode;
+ };
+ };
+
+ cluster1_opp: opp_table1 {
+ compatible = "operating-points-v2";
+ opp-shared;
+
+ opp10 {
+ opp-hz = <1300000000>;
+ opp-microvolt = <1045000 1050000 1055000>;
+ opp-microamp = <95000>;
+ clock-latency-ns = <400000>;
+ opp-suspend;
+ };
+ opp11 {
+ opp-hz = <1400000000>;
+ opp-microvolt = <1075000>;
+ opp-microamp = <100000>;
+ clock-latency-ns = <400000>;
+ };
+ opp12 {
+ opp-hz = <1500000000>;
+ opp-microvolt = <1010000 1100000 1110000>;
+ opp-microamp = <95000>;
+ clock-latency-ns = <400000>;
+ turbo-mode;
+ };
+ };
+};
+
+Example 4: Handling multiple regulators
+
+/ {
+ cpus {
+ cpu@0 {
+ compatible = "arm,cortex-a7";
+ ...
+
+ cpu-supply = <&cpu_supply0>, <&cpu_supply1>, <&cpu_supply2>;
+ operating-points-v2 = <&cpu0_opp_table>;
+ };
+ };
+
+ cpu0_opp_table: opp_table0 {
+ compatible = "operating-points-v2";
+ opp-shared;
+
+ opp00 {
+ opp-hz = <1000000000>;
+ opp-microvolt = <970000>, /* Supply 0 */
+ <960000>, /* Supply 1 */
+ <960000>; /* Supply 2 */
+ opp-microamp = <70000>, /* Supply 0 */
+ <70000>, /* Supply 1 */
+ <70000>; /* Supply 2 */
+ clock-latency-ns = <300000>;
+ };
+
+ /* OR */
+
+ opp00 {
+ opp-hz = <1000000000>;
+ opp-microvolt = <970000 975000 985000>, /* Supply 0 */
+ <960000 965000 975000>, /* Supply 1 */
+ <960000 965000 975000>; /* Supply 2 */
+ opp-microamp = <70000>, /* Supply 0 */
+ <70000>, /* Supply 1 */
+ <70000>; /* Supply 2 */
+ clock-latency-ns = <300000>;
+ };
+
+ /* OR */
+
+ opp00 {
+ opp-hz = <1000000000>;
+ opp-microvolt = <970000 975000 985000>, /* Supply 0 */
+ <960000 965000 975000>, /* Supply 1 */
+ <960000 965000 975000>; /* Supply 2 */
+ opp-microamp = <70000>, /* Supply 0 */
+ <0>, /* Supply 1 doesn't need this */
+ <70000>; /* Supply 2 */
+ clock-latency-ns = <300000>;
+ };
+ };
+};
+
+Example 5: Multiple OPP tables
+
+/ {
+ cpus {
+ cpu@0 {
+ compatible = "arm,cortex-a7";
+ ...
+
+ cpu-supply = <&cpu_supply>
+ operating-points-v2 = <&cpu0_opp_table_slow>, <&cpu0_opp_table_fast>;
+ operating-points-names = "slow", "fast";
+ };
+ };
+
+ cpu0_opp_table_slow: opp_table_slow {
+ compatible = "operating-points-v2";
+ status = "okay";
+ opp-shared;
+
+ opp00 {
+ opp-hz = <600000000>;
+ ...
+ };
+
+ opp01 {
+ opp-hz = <800000000>;
+ ...
+ };
+ };
+
+ cpu0_opp_table_fast: opp_table_fast {
+ compatible = "operating-points-v2";
+ status = "okay";
+ opp-shared;
+
+ opp10 {
+ opp-hz = <1000000000>;
+ ...
+ };
+
+ opp11 {
+ opp-hz = <1100000000>;
+ ...
+ };
+ };
+};