summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
authorJames Bottomley <jejb@sparkweed.localdomain>2006-09-23 21:03:52 -0500
committerJames Bottomley <jejb@sparkweed.localdomain>2006-09-23 21:03:52 -0500
commit1aedf2ccc60fade26c46fae12e28664d0da3f199 (patch)
treed91083e3079f1ddb942a382ac2b5a7525570ad59 /Documentation
parentdfdc58ba354adb80d67c99f7be84f95a8e02e466 (diff)
parent1ab9dd0902df4f4ff56fbf672220549090ab28ba (diff)
downloadlwn-1aedf2ccc60fade26c46fae12e28664d0da3f199.tar.gz
lwn-1aedf2ccc60fade26c46fae12e28664d0da3f199.zip
Merge mulgrave-w:git/linux-2.6
Conflicts: include/linux/blkdev.h Trivial merge to incorporate tag prototypes.
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/00-INDEX2
-rw-r--r--Documentation/netlabel/00-INDEX10
-rw-r--r--Documentation/netlabel/cipso_ipv4.txt48
-rw-r--r--Documentation/netlabel/draft-ietf-cipso-ipsecurity-01.txt791
-rw-r--r--Documentation/netlabel/introduction.txt46
-rw-r--r--Documentation/netlabel/lsm_interface.txt47
-rw-r--r--Documentation/networking/ip-sysctl.txt38
-rw-r--r--Documentation/networking/secid.txt14
-rw-r--r--Documentation/sound/alsa/ALSA-Configuration.txt44
-rw-r--r--Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl5
10 files changed, 1037 insertions, 8 deletions
diff --git a/Documentation/00-INDEX b/Documentation/00-INDEX
index 5f7f7d7f77d2..02457ec9c94f 100644
--- a/Documentation/00-INDEX
+++ b/Documentation/00-INDEX
@@ -184,6 +184,8 @@ mtrr.txt
- how to use PPro Memory Type Range Registers to increase performance.
nbd.txt
- info on a TCP implementation of a network block device.
+netlabel/
+ - directory with information on the NetLabel subsystem.
networking/
- directory with info on various aspects of networking with Linux.
nfsroot.txt
diff --git a/Documentation/netlabel/00-INDEX b/Documentation/netlabel/00-INDEX
new file mode 100644
index 000000000000..837bf35990e2
--- /dev/null
+++ b/Documentation/netlabel/00-INDEX
@@ -0,0 +1,10 @@
+00-INDEX
+ - this file.
+cipso_ipv4.txt
+ - documentation on the IPv4 CIPSO protocol engine.
+draft-ietf-cipso-ipsecurity-01.txt
+ - IETF draft of the CIPSO protocol, dated 16 July 1992.
+introduction.txt
+ - NetLabel introduction, READ THIS FIRST.
+lsm_interface.txt
+ - documentation on the NetLabel kernel security module API.
diff --git a/Documentation/netlabel/cipso_ipv4.txt b/Documentation/netlabel/cipso_ipv4.txt
new file mode 100644
index 000000000000..93dacb132c3c
--- /dev/null
+++ b/Documentation/netlabel/cipso_ipv4.txt
@@ -0,0 +1,48 @@
+NetLabel CIPSO/IPv4 Protocol Engine
+==============================================================================
+Paul Moore, paul.moore@hp.com
+
+May 17, 2006
+
+ * Overview
+
+The NetLabel CIPSO/IPv4 protocol engine is based on the IETF Commercial IP
+Security Option (CIPSO) draft from July 16, 1992. A copy of this draft can be
+found in this directory, consult '00-INDEX' for the filename. While the IETF
+draft never made it to an RFC standard it has become a de-facto standard for
+labeled networking and is used in many trusted operating systems.
+
+ * Outbound Packet Processing
+
+The CIPSO/IPv4 protocol engine applies the CIPSO IP option to packets by
+adding the CIPSO label to the socket. This causes all packets leaving the
+system through the socket to have the CIPSO IP option applied. The socket's
+CIPSO label can be changed at any point in time, however, it is recommended
+that it is set upon the socket's creation. The LSM can set the socket's CIPSO
+label by using the NetLabel security module API; if the NetLabel "domain" is
+configured to use CIPSO for packet labeling then a CIPSO IP option will be
+generated and attached to the socket.
+
+ * Inbound Packet Processing
+
+The CIPSO/IPv4 protocol engine validates every CIPSO IP option it finds at the
+IP layer without any special handling required by the LSM. However, in order
+to decode and translate the CIPSO label on the packet the LSM must use the
+NetLabel security module API to extract the security attributes of the packet.
+This is typically done at the socket layer using the 'socket_sock_rcv_skb()'
+LSM hook.
+
+ * Label Translation
+
+The CIPSO/IPv4 protocol engine contains a mechanism to translate CIPSO security
+attributes such as sensitivity level and category to values which are
+appropriate for the host. These mappings are defined as part of a CIPSO
+Domain Of Interpretation (DOI) definition and are configured through the
+NetLabel user space communication layer. Each DOI definition can have a
+different security attribute mapping table.
+
+ * Label Translation Cache
+
+The NetLabel system provides a framework for caching security attribute
+mappings from the network labels to the corresponding LSM identifiers. The
+CIPSO/IPv4 protocol engine supports this caching mechanism.
diff --git a/Documentation/netlabel/draft-ietf-cipso-ipsecurity-01.txt b/Documentation/netlabel/draft-ietf-cipso-ipsecurity-01.txt
new file mode 100644
index 000000000000..256c2c9d4f50
--- /dev/null
+++ b/Documentation/netlabel/draft-ietf-cipso-ipsecurity-01.txt
@@ -0,0 +1,791 @@
+IETF CIPSO Working Group
+16 July, 1992
+
+
+
+ COMMERCIAL IP SECURITY OPTION (CIPSO 2.2)
+
+
+
+1. Status
+
+This Internet Draft provides the high level specification for a Commercial
+IP Security Option (CIPSO). This draft reflects the version as approved by
+the CIPSO IETF Working Group. Distribution of this memo is unlimited.
+
+This document is an Internet Draft. Internet Drafts are working documents
+of the Internet Engineering Task Force (IETF), its Areas, and its Working
+Groups. Note that other groups may also distribute working documents as
+Internet Drafts.
+
+Internet Drafts are draft documents valid for a maximum of six months.
+Internet Drafts may be updated, replaced, or obsoleted by other documents
+at any time. It is not appropriate to use Internet Drafts as reference
+material or to cite them other than as a "working draft" or "work in
+progress."
+
+Please check the I-D abstract listing contained in each Internet Draft
+directory to learn the current status of this or any other Internet Draft.
+
+
+
+
+2. Background
+
+Currently the Internet Protocol includes two security options. One of
+these options is the DoD Basic Security Option (BSO) (Type 130) which allows
+IP datagrams to be labeled with security classifications. This option
+provides sixteen security classifications and a variable number of handling
+restrictions. To handle additional security information, such as security
+categories or compartments, another security option (Type 133) exists and
+is referred to as the DoD Extended Security Option (ESO). The values for
+the fixed fields within these two options are administered by the Defense
+Information Systems Agency (DISA).
+
+Computer vendors are now building commercial operating systems with
+mandatory access controls and multi-level security. These systems are
+no longer built specifically for a particular group in the defense or
+intelligence communities. They are generally available commercial systems
+for use in a variety of government and civil sector environments.
+
+The small number of ESO format codes can not support all the possible
+applications of a commercial security option. The BSO and ESO were
+designed to only support the United States DoD. CIPSO has been designed
+to support multiple security policies. This Internet Draft provides the
+format and procedures required to support a Mandatory Access Control
+security policy. Support for additional security policies shall be
+defined in future RFCs.
+
+
+
+
+Internet Draft, Expires 15 Jan 93 [PAGE 1]
+
+
+
+CIPSO INTERNET DRAFT 16 July, 1992
+
+
+
+
+3. CIPSO Format
+
+Option type: 134 (Class 0, Number 6, Copy on Fragmentation)
+Option length: Variable
+
+This option permits security related information to be passed between
+systems within a single Domain of Interpretation (DOI). A DOI is a
+collection of systems which agree on the meaning of particular values
+in the security option. An authority that has been assigned a DOI
+identifier will define a mapping between appropriate CIPSO field values
+and their human readable equivalent. This authority will distribute that
+mapping to hosts within the authority's domain. These mappings may be
+sensitive, therefore a DOI authority is not required to make these
+mappings available to anyone other than the systems that are included in
+the DOI.
+
+This option MUST be copied on fragmentation. This option appears at most
+once in a datagram. All multi-octet fields in the option are defined to be
+transmitted in network byte order. The format of this option is as follows:
+
++----------+----------+------//------+-----------//---------+
+| 10000110 | LLLLLLLL | DDDDDDDDDDDD | TTTTTTTTTTTTTTTTTTTT |
++----------+----------+------//------+-----------//---------+
+
+ TYPE=134 OPTION DOMAIN OF TAGS
+ LENGTH INTERPRETATION
+
+
+ Figure 1. CIPSO Format
+
+
+3.1 Type
+
+This field is 1 octet in length. Its value is 134.
+
+
+3.2 Length
+
+This field is 1 octet in length. It is the total length of the option
+including the type and length fields. With the current IP header length
+restriction of 40 octets the value of this field MUST not exceed 40.
+
+
+3.3 Domain of Interpretation Identifier
+
+This field is an unsigned 32 bit integer. The value 0 is reserved and MUST
+not appear as the DOI identifier in any CIPSO option. Implementations
+should assume that the DOI identifier field is not aligned on any particular
+byte boundary.
+
+To conserve space in the protocol, security levels and categories are
+represented by numbers rather than their ASCII equivalent. This requires
+a mapping table within CIPSO hosts to map these numbers to their
+corresponding ASCII representations. Non-related groups of systems may
+
+
+
+Internet Draft, Expires 15 Jan 93 [PAGE 2]
+
+
+
+CIPSO INTERNET DRAFT 16 July, 1992
+
+
+
+have their own unique mappings. For example, one group of systems may
+use the number 5 to represent Unclassified while another group may use the
+number 1 to represent that same security level. The DOI identifier is used
+to identify which mapping was used for the values within the option.
+
+
+3.4 Tag Types
+
+A common format for passing security related information is necessary
+for interoperability. CIPSO uses sets of "tags" to contain the security
+information relevant to the data in the IP packet. Each tag begins with
+a tag type identifier followed by the length of the tag and ends with the
+actual security information to be passed. All multi-octet fields in a tag
+are defined to be transmitted in network byte order. Like the DOI
+identifier field in the CIPSO header, implementations should assume that
+all tags, as well as fields within a tag, are not aligned on any particular
+octet boundary. The tag types defined in this document contain alignment
+bytes to assist alignment of some information, however alignment can not
+be guaranteed if CIPSO is not the first IP option.
+
+CIPSO tag types 0 through 127 are reserved for defining standard tag
+formats. Their definitions will be published in RFCs. Tag types whose
+identifiers are greater than 127 are defined by the DOI authority and may
+only be meaningful in certain Domains of Interpretation. For these tag
+types, implementations will require the DOI identifier as well as the tag
+number to determine the security policy and the format associated with the
+tag. Use of tag types above 127 are restricted to closed networks where
+interoperability with other networks will not be an issue. Implementations
+that support a tag type greater than 127 MUST support at least one DOI that
+requires only tag types 1 to 127.
+
+Tag type 0 is reserved. Tag types 1, 2, and 5 are defined in this
+Internet Draft. Types 3 and 4 are reserved for work in progress.
+The standard format for all current and future CIPSO tags is shown below:
+
++----------+----------+--------//--------+
+| TTTTTTTT | LLLLLLLL | IIIIIIIIIIIIIIII |
++----------+----------+--------//--------+
+ TAG TAG TAG
+ TYPE LENGTH INFORMATION
+
+ Figure 2: Standard Tag Format
+
+In the three tag types described in this document, the length and count
+restrictions are based on the current IP limitation of 40 octets for all
+IP options. If the IP header is later expanded, then the length and count
+restrictions specified in this document may increase to use the full area
+provided for IP options.
+
+
+3.4.1 Tag Type Classes
+
+Tag classes consist of tag types that have common processing requirements
+and support the same security policy. The three tags defined in this
+Internet Draft belong to the Mandatory Access Control (MAC) Sensitivity
+
+
+
+Internet Draft, Expires 15 Jan 93 [PAGE 3]
+
+
+
+CIPSO INTERNET DRAFT 16 July, 1992
+
+
+
+class and support the MAC Sensitivity security policy.
+
+
+3.4.2 Tag Type 1
+
+This is referred to as the "bit-mapped" tag type. Tag type 1 is included
+in the MAC Sensitivity tag type class. The format of this tag type is as
+follows:
+
++----------+----------+----------+----------+--------//---------+
+| 00000001 | LLLLLLLL | 00000000 | LLLLLLLL | CCCCCCCCCCCCCCCCC |
++----------+----------+----------+----------+--------//---------+
+
+ TAG TAG ALIGNMENT SENSITIVITY BIT MAP OF
+ TYPE LENGTH OCTET LEVEL CATEGORIES
+
+ Figure 3. Tag Type 1 Format
+
+
+3.4.2.1 Tag Type
+
+This field is 1 octet in length and has a value of 1.
+
+
+3.4.2.2 Tag Length
+
+This field is 1 octet in length. It is the total length of the tag type
+including the type and length fields. With the current IP header length
+restriction of 40 bytes the value within this field is between 4 and 34.
+
+
+3.4.2.3 Alignment Octet
+
+This field is 1 octet in length and always has the value of 0. Its purpose
+is to align the category bitmap field on an even octet boundary. This will
+speed many implementations including router implementations.
+
+
+3.4.2.4 Sensitivity Level
+
+This field is 1 octet in length. Its value is from 0 to 255. The values
+are ordered with 0 being the minimum value and 255 representing the maximum
+value.
+
+
+3.4.2.5 Bit Map of Categories
+
+The length of this field is variable and ranges from 0 to 30 octets. This
+provides representation of categories 0 to 239. The ordering of the bits
+is left to right or MSB to LSB. For example category 0 is represented by
+the most significant bit of the first byte and category 15 is represented
+by the least significant bit of the second byte. Figure 4 graphically
+shows this ordering. Bit N is binary 1 if category N is part of the label
+for the datagram, and bit N is binary 0 if category N is not part of the
+label. Except for the optimized tag 1 format described in the next section,
+
+
+
+Internet Draft, Expires 15 Jan 93 [PAGE 4]
+
+
+
+CIPSO INTERNET DRAFT 16 July, 1992
+
+
+
+minimal encoding SHOULD be used resulting in no trailing zero octets in the
+category bitmap.
+
+ octet 0 octet 1 octet 2 octet 3 octet 4 octet 5
+ XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX . . .
+bit 01234567 89111111 11112222 22222233 33333333 44444444
+number 012345 67890123 45678901 23456789 01234567
+
+ Figure 4. Ordering of Bits in Tag 1 Bit Map
+
+
+3.4.2.6 Optimized Tag 1 Format
+
+Routers work most efficiently when processing fixed length fields. To
+support these routers there is an optimized form of tag type 1. The format
+does not change. The only change is to the category bitmap which is set to
+a constant length of 10 octets. Trailing octets required to fill out the 10
+octets are zero filled. Ten octets, allowing for 80 categories, was chosen
+because it makes the total length of the CIPSO option 20 octets. If CIPSO
+is the only option then the option will be full word aligned and additional
+filler octets will not be required.
+
+
+3.4.3 Tag Type 2
+
+This is referred to as the "enumerated" tag type. It is used to describe
+large but sparsely populated sets of categories. Tag type 2 is in the MAC
+Sensitivity tag type class. The format of this tag type is as follows:
+
++----------+----------+----------+----------+-------------//-------------+
+| 00000010 | LLLLLLLL | 00000000 | LLLLLLLL | CCCCCCCCCCCCCCCCCCCCCCCCCC |
++----------+----------+----------+----------+-------------//-------------+
+
+ TAG TAG ALIGNMENT SENSITIVITY ENUMERATED
+ TYPE LENGTH OCTET LEVEL CATEGORIES
+
+ Figure 5. Tag Type 2 Format
+
+
+3.4.3.1 Tag Type
+
+This field is one octet in length and has a value of 2.
+
+
+3.4.3.2 Tag Length
+
+This field is 1 octet in length. It is the total length of the tag type
+including the type and length fields. With the current IP header length
+restriction of 40 bytes the value within this field is between 4 and 34.
+
+
+3.4.3.3 Alignment Octet
+
+This field is 1 octet in length and always has the value of 0. Its purpose
+is to align the category field on an even octet boundary. This will
+
+
+
+Internet Draft, Expires 15 Jan 93 [PAGE 5]
+
+
+
+CIPSO INTERNET DRAFT 16 July, 1992
+
+
+
+speed many implementations including router implementations.
+
+
+3.4.3.4 Sensitivity Level
+
+This field is 1 octet in length. Its value is from 0 to 255. The values
+are ordered with 0 being the minimum value and 255 representing the
+maximum value.
+
+
+3.4.3.5 Enumerated Categories
+
+In this tag, categories are represented by their actual value rather than
+by their position within a bit field. The length of each category is 2
+octets. Up to 15 categories may be represented by this tag. Valid values
+for categories are 0 to 65534. Category 65535 is not a valid category
+value. The categories MUST be listed in ascending order within the tag.
+
+
+3.4.4 Tag Type 5
+
+This is referred to as the "range" tag type. It is used to represent
+labels where all categories in a range, or set of ranges, are included
+in the sensitivity label. Tag type 5 is in the MAC Sensitivity tag type
+class. The format of this tag type is as follows:
+
++----------+----------+----------+----------+------------//-------------+
+| 00000101 | LLLLLLLL | 00000000 | LLLLLLLL | Top/Bottom | Top/Bottom |
++----------+----------+----------+----------+------------//-------------+
+
+ TAG TAG ALIGNMENT SENSITIVITY CATEGORY RANGES
+ TYPE LENGTH OCTET LEVEL
+
+ Figure 6. Tag Type 5 Format
+
+
+3.4.4.1 Tag Type
+
+This field is one octet in length and has a value of 5.
+
+
+3.4.4.2 Tag Length
+
+This field is 1 octet in length. It is the total length of the tag type
+including the type and length fields. With the current IP header length
+restriction of 40 bytes the value within this field is between 4 and 34.
+
+
+3.4.4.3 Alignment Octet
+
+This field is 1 octet in length and always has the value of 0. Its purpose
+is to align the category range field on an even octet boundary. This will
+speed many implementations including router implementations.
+
+
+
+
+
+Internet Draft, Expires 15 Jan 93 [PAGE 6]
+
+
+
+CIPSO INTERNET DRAFT 16 July, 1992
+
+
+
+3.4.4.4 Sensitivity Level
+
+This field is 1 octet in length. Its value is from 0 to 255. The values
+are ordered with 0 being the minimum value and 255 representing the maximum
+value.
+
+
+3.4.4.5 Category Ranges
+
+A category range is a 4 octet field comprised of the 2 octet index of the
+highest numbered category followed by the 2 octet index of the lowest
+numbered category. These range endpoints are inclusive within the range of
+categories. All categories within a range are included in the sensitivity
+label. This tag may contain a maximum of 7 category pairs. The bottom
+category endpoint for the last pair in the tag MAY be omitted and SHOULD be
+assumed to be 0. The ranges MUST be non-overlapping and be listed in
+descending order. Valid values for categories are 0 to 65534. Category
+65535 is not a valid category value.
+
+
+3.4.5 Minimum Requirements
+
+A CIPSO implementation MUST be capable of generating at least tag type 1 in
+the non-optimized form. In addition, a CIPSO implementation MUST be able
+to receive any valid tag type 1 even those using the optimized tag type 1
+format.
+
+
+4. Configuration Parameters
+
+The configuration parameters defined below are required for all CIPSO hosts,
+gateways, and routers that support multiple sensitivity labels. A CIPSO
+host is defined to be the origination or destination system for an IP
+datagram. A CIPSO gateway provides IP routing services between two or more
+IP networks and may be required to perform label translations between
+networks. A CIPSO gateway may be an enhanced CIPSO host or it may just
+provide gateway services with no end system CIPSO capabilities. A CIPSO
+router is a dedicated IP router that routes IP datagrams between two or more
+IP networks.
+
+An implementation of CIPSO on a host MUST have the capability to reject a
+datagram for reasons that the information contained can not be adequately
+protected by the receiving host or if acceptance may result in violation of
+the host or network security policy. In addition, a CIPSO gateway or router
+MUST be able to reject datagrams going to networks that can not provide
+adequate protection or may violate the network's security policy. To
+provide this capability the following minimal set of configuration
+parameters are required for CIPSO implementations:
+
+HOST_LABEL_MAX - This parameter contains the maximum sensitivity label that
+a CIPSO host is authorized to handle. All datagrams that have a label
+greater than this maximum MUST be rejected by the CIPSO host. This
+parameter does not apply to CIPSO gateways or routers. This parameter need
+not be defined explicitly as it can be implicitly derived from the
+PORT_LABEL_MAX parameters for the associated interfaces.
+
+
+
+Internet Draft, Expires 15 Jan 93 [PAGE 7]
+
+
+
+CIPSO INTERNET DRAFT 16 July, 1992
+
+
+
+
+HOST_LABEL_MIN - This parameter contains the minimum sensitivity label that
+a CIPSO host is authorized to handle. All datagrams that have a label less
+than this minimum MUST be rejected by the CIPSO host. This parameter does
+not apply to CIPSO gateways or routers. This parameter need not be defined
+explicitly as it can be implicitly derived from the PORT_LABEL_MIN
+parameters for the associated interfaces.
+
+PORT_LABEL_MAX - This parameter contains the maximum sensitivity label for
+all datagrams that may exit a particular network interface port. All
+outgoing datagrams that have a label greater than this maximum MUST be
+rejected by the CIPSO system. The label within this parameter MUST be
+less than or equal to the label within the HOST_LABEL_MAX parameter. This
+parameter does not apply to CIPSO hosts that support only one network port.
+
+PORT_LABEL_MIN - This parameter contains the minimum sensitivity label for
+all datagrams that may exit a particular network interface port. All
+outgoing datagrams that have a label less than this minimum MUST be
+rejected by the CIPSO system. The label within this parameter MUST be
+greater than or equal to the label within the HOST_LABEL_MIN parameter.
+This parameter does not apply to CIPSO hosts that support only one network
+port.
+
+PORT_DOI - This parameter is used to assign a DOI identifier value to a
+particular network interface port. All CIPSO labels within datagrams
+going out this port MUST use the specified DOI identifier. All CIPSO
+hosts and gateways MUST support either this parameter, the NET_DOI
+parameter, or the HOST_DOI parameter.
+
+NET_DOI - This parameter is used to assign a DOI identifier value to a
+particular IP network address. All CIPSO labels within datagrams destined
+for the particular IP network MUST use the specified DOI identifier. All
+CIPSO hosts and gateways MUST support either this parameter, the PORT_DOI
+parameter, or the HOST_DOI parameter.
+
+HOST_DOI - This parameter is used to assign a DOI identifier value to a
+particular IP host address. All CIPSO labels within datagrams destined for
+the particular IP host will use the specified DOI identifier. All CIPSO
+hosts and gateways MUST support either this parameter, the PORT_DOI
+parameter, or the NET_DOI parameter.
+
+This list represents the minimal set of configuration parameters required
+to be compliant. Implementors are encouraged to add to this list to
+provide enhanced functionality and control. For example, many security
+policies may require both incoming and outgoing datagrams be checked against
+the port and host label ranges.
+
+
+4.1 Port Range Parameters
+
+The labels represented by the PORT_LABEL_MAX and PORT_LABEL_MIN parameters
+MAY be in CIPSO or local format. Some CIPSO systems, such as routers, may
+want to have the range parameters expressed in CIPSO format so that incoming
+labels do not have to be converted to a local format before being compared
+against the range. If multiple DOIs are supported by one of these CIPSO
+
+
+
+Internet Draft, Expires 15 Jan 93 [PAGE 8]
+
+
+
+CIPSO INTERNET DRAFT 16 July, 1992
+
+
+
+systems then multiple port range parameters would be needed, one set for
+each DOI supported on a particular port.
+
+The port range will usually represent the total set of labels that may
+exist on the logical network accessed through the corresponding network
+interface. It may, however, represent a subset of these labels that are
+allowed to enter the CIPSO system.
+
+
+4.2 Single Label CIPSO Hosts
+
+CIPSO implementations that support only one label are not required to
+support the parameters described above. These limited implementations are
+only required to support a NET_LABEL parameter. This parameter contains
+the CIPSO label that may be inserted in datagrams that exit the host. In
+addition, the host MUST reject any incoming datagram that has a label which
+is not equivalent to the NET_LABEL parameter.
+
+
+5. Handling Procedures
+
+This section describes the processing requirements for incoming and
+outgoing IP datagrams. Just providing the correct CIPSO label format
+is not enough. Assumptions will be made by one system on how a
+receiving system will handle the CIPSO label. Wrong assumptions may
+lead to non-interoperability or even a security incident. The
+requirements described below represent the minimal set needed for
+interoperability and that provide users some level of confidence.
+Many other requirements could be added to increase user confidence,
+however at the risk of restricting creativity and limiting vendor
+participation.
+
+
+5.1 Input Procedures
+
+All datagrams received through a network port MUST have a security label
+associated with them, either contained in the datagram or assigned to the
+receiving port. Without this label the host, gateway, or router will not
+have the information it needs to make security decisions. This security
+label will be obtained from the CIPSO if the option is present in the
+datagram. See section 4.1.2 for handling procedures for unlabeled
+datagrams. This label will be compared against the PORT (if appropriate)
+and HOST configuration parameters defined in section 3.
+
+If any field within the CIPSO option, such as the DOI identifier, is not
+recognized the IP datagram is discarded and an ICMP "parameter problem"
+(type 12) is generated and returned. The ICMP code field is set to "bad
+parameter" (code 0) and the pointer is set to the start of the CIPSO field
+that is unrecognized.
+
+If the contents of the CIPSO are valid but the security label is
+outside of the configured host or port label range, the datagram is
+discarded and an ICMP "destination unreachable" (type 3) is generated
+and returned. The code field of the ICMP is set to "communication with
+destination network administratively prohibited" (code 9) or to
+
+
+
+Internet Draft, Expires 15 Jan 93 [PAGE 9]
+
+
+
+CIPSO INTERNET DRAFT 16 July, 1992
+
+
+
+"communication with destination host administratively prohibited"
+(code 10). The value of the code field used is dependent upon whether
+the originator of the ICMP message is acting as a CIPSO host or a CIPSO
+gateway. The recipient of the ICMP message MUST be able to handle either
+value. The same procedure is performed if a CIPSO can not be added to an
+IP packet because it is too large to fit in the IP options area.
+
+If the error is triggered by receipt of an ICMP message, the message
+is discarded and no response is permitted (consistent with general ICMP
+processing rules).
+
+
+5.1.1 Unrecognized tag types
+
+The default condition for any CIPSO implementation is that an
+unrecognized tag type MUST be treated as a "parameter problem" and
+handled as described in section 4.1. A CIPSO implementation MAY allow
+the system administrator to identify tag types that may safely be
+ignored. This capability is an allowable enhancement, not a
+requirement.
+
+
+5.1.2 Unlabeled Packets
+
+A network port may be configured to not require a CIPSO label for all
+incoming datagrams. For this configuration a CIPSO label must be
+assigned to that network port and associated with all unlabeled IP
+datagrams. This capability might be used for single level networks or
+networks that have CIPSO and non-CIPSO hosts and the non-CIPSO hosts
+all operate at the same label.
+
+If a CIPSO option is required and none is found, the datagram is
+discarded and an ICMP "parameter problem" (type 12) is generated and
+returned to the originator of the datagram. The code field of the ICMP
+is set to "option missing" (code 1) and the ICMP pointer is set to 134
+(the value of the option type for the missing CIPSO option).
+
+
+5.2 Output Procedures
+
+A CIPSO option MUST appear only once in a datagram. Only one tag type
+from the MAC Sensitivity class MAY be included in a CIPSO option. Given
+the current set of defined tag types, this means that CIPSO labels at
+first will contain only one tag.
+
+All datagrams leaving a CIPSO system MUST meet the following condition:
+
+ PORT_LABEL_MIN <= CIPSO label <= PORT_LABEL_MAX
+
+If this condition is not satisfied the datagram MUST be discarded.
+If the CIPSO system only supports one port, the HOST_LABEL_MIN and the
+HOST_LABEL_MAX parameters MAY be substituted for the PORT parameters in
+the above condition.
+
+The DOI identifier to be used for all outgoing datagrams is configured by
+
+
+
+Internet Draft, Expires 15 Jan 93 [PAGE 10]
+
+
+
+CIPSO INTERNET DRAFT 16 July, 1992
+
+
+
+the administrator. If port level DOI identifier assignment is used, then
+the PORT_DOI configuration parameter MUST contain the DOI identifier to
+use. If network level DOI assignment is used, then the NET_DOI parameter
+MUST contain the DOI identifier to use. And if host level DOI assignment
+is employed, then the HOST_DOI parameter MUST contain the DOI identifier
+to use. A CIPSO implementation need only support one level of DOI
+assignment.
+
+
+5.3 DOI Processing Requirements
+
+A CIPSO implementation MUST support at least one DOI and SHOULD support
+multiple DOIs. System and network administrators are cautioned to
+ensure that at least one DOI is common within an IP network to allow for
+broadcasting of IP datagrams.
+
+CIPSO gateways MUST be capable of translating a CIPSO option from one
+DOI to another when forwarding datagrams between networks. For
+efficiency purposes this capability is only a desired feature for CIPSO
+routers.
+
+
+5.4 Label of ICMP Messages
+
+The CIPSO label to be used on all outgoing ICMP messages MUST be equivalent
+to the label of the datagram that caused the ICMP message. If the ICMP was
+generated due to a problem associated with the original CIPSO label then the
+following responses are allowed:
+
+ a. Use the CIPSO label of the original IP datagram
+ b. Drop the original datagram with no return message generated
+
+In most cases these options will have the same effect. If you can not
+interpret the label or if it is outside the label range of your host or
+interface then an ICMP message with the same label will probably not be
+able to exit the system.
+
+
+6. Assignment of DOI Identifier Numbers =
+
+Requests for assignment of a DOI identifier number should be addressed to
+the Internet Assigned Numbers Authority (IANA).
+
+
+7. Acknowledgements
+
+Much of the material in this RFC is based on (and copied from) work
+done by Gary Winiger of Sun Microsystems and published as Commercial
+IP Security Option at the INTEROP 89, Commercial IPSO Workshop.
+
+
+8. Author's Address
+
+To submit mail for distribution to members of the IETF CIPSO Working
+Group, send mail to: cipso@wdl1.wdl.loral.com.
+
+
+
+Internet Draft, Expires 15 Jan 93 [PAGE 11]
+
+
+
+CIPSO INTERNET DRAFT 16 July, 1992
+
+
+
+
+To be added to or deleted from this distribution, send mail to:
+cipso-request@wdl1.wdl.loral.com.
+
+
+9. References
+
+RFC 1038, "Draft Revised IP Security Option", M. St. Johns, IETF, January
+1988.
+
+RFC 1108, "U.S. Department of Defense Security Options
+for the Internet Protocol", Stephen Kent, IAB, 1 March, 1991.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Internet Draft, Expires 15 Jan 93 [PAGE 12]
+
+
+
diff --git a/Documentation/netlabel/introduction.txt b/Documentation/netlabel/introduction.txt
new file mode 100644
index 000000000000..a4ffba1694c8
--- /dev/null
+++ b/Documentation/netlabel/introduction.txt
@@ -0,0 +1,46 @@
+NetLabel Introduction
+==============================================================================
+Paul Moore, paul.moore@hp.com
+
+August 2, 2006
+
+ * Overview
+
+NetLabel is a mechanism which can be used by kernel security modules to attach
+security attributes to outgoing network packets generated from user space
+applications and read security attributes from incoming network packets. It
+is composed of three main components, the protocol engines, the communication
+layer, and the kernel security module API.
+
+ * Protocol Engines
+
+The protocol engines are responsible for both applying and retrieving the
+network packet's security attributes. If any translation between the network
+security attributes and those on the host are required then the protocol
+engine will handle those tasks as well. Other kernel subsystems should
+refrain from calling the protocol engines directly, instead they should use
+the NetLabel kernel security module API described below.
+
+Detailed information about each NetLabel protocol engine can be found in this
+directory, consult '00-INDEX' for filenames.
+
+ * Communication Layer
+
+The communication layer exists to allow NetLabel configuration and monitoring
+from user space. The NetLabel communication layer uses a message based
+protocol built on top of the Generic NETLINK transport mechanism. The exact
+formatting of these NetLabel messages as well as the Generic NETLINK family
+names can be found in the the 'net/netlabel/' directory as comments in the
+header files as well as in 'include/net/netlabel.h'.
+
+ * Security Module API
+
+The purpose of the NetLabel security module API is to provide a protocol
+independent interface to the underlying NetLabel protocol engines. In addition
+to protocol independence, the security module API is designed to be completely
+LSM independent which should allow multiple LSMs to leverage the same code
+base.
+
+Detailed information about the NetLabel security module API can be found in the
+'include/net/netlabel.h' header file as well as the 'lsm_interface.txt' file
+found in this directory.
diff --git a/Documentation/netlabel/lsm_interface.txt b/Documentation/netlabel/lsm_interface.txt
new file mode 100644
index 000000000000..98dd9f7430f2
--- /dev/null
+++ b/Documentation/netlabel/lsm_interface.txt
@@ -0,0 +1,47 @@
+NetLabel Linux Security Module Interface
+==============================================================================
+Paul Moore, paul.moore@hp.com
+
+May 17, 2006
+
+ * Overview
+
+NetLabel is a mechanism which can set and retrieve security attributes from
+network packets. It is intended to be used by LSM developers who want to make
+use of a common code base for several different packet labeling protocols.
+The NetLabel security module API is defined in 'include/net/netlabel.h' but a
+brief overview is given below.
+
+ * NetLabel Security Attributes
+
+Since NetLabel supports multiple different packet labeling protocols and LSMs
+it uses the concept of security attributes to refer to the packet's security
+labels. The NetLabel security attributes are defined by the
+'netlbl_lsm_secattr' structure in the NetLabel header file. Internally the
+NetLabel subsystem converts the security attributes to and from the correct
+low-level packet label depending on the NetLabel build time and run time
+configuration. It is up to the LSM developer to translate the NetLabel
+security attributes into whatever security identifiers are in use for their
+particular LSM.
+
+ * NetLabel LSM Protocol Operations
+
+These are the functions which allow the LSM developer to manipulate the labels
+on outgoing packets as well as read the labels on incoming packets. Functions
+exist to operate both on sockets as well as the sk_buffs directly. These high
+level functions are translated into low level protocol operations based on how
+the administrator has configured the NetLabel subsystem.
+
+ * NetLabel Label Mapping Cache Operations
+
+Depending on the exact configuration, translation between the network packet
+label and the internal LSM security identifier can be time consuming. The
+NetLabel label mapping cache is a caching mechanism which can be used to
+sidestep much of this overhead once a mapping has been established. Once the
+LSM has received a packet, used NetLabel to decode it's security attributes,
+and translated the security attributes into a LSM internal identifier the LSM
+can use the NetLabel caching functions to associate the LSM internal
+identifier with the network packet's label. This means that in the future
+when a incoming packet matches a cached value not only are the internal
+NetLabel translation mechanisms bypassed but the LSM translation mechanisms are
+bypassed as well which should result in a significant reduction in overhead.
diff --git a/Documentation/networking/ip-sysctl.txt b/Documentation/networking/ip-sysctl.txt
index 90ed78110fd4..935e298f674a 100644
--- a/Documentation/networking/ip-sysctl.txt
+++ b/Documentation/networking/ip-sysctl.txt
@@ -375,6 +375,41 @@ tcp_slow_start_after_idle - BOOLEAN
be timed out after an idle period.
Default: 1
+CIPSOv4 Variables:
+
+cipso_cache_enable - BOOLEAN
+ If set, enable additions to and lookups from the CIPSO label mapping
+ cache. If unset, additions are ignored and lookups always result in a
+ miss. However, regardless of the setting the cache is still
+ invalidated when required when means you can safely toggle this on and
+ off and the cache will always be "safe".
+ Default: 1
+
+cipso_cache_bucket_size - INTEGER
+ The CIPSO label cache consists of a fixed size hash table with each
+ hash bucket containing a number of cache entries. This variable limits
+ the number of entries in each hash bucket; the larger the value the
+ more CIPSO label mappings that can be cached. When the number of
+ entries in a given hash bucket reaches this limit adding new entries
+ causes the oldest entry in the bucket to be removed to make room.
+ Default: 10
+
+cipso_rbm_optfmt - BOOLEAN
+ Enable the "Optimized Tag 1 Format" as defined in section 3.4.2.6 of
+ the CIPSO draft specification (see Documentation/netlabel for details).
+ This means that when set the CIPSO tag will be padded with empty
+ categories in order to make the packet data 32-bit aligned.
+ Default: 0
+
+cipso_rbm_structvalid - BOOLEAN
+ If set, do a very strict check of the CIPSO option when
+ ip_options_compile() is called. If unset, relax the checks done during
+ ip_options_compile(). Either way is "safe" as errors are caught else
+ where in the CIPSO processing code but setting this to 0 (False) should
+ result in less work (i.e. it should be faster) but could cause problems
+ with other implementations that require strict checking.
+ Default: 0
+
IP Variables:
ip_local_port_range - 2 INTEGERS
@@ -730,6 +765,9 @@ conf/all/forwarding - BOOLEAN
This referred to as global forwarding.
+proxy_ndp - BOOLEAN
+ Do proxy ndp.
+
conf/interface/*:
Change special settings per interface.
diff --git a/Documentation/networking/secid.txt b/Documentation/networking/secid.txt
new file mode 100644
index 000000000000..95ea06784333
--- /dev/null
+++ b/Documentation/networking/secid.txt
@@ -0,0 +1,14 @@
+flowi structure:
+
+The secid member in the flow structure is used in LSMs (e.g. SELinux) to indicate
+the label of the flow. This label of the flow is currently used in selecting
+matching labeled xfrm(s).
+
+If this is an outbound flow, the label is derived from the socket, if any, or
+the incoming packet this flow is being generated as a response to (e.g. tcp
+resets, timewait ack, etc.). It is also conceivable that the label could be
+derived from other sources such as process context, device, etc., in special
+cases, as may be appropriate.
+
+If this is an inbound flow, the label is derived from the IPSec security
+associations, if any, used by the packet.
diff --git a/Documentation/sound/alsa/ALSA-Configuration.txt b/Documentation/sound/alsa/ALSA-Configuration.txt
index f61af23dd85d..e6b57dd46a4f 100644
--- a/Documentation/sound/alsa/ALSA-Configuration.txt
+++ b/Documentation/sound/alsa/ALSA-Configuration.txt
@@ -758,6 +758,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
position_fix - Fix DMA pointer (0 = auto, 1 = none, 2 = POSBUF, 3 = FIFO size)
single_cmd - Use single immediate commands to communicate with
codecs (for debugging only)
+ disable_msi - Disable Message Signaled Interrupt (MSI)
This module supports one card and autoprobe.
@@ -778,11 +779,16 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
6stack-digout 6-jack with a SPDIF out
w810 3-jack
z71v 3-jack (HP shared SPDIF)
- asus 3-jack
+ asus 3-jack (ASUS Mobo)
+ asus-w1v ASUS W1V
+ asus-dig ASUS with SPDIF out
+ asus-dig2 ASUS with SPDIF out (using GPIO2)
uniwill 3-jack
F1734 2-jack
lg LG laptop (m1 express dual)
- lg-lw LG LW20 laptop
+ lg-lw LG LW20/LW25 laptop
+ tcl TCL S700
+ clevo Clevo laptops (m520G, m665n)
test for testing/debugging purpose, almost all controls can be
adjusted. Appearing only when compiled with
$CONFIG_SND_DEBUG=y
@@ -790,6 +796,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
ALC260
hp HP machines
+ hp-3013 HP machines (3013-variant)
fujitsu Fujitsu S7020
acer Acer TravelMate
basic fixed pin assignment (old default model)
@@ -797,24 +804,32 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
ALC262
fujitsu Fujitsu Laptop
+ hp-bpc HP xw4400/6400/8400/9400 laptops
+ benq Benq ED8
basic fixed pin assignment w/o SPDIF
auto auto-config reading BIOS (default)
ALC882/885
3stack-dig 3-jack with SPDIF I/O
6stck-dig 6-jack digital with SPDIF I/O
+ arima Arima W820Di1
auto auto-config reading BIOS (default)
ALC883/888
3stack-dig 3-jack with SPDIF I/O
6stack-dig 6-jack digital with SPDIF I/O
- 6stack-dig-demo 6-stack digital for Intel demo board
+ 3stack-6ch 3-jack 6-channel
+ 3stack-6ch-dig 3-jack 6-channel with SPDIF I/O
+ 6stack-dig-demo 6-jack digital for Intel demo board
+ acer Acer laptops (Travelmate 3012WTMi, Aspire 5600, etc)
auto auto-config reading BIOS (default)
ALC861/660
3stack 3-jack
3stack-dig 3-jack with SPDIF I/O
6stack-dig 6-jack with SPDIF I/O
+ 3stack-660 3-jack (for ALC660)
+ uniwill-m31 Uniwill M31 laptop
auto auto-config reading BIOS (default)
CMI9880
@@ -843,10 +858,21 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
3stack-dig ditto with SPDIF
laptop 3-jack with hp-jack automute
laptop-dig ditto with SPDIF
- auto auto-confgi reading BIOS (default)
+ auto auto-config reading BIOS (default)
+
+ STAC9200/9205/9220/9221/9254
+ ref Reference board
+ 3stack D945 3stack
+ 5stack D945 5stack + SPDIF
- STAC7661(?)
+ STAC9227/9228/9229/927x
+ ref Reference board
+ 3stack D965 3stack
+ 5stack D965 5stack + SPDIF
+
+ STAC9872
vaio Setup for VAIO FE550G/SZ110
+ vaio-ar Setup for VAIO AR
If the default configuration doesn't work and one of the above
matches with your device, report it together with the PCI
@@ -1213,6 +1239,14 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
Module supports only 1 card. This module has no enable option.
+ Module snd-mts64
+ ----------------
+
+ Module for Ego Systems (ESI) Miditerminal 4140
+
+ This module supports multiple devices.
+ Requires parport (CONFIG_PARPORT).
+
Module snd-nm256
----------------
diff --git a/Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl b/Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl
index b8dc51ca776c..4807ef79a94d 100644
--- a/Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl
+++ b/Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl
@@ -1054,9 +1054,8 @@
<para>
For a device which allows hotplugging, you can use
- <function>snd_card_free_in_thread</function>. This one will
- postpone the destruction and wait in a kernel-thread until all
- devices are closed.
+ <function>snd_card_free_when_closed</function>. This one will
+ postpone the destruction until all devices are closed.
</para>
</section>