summaryrefslogtreecommitdiff
path: root/Documentation/x86
diff options
context:
space:
mode:
authorDave Hansen <dave.hansen@linux.intel.com>2021-11-02 15:47:50 -0700
committerThomas Gleixner <tglx@linutronix.de>2021-11-03 22:42:35 +0100
commit30d02551ba4f681cfa605cedacf231b8641169f0 (patch)
tree7343ae3ae1972ea329089f3d38f19bf16654e4c9 /Documentation/x86
parent879dbe9ffebc1328717cd66eab7e4918a3f499bd (diff)
downloadlwn-30d02551ba4f681cfa605cedacf231b8641169f0.tar.gz
lwn-30d02551ba4f681cfa605cedacf231b8641169f0.zip
x86/fpu: Optimize out sigframe xfeatures when in init state
tl;dr: AMX state is ~8k. Signal frames can have space for this ~8k and each signal entry writes out all 8k even if it is zeros. Skip writing zeros for AMX to speed up signal delivery by about 4% overall when AMX is in its init state. This is a user-visible change to the sigframe ABI. == Hardware XSAVE Background == XSAVE state components may be tracked by the processor as being in their initial configuration. Software can detect which features are in this configuration by looking at the XSTATE_BV field in an XSAVE buffer or with the XGETBV(1) instruction. Both the XSAVE and XSAVEOPT instructions enumerate features s being in the initial configuration via the XSTATE_BV field in the XSAVE header, However, XSAVEOPT declines to actually write features in their initial configuration to the buffer. XSAVE writes the feature unconditionally, regardless of whether it is in the initial configuration or not. Basically, XSAVE users never need to inspect XSTATE_BV to determine if the feature has been written to the buffer. XSAVEOPT users *do* need to inspect XSTATE_BV. They might also need to clear out the buffer if they want to make an isolated change to the state, like modifying one register. == Software Signal / XSAVE Background == Signal frames have historically been written with XSAVE itself. Each state is written in its entirety, regardless of being in its initial configuration. In other words, the signal frame ABI uses the XSAVE behavior, not the XSAVEOPT behavior. == Problem == This means that any application which has acquired permission to use AMX via ARCH_REQ_XCOMP_PERM will write 8k of state to the signal frame. This 8k write will occur even when AMX was in its initial configuration and software *knows* this because of XSTATE_BV. This problem also exists to a lesser degree with AVX-512 and its 2k of state. However, AVX-512 use does not require ARCH_REQ_XCOMP_PERM and is more likely to have existing users which would be impacted by any change in behavior. == Solution == Stop writing out AMX xfeatures which are in their initial state to the signal frame. This effectively makes the signal frame XSAVE buffer look as if it were written with a combination of XSAVEOPT and XSAVE behavior. Userspace which handles XSAVEOPT- style buffers should be able to handle this naturally. For now, include only the AMX xfeatures: XTILE and XTILEDATA in this new behavior. These require new ABI to use anyway, which makes their users very unlikely to be broken. This XSAVEOPT-like behavior should be expected for all future dynamic xfeatures. It may also be extended to legacy features like AVX-512 in the future. Only attempt this optimization on systems with dynamic features. Disable dynamic feature support (XFD) if XGETBV1 is unavailable by adding a CPUID dependency. This has been measured to reduce the *overall* cycle cost of signal delivery by about 4%. Fixes: 2308ee57d93d ("x86/fpu/amx: Enable the AMX feature in 64-bit mode") Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: "Chang S. Bae" <chang.seok.bae@intel.com> Link: https://lore.kernel.org/r/20211102224750.FA412E26@davehans-spike.ostc.intel.com
Diffstat (limited to 'Documentation/x86')
-rw-r--r--Documentation/x86/xstate.rst9
1 files changed, 9 insertions, 0 deletions
diff --git a/Documentation/x86/xstate.rst b/Documentation/x86/xstate.rst
index 65de3f054ba5..5cec7fb558d6 100644
--- a/Documentation/x86/xstate.rst
+++ b/Documentation/x86/xstate.rst
@@ -63,3 +63,12 @@ kernel sends SIGILL to the application. If the process has permission then
the handler allocates a larger xstate buffer for the task so the large
state can be context switched. In the unlikely cases that the allocation
fails, the kernel sends SIGSEGV.
+
+Dynamic features in signal frames
+---------------------------------
+
+Dynamcally enabled features are not written to the signal frame upon signal
+entry if the feature is in its initial configuration. This differs from
+non-dynamic features which are always written regardless of their
+configuration. Signal handlers can examine the XSAVE buffer's XSTATE_BV
+field to determine if a features was written.