summaryrefslogtreecommitdiff
path: root/Documentation/vm
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2012-12-13 13:11:15 -0800
committerLinus Torvalds <torvalds@linux-foundation.org>2012-12-13 13:11:15 -0800
commitf6e858a00af788bab0fd4c0b7f5cd788000edc18 (patch)
treef9403ca3671be9821dbf83e726e61dbe75fbca6b /Documentation/vm
parent193c0d682525987db59ac3a24531a77e4947aa95 (diff)
parent98870901cce098bbe94d90d2c41d8d1fa8d94392 (diff)
downloadlwn-f6e858a00af788bab0fd4c0b7f5cd788000edc18.tar.gz
lwn-f6e858a00af788bab0fd4c0b7f5cd788000edc18.zip
Merge branch 'akpm' (Andrew's patch-bomb)
Merge misc VM changes from Andrew Morton: "The rest of most-of-MM. The other MM bits await a slab merge. This patch includes the addition of a huge zero_page. Not a performance boost but it an save large amounts of physical memory in some situations. Also a bunch of Fujitsu engineers are working on memory hotplug. Which, as it turns out, was badly broken. About half of their patches are included here; the remainder are 3.8 material." However, this merge disables CONFIG_MOVABLE_NODE, which was totally broken. We don't add new features with "default y", nor do we add Kconfig questions that are incomprehensible to most people without any help text. Does the feature even make sense without compaction or memory hotplug? * akpm: (54 commits) mm/bootmem.c: remove unused wrapper function reserve_bootmem_generic() mm/memory.c: remove unused code from do_wp_page() asm-generic, mm: pgtable: consolidate zero page helpers mm/hugetlb.c: fix warning on freeing hwpoisoned hugepage hwpoison, hugetlbfs: fix RSS-counter warning hwpoison, hugetlbfs: fix "bad pmd" warning in unmapping hwpoisoned hugepage mm: protect against concurrent vma expansion memcg: do not check for mm in __mem_cgroup_count_vm_event tmpfs: support SEEK_DATA and SEEK_HOLE (reprise) mm: provide more accurate estimation of pages occupied by memmap fs/buffer.c: remove redundant initialization in alloc_page_buffers() fs/buffer.c: do not inline exported function writeback: fix a typo in comment mm: introduce new field "managed_pages" to struct zone mm, oom: remove statically defined arch functions of same name mm, oom: remove redundant sleep in pagefault oom handler mm, oom: cleanup pagefault oom handler memory_hotplug: allow online/offline memory to result movable node numa: add CONFIG_MOVABLE_NODE for movable-dedicated node mm, memcg: avoid unnecessary function call when memcg is disabled ...
Diffstat (limited to 'Documentation/vm')
-rw-r--r--Documentation/vm/transhuge.txt19
1 files changed, 17 insertions, 2 deletions
diff --git a/Documentation/vm/transhuge.txt b/Documentation/vm/transhuge.txt
index f734bb2a78dc..8785fb87d9c7 100644
--- a/Documentation/vm/transhuge.txt
+++ b/Documentation/vm/transhuge.txt
@@ -116,6 +116,13 @@ echo always >/sys/kernel/mm/transparent_hugepage/defrag
echo madvise >/sys/kernel/mm/transparent_hugepage/defrag
echo never >/sys/kernel/mm/transparent_hugepage/defrag
+By default kernel tries to use huge zero page on read page fault.
+It's possible to disable huge zero page by writing 0 or enable it
+back by writing 1:
+
+echo 0 >/sys/kernel/mm/transparent_hugepage/khugepaged/use_zero_page
+echo 1 >/sys/kernel/mm/transparent_hugepage/khugepaged/use_zero_page
+
khugepaged will be automatically started when
transparent_hugepage/enabled is set to "always" or "madvise, and it'll
be automatically shutdown if it's set to "never".
@@ -197,6 +204,14 @@ thp_split is incremented every time a huge page is split into base
pages. This can happen for a variety of reasons but a common
reason is that a huge page is old and is being reclaimed.
+thp_zero_page_alloc is incremented every time a huge zero page is
+ successfully allocated. It includes allocations which where
+ dropped due race with other allocation. Note, it doesn't count
+ every map of the huge zero page, only its allocation.
+
+thp_zero_page_alloc_failed is incremented if kernel fails to allocate
+ huge zero page and falls back to using small pages.
+
As the system ages, allocating huge pages may be expensive as the
system uses memory compaction to copy data around memory to free a
huge page for use. There are some counters in /proc/vmstat to help
@@ -276,7 +291,7 @@ unaffected. libhugetlbfs will also work fine as usual.
== Graceful fallback ==
Code walking pagetables but unware about huge pmds can simply call
-split_huge_page_pmd(mm, pmd) where the pmd is the one returned by
+split_huge_page_pmd(vma, addr, pmd) where the pmd is the one returned by
pmd_offset. It's trivial to make the code transparent hugepage aware
by just grepping for "pmd_offset" and adding split_huge_page_pmd where
missing after pmd_offset returns the pmd. Thanks to the graceful
@@ -299,7 +314,7 @@ diff --git a/mm/mremap.c b/mm/mremap.c
return NULL;
pmd = pmd_offset(pud, addr);
-+ split_huge_page_pmd(mm, pmd);
++ split_huge_page_pmd(vma, addr, pmd);
if (pmd_none_or_clear_bad(pmd))
return NULL;