summaryrefslogtreecommitdiff
path: root/Documentation/s390
diff options
context:
space:
mode:
authorThomas Huth <thuth@linux.vnet.ibm.com>2014-10-31 14:10:14 +0100
committerMartin Schwidefsky <schwidefsky@de.ibm.com>2014-11-18 18:22:57 +0100
commitb19556231156ce3e58ffd677747bf3ef7890a937 (patch)
treeea54837410bb14a420c9b4d9e3746a5564965476 /Documentation/s390
parenteaf785d51dc6782da4cc87b5e891c8a9f8fa2c27 (diff)
downloadlwn-b19556231156ce3e58ffd677747bf3ef7890a937.tar.gz
lwn-b19556231156ce3e58ffd677747bf3ef7890a937.zip
s390/docs: Fix the documentation of the address spaces
The information about the address spaces was completely outdated, since the usage of the address spaces changed quite a bit since the early days. This patch now updates the information about the usage of the address spaces, mostly by using the description from Heiko's patch "rework uaccess code - fix locking issues" (457f2180951cdcbfb4657ddcc83b486e93497f56). Signed-off-by: Thomas Huth <thuth@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Diffstat (limited to 'Documentation/s390')
-rw-r--r--Documentation/s390/Debugging390.txt88
1 files changed, 61 insertions, 27 deletions
diff --git a/Documentation/s390/Debugging390.txt b/Documentation/s390/Debugging390.txt
index 462321c1aeea..2120eec48a5c 100644
--- a/Documentation/s390/Debugging390.txt
+++ b/Documentation/s390/Debugging390.txt
@@ -114,28 +114,25 @@ s/390 z/Architecture
16-17 16-17 Address Space Control
- 00 Primary Space Mode when DAT on
- The linux kernel currently runs in this mode, CR1 is affiliated with
- this mode & points to the primary segment table origin etc.
-
- 01 Access register mode this mode is used in functions to
- copy data between kernel & user space.
-
- 10 Secondary space mode not used in linux however CR7 the
- register affiliated with this mode is & this & normally
- CR13=CR7 to allow us to copy data between kernel & user space.
- We do this as follows:
- We set ar2 to 0 to designate its
- affiliated gpr ( gpr2 )to point to primary=kernel space.
- We set ar4 to 1 to designate its
- affiliated gpr ( gpr4 ) to point to secondary=home=user space
- & then essentially do a memcopy(gpr2,gpr4,size) to
- copy data between the address spaces, the reason we use home space for the
- kernel & don't keep secondary space free is that code will not run in
- secondary space.
-
- 11 Home Space Mode all user programs run in this mode.
- it is affiliated with CR13.
+ 00 Primary Space Mode:
+ The register CR1 contains the primary address-space control ele-
+ ment (PASCE), which points to the primary space region/segment
+ table origin.
+
+ 01 Access register mode
+
+ 10 Secondary Space Mode:
+ The register CR7 contains the secondary address-space control
+ element (SASCE), which points to the secondary space region or
+ segment table origin.
+
+ 11 Home Space Mode:
+ The register CR13 contains the home space address-space control
+ element (HASCE), which points to the home space region/segment
+ table origin.
+
+ See "Address Spaces on Linux for s/390 & z/Architecture" below
+ for more information about address space usage in Linux.
18-19 18-19 Condition codes (CC)
@@ -249,9 +246,9 @@ currently 4TB of physical memory currently on z/Architecture.
Address Spaces on Linux for s/390 & z/Architecture
==================================================
-Our addressing scheme is as follows
-
+Our addressing scheme is basically as follows:
+ Primary Space Home Space
Himem 0x7fffffff 2GB on s/390 ***************** ****************
currently 0x3ffffffffff (2^42)-1 * User Stack * * *
on z/Architecture. ***************** * *
@@ -264,9 +261,46 @@ on z/Architecture. ***************** * *
* Sections * * *
0x00000000 ***************** ****************
-This also means that we need to look at the PSW problem state bit
-or the addressing mode to decide whether we are looking at
-user or kernel space.
+This also means that we need to look at the PSW problem state bit and the
+addressing mode to decide whether we are looking at user or kernel space.
+
+User space runs in primary address mode (or access register mode within
+the vdso code).
+
+The kernel usually also runs in home space mode, however when accessing
+user space the kernel switches to primary or secondary address mode if
+the mvcos instruction is not available or if a compare-and-swap (futex)
+instruction on a user space address is performed.
+
+When also looking at the ASCE control registers, this means:
+
+User space:
+- runs in primary or access register mode
+- cr1 contains the user asce
+- cr7 contains the user asce
+- cr13 contains the kernel asce
+
+Kernel space:
+- runs in home space mode
+- cr1 contains the user or kernel asce
+ -> the kernel asce is loaded when a uaccess requires primary or
+ secondary address mode
+- cr7 contains the user or kernel asce, (changed with set_fs())
+- cr13 contains the kernel asce
+
+In case of uaccess the kernel changes to:
+- primary space mode in case of a uaccess (copy_to_user) and uses
+ e.g. the mvcp instruction to access user space. However the kernel
+ will stay in home space mode if the mvcos instruction is available
+- secondary space mode in case of futex atomic operations, so that the
+ instructions come from primary address space and data from secondary
+ space
+
+In case of KVM, the kernel runs in home space mode, but cr1 gets switched
+to contain the gmap asce before the SIE instruction gets executed. When
+the SIE instruction is finished, cr1 will be switched back to contain the
+user asce.
+
Virtual Addresses on s/390 & z/Architecture
===========================================