summaryrefslogtreecommitdiff
path: root/Documentation/livepatch
diff options
context:
space:
mode:
authorPetr Mladek <pmladek@suse.com>2019-01-09 13:43:27 +0100
committerJiri Kosina <jkosina@suse.cz>2019-01-11 20:51:24 +0100
commitc4e6874f2a2965e932f4a5cf2631bc6024e55021 (patch)
tree650290f6af88ef38999a26574d287d3af14b8576 /Documentation/livepatch
parentd697bad588eb4e76311193e6eaacc7c7aaa5a4ba (diff)
downloadlwn-c4e6874f2a2965e932f4a5cf2631bc6024e55021.tar.gz
lwn-c4e6874f2a2965e932f4a5cf2631bc6024e55021.zip
livepatch: Atomic replace and cumulative patches documentation
User documentation for the atomic replace feature. It makes it easier to maintain livepatches using so-called cumulative patches. Signed-off-by: Petr Mladek <pmladek@suse.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Joe Lawrence <joe.lawrence@redhat.com> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Diffstat (limited to 'Documentation/livepatch')
-rw-r--r--Documentation/livepatch/cumulative-patches.txt105
-rw-r--r--Documentation/livepatch/livepatch.txt2
2 files changed, 107 insertions, 0 deletions
diff --git a/Documentation/livepatch/cumulative-patches.txt b/Documentation/livepatch/cumulative-patches.txt
new file mode 100644
index 000000000000..e7cf5be69f23
--- /dev/null
+++ b/Documentation/livepatch/cumulative-patches.txt
@@ -0,0 +1,105 @@
+===================================
+Atomic Replace & Cumulative Patches
+===================================
+
+There might be dependencies between livepatches. If multiple patches need
+to do different changes to the same function(s) then we need to define
+an order in which the patches will be installed. And function implementations
+from any newer livepatch must be done on top of the older ones.
+
+This might become a maintenance nightmare. Especially if anyone would want
+to remove a patch that is in the middle of the stack.
+
+An elegant solution comes with the feature called "Atomic Replace". It allows
+creation of so called "Cumulative Patches". They include all wanted changes
+from all older livepatches and completely replace them in one transition.
+
+Usage
+-----
+
+The atomic replace can be enabled by setting "replace" flag in struct klp_patch,
+for example:
+
+ static struct klp_patch patch = {
+ .mod = THIS_MODULE,
+ .objs = objs,
+ .replace = true,
+ };
+
+Such a patch is added on top of the livepatch stack when enabled.
+
+All processes are then migrated to use the code only from the new patch.
+Once the transition is finished, all older patches are automatically
+disabled and removed from the stack of patches.
+
+Ftrace handlers are transparently removed from functions that are no
+longer modified by the new cumulative patch.
+
+As a result, the livepatch authors might maintain sources only for one
+cumulative patch. It helps to keep the patch consistent while adding or
+removing various fixes or features.
+
+Users could keep only the last patch installed on the system after
+the transition to has finished. It helps to clearly see what code is
+actually in use. Also the livepatch might then be seen as a "normal"
+module that modifies the kernel behavior. The only difference is that
+it can be updated at runtime without breaking its functionality.
+
+
+Features
+--------
+
+The atomic replace allows:
+
+ + Atomically revert some functions in a previous patch while
+ upgrading other functions.
+
+ + Remove eventual performance impact caused by core redirection
+ for functions that are no longer patched.
+
+ + Decrease user confusion about stacking order and what code
+ is actually in use.
+
+
+Limitations:
+------------
+
+ + Once the operation finishes, there is no straightforward way
+ to reverse it and restore the replaced patches atomically.
+
+ A good practice is to set .replace flag in any released livepatch.
+ Then re-adding an older livepatch is equivalent to downgrading
+ to that patch. This is safe as long as the livepatches do _not_ do
+ extra modifications in (un)patching callbacks or in the module_init()
+ or module_exit() functions, see below.
+
+ Also note that the replaced patch can be removed and loaded again
+ only when the transition was not forced.
+
+
+ + Only the (un)patching callbacks from the _new_ cumulative livepatch are
+ executed. Any callbacks from the replaced patches are ignored.
+
+ In other words, the cumulative patch is responsible for doing any actions
+ that are necessary to properly replace any older patch.
+
+ As a result, it might be dangerous to replace newer cumulative patches by
+ older ones. The old livepatches might not provide the necessary callbacks.
+
+ This might be seen as a limitation in some scenarios. But it makes life
+ easier in many others. Only the new cumulative livepatch knows what
+ fixes/features are added/removed and what special actions are necessary
+ for a smooth transition.
+
+ In any case, it would be a nightmare to think about the order of
+ the various callbacks and their interactions if the callbacks from all
+ enabled patches were called.
+
+
+ + There is no special handling of shadow variables. Livepatch authors
+ must create their own rules how to pass them from one cumulative
+ patch to the other. Especially that they should not blindly remove
+ them in module_exit() functions.
+
+ A good practice might be to remove shadow variables in the post-unpatch
+ callback. It is called only when the livepatch is properly disabled.
diff --git a/Documentation/livepatch/livepatch.txt b/Documentation/livepatch/livepatch.txt
index 2a70f43166f6..6f32d6ea2fcb 100644
--- a/Documentation/livepatch/livepatch.txt
+++ b/Documentation/livepatch/livepatch.txt
@@ -365,6 +365,8 @@ the ftrace handler is unregistered and the struct klp_ops is
freed when the related function is not modified by the new patch
and func_stack list becomes empty.
+See Documentation/livepatch/cumulative-patches.txt for more details.
+
5.4. Disabling
--------------