diff options
author | Stefani Seibold <stefani@seibold.net> | 2009-06-17 16:26:01 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2009-06-18 13:03:41 -0700 |
commit | 349888ee7b2c1ffb44c806adf6f4289ca4a6fd42 (patch) | |
tree | 841552b3ed0c3140be1904c82ffc0149f32491b1 /Documentation/filesystems | |
parent | 2f6d311080c36e30a5fa87adca550dc6b51dbfdc (diff) | |
download | lwn-349888ee7b2c1ffb44c806adf6f4289ca4a6fd42.tar.gz lwn-349888ee7b2c1ffb44c806adf6f4289ca4a6fd42.zip |
proc.txt: update kernel filesystem/proc.txt documentation
An update for the "Process-Specific Subdirectories" section to reflect the
changes till kernel 2.6.30.
Signed-off-by: Stefani Seibold <stefani@seibold.net>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'Documentation/filesystems')
-rw-r--r-- | Documentation/filesystems/proc.txt | 242 |
1 files changed, 190 insertions, 52 deletions
diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt index fb7d649437af..fad18f9456e4 100644 --- a/Documentation/filesystems/proc.txt +++ b/Documentation/filesystems/proc.txt @@ -5,11 +5,12 @@ Bodo Bauer <bb@ricochet.net> 2.4.x update Jorge Nerin <comandante@zaralinux.com> November 14 2000 -move /proc/sys Shen Feng <shen@cn.fujitsu.com> April 1 2009 +move /proc/sys Shen Feng <shen@cn.fujitsu.com> April 1 2009 ------------------------------------------------------------------------------ Version 1.3 Kernel version 2.2.12 Kernel version 2.4.0-test11-pre4 ------------------------------------------------------------------------------ +fixes/update part 1.1 Stefani Seibold <stefani@seibold.net> June 9 2009 Table of Contents ----------------- @@ -116,7 +117,7 @@ The link self points to the process reading the file system. Each process subdirectory has the entries listed in Table 1-1. -Table 1-1: Process specific entries in /proc +Table 1-1: Process specific entries in /proc .............................................................................. File Content clear_refs Clears page referenced bits shown in smaps output @@ -134,46 +135,103 @@ Table 1-1: Process specific entries in /proc status Process status in human readable form wchan If CONFIG_KALLSYMS is set, a pre-decoded wchan stack Report full stack trace, enable via CONFIG_STACKTRACE - smaps Extension based on maps, the rss size for each mapped file + smaps a extension based on maps, showing the memory consumption of + each mapping .............................................................................. For example, to get the status information of a process, all you have to do is read the file /proc/PID/status: - >cat /proc/self/status - Name: cat - State: R (running) - Pid: 5452 - PPid: 743 + >cat /proc/self/status + Name: cat + State: R (running) + Tgid: 5452 + Pid: 5452 + PPid: 743 TracerPid: 0 (2.4) - Uid: 501 501 501 501 - Gid: 100 100 100 100 - Groups: 100 14 16 - VmSize: 1112 kB - VmLck: 0 kB - VmRSS: 348 kB - VmData: 24 kB - VmStk: 12 kB - VmExe: 8 kB - VmLib: 1044 kB - SigPnd: 0000000000000000 - SigBlk: 0000000000000000 - SigIgn: 0000000000000000 - SigCgt: 0000000000000000 - CapInh: 00000000fffffeff - CapPrm: 0000000000000000 - CapEff: 0000000000000000 - + Uid: 501 501 501 501 + Gid: 100 100 100 100 + FDSize: 256 + Groups: 100 14 16 + VmPeak: 5004 kB + VmSize: 5004 kB + VmLck: 0 kB + VmHWM: 476 kB + VmRSS: 476 kB + VmData: 156 kB + VmStk: 88 kB + VmExe: 68 kB + VmLib: 1412 kB + VmPTE: 20 kb + Threads: 1 + SigQ: 0/28578 + SigPnd: 0000000000000000 + ShdPnd: 0000000000000000 + SigBlk: 0000000000000000 + SigIgn: 0000000000000000 + SigCgt: 0000000000000000 + CapInh: 00000000fffffeff + CapPrm: 0000000000000000 + CapEff: 0000000000000000 + CapBnd: ffffffffffffffff + voluntary_ctxt_switches: 0 + nonvoluntary_ctxt_switches: 1 This shows you nearly the same information you would get if you viewed it with the ps command. In fact, ps uses the proc file system to obtain its -information. The statm file contains more detailed information about the -process memory usage. Its seven fields are explained in Table 1-2. The stat -file contains details information about the process itself. Its fields are -explained in Table 1-3. +information. But you get a more detailed view of the process by reading the +file /proc/PID/status. It fields are described in table 1-2. + +The statm file contains more detailed information about the process +memory usage. Its seven fields are explained in Table 1-3. The stat file +contains details information about the process itself. Its fields are +explained in Table 1-4. +Table 1-2: Contents of the statm files (as of 2.6.30-rc7) +.............................................................................. + Field Content + Name filename of the executable + State state (R is running, S is sleeping, D is sleeping + in an uninterruptible wait, Z is zombie, + T is traced or stopped) + Tgid thread group ID + Pid process id + PPid process id of the parent process + TracerPid PID of process tracing this process (0 if not) + Uid Real, effective, saved set, and file system UIDs + Gid Real, effective, saved set, and file system GIDs + FDSize number of file descriptor slots currently allocated + Groups supplementary group list + VmPeak peak virtual memory size + VmSize total program size + VmLck locked memory size + VmHWM peak resident set size ("high water mark") + VmRSS size of memory portions + VmData size of data, stack, and text segments + VmStk size of data, stack, and text segments + VmExe size of text segment + VmLib size of shared library code + VmPTE size of page table entries + Threads number of threads + SigQ number of signals queued/max. number for queue + SigPnd bitmap of pending signals for the thread + ShdPnd bitmap of shared pending signals for the process + SigBlk bitmap of blocked signals + SigIgn bitmap of ignored signals + SigCgt bitmap of catched signals + CapInh bitmap of inheritable capabilities + CapPrm bitmap of permitted capabilities + CapEff bitmap of effective capabilities + CapBnd bitmap of capabilities bounding set + Cpus_allowed mask of CPUs on which this process may run + Cpus_allowed_list Same as previous, but in "list format" + Mems_allowed mask of memory nodes allowed to this process + Mems_allowed_list Same as previous, but in "list format" + voluntary_ctxt_switches number of voluntary context switches + nonvoluntary_ctxt_switches number of non voluntary context switches +.............................................................................. -Table 1-2: Contents of the statm files (as of 2.6.8-rc3) +Table 1-3: Contents of the statm files (as of 2.6.8-rc3) .............................................................................. Field Content size total program size (pages) (same as VmSize in status) @@ -188,7 +246,7 @@ Table 1-2: Contents of the statm files (as of 2.6.8-rc3) .............................................................................. -Table 1-3: Contents of the stat files (as of 2.6.22-rc3) +Table 1-4: Contents of the stat files (as of 2.6.30-rc7) .............................................................................. Field Content pid process id @@ -222,10 +280,10 @@ Table 1-3: Contents of the stat files (as of 2.6.22-rc3) start_stack address of the start of the stack esp current value of ESP eip current value of EIP - pending bitmap of pending signals (obsolete) - blocked bitmap of blocked signals (obsolete) - sigign bitmap of ignored signals (obsolete) - sigcatch bitmap of catched signals (obsolete) + pending bitmap of pending signals + blocked bitmap of blocked signals + sigign bitmap of ignored signals + sigcatch bitmap of catched signals wchan address where process went to sleep 0 (place holder) 0 (place holder) @@ -234,19 +292,99 @@ Table 1-3: Contents of the stat files (as of 2.6.22-rc3) rt_priority realtime priority policy scheduling policy (man sched_setscheduler) blkio_ticks time spent waiting for block IO + gtime guest time of the task in jiffies + cgtime guest time of the task children in jiffies .............................................................................. +The /proc/PID/map file containing the currently mapped memory regions and +their access permissions. + +The format is: + +address perms offset dev inode pathname + +08048000-08049000 r-xp 00000000 03:00 8312 /opt/test +08049000-0804a000 rw-p 00001000 03:00 8312 /opt/test +0804a000-0806b000 rw-p 00000000 00:00 0 [heap] +a7cb1000-a7cb2000 ---p 00000000 00:00 0 +a7cb2000-a7eb2000 rw-p 00000000 00:00 0 +a7eb2000-a7eb3000 ---p 00000000 00:00 0 +a7eb3000-a7ed5000 rw-p 00000000 00:00 0 +a7ed5000-a8008000 r-xp 00000000 03:00 4222 /lib/libc.so.6 +a8008000-a800a000 r--p 00133000 03:00 4222 /lib/libc.so.6 +a800a000-a800b000 rw-p 00135000 03:00 4222 /lib/libc.so.6 +a800b000-a800e000 rw-p 00000000 00:00 0 +a800e000-a8022000 r-xp 00000000 03:00 14462 /lib/libpthread.so.0 +a8022000-a8023000 r--p 00013000 03:00 14462 /lib/libpthread.so.0 +a8023000-a8024000 rw-p 00014000 03:00 14462 /lib/libpthread.so.0 +a8024000-a8027000 rw-p 00000000 00:00 0 +a8027000-a8043000 r-xp 00000000 03:00 8317 /lib/ld-linux.so.2 +a8043000-a8044000 r--p 0001b000 03:00 8317 /lib/ld-linux.so.2 +a8044000-a8045000 rw-p 0001c000 03:00 8317 /lib/ld-linux.so.2 +aff35000-aff4a000 rw-p 00000000 00:00 0 [stack] +ffffe000-fffff000 r-xp 00000000 00:00 0 [vdso] + +where "address" is the address space in the process that it occupies, "perms" +is a set of permissions: + + r = read + w = write + x = execute + s = shared + p = private (copy on write) + +"offset" is the offset into the mapping, "dev" is the device (major:minor), and +"inode" is the inode on that device. 0 indicates that no inode is associated +with the memory region, as the case would be with BSS (uninitialized data). +The "pathname" shows the name associated file for this mapping. If the mapping +is not associated with a file: + + [heap] = the heap of the program + [stack] = the stack of the main process + [vdso] = the "virtual dynamic shared object", + the kernel system call handler + + or if empty, the mapping is anonymous. + + +The /proc/PID/smaps is an extension based on maps, showing the memory +consumption for each of the process's mappings. For each of mappings there +is a series of lines such as the following: + +08048000-080bc000 r-xp 00000000 03:02 13130 /bin/bash +Size: 1084 kB +Rss: 892 kB +Pss: 374 kB +Shared_Clean: 892 kB +Shared_Dirty: 0 kB +Private_Clean: 0 kB +Private_Dirty: 0 kB +Referenced: 892 kB +Swap: 0 kB +KernelPageSize: 4 kB +MMUPageSize: 4 kB + +The first of these lines shows the same information as is displayed for the +mapping in /proc/PID/maps. The remaining lines show the size of the mapping, +the amount of the mapping that is currently resident in RAM, the "proportional +set size” (divide each shared page by the number of processes sharing it), the +number of clean and dirty shared pages in the mapping, and the number of clean +and dirty private pages in the mapping. The "Referenced" indicates the amount +of memory currently marked as referenced or accessed. + +This file is only present if the CONFIG_MMU kernel configuration option is +enabled. 1.2 Kernel data --------------- Similar to the process entries, the kernel data files give information about the running kernel. The files used to obtain this information are contained in -/proc and are listed in Table 1-4. Not all of these will be present in your +/proc and are listed in Table 1-5. Not all of these will be present in your system. It depends on the kernel configuration and the loaded modules, which files are there, and which are missing. -Table 1-4: Kernel info in /proc +Table 1-5: Kernel info in /proc .............................................................................. File Content apm Advanced power management info @@ -634,10 +772,10 @@ IDE devices: More detailed information can be found in the controller specific subdirectories. These are named ide0, ide1 and so on. Each of these -directories contains the files shown in table 1-5. +directories contains the files shown in table 1-6. -Table 1-5: IDE controller info in /proc/ide/ide? +Table 1-6: IDE controller info in /proc/ide/ide? .............................................................................. File Content channel IDE channel (0 or 1) @@ -647,11 +785,11 @@ Table 1-5: IDE controller info in /proc/ide/ide? .............................................................................. Each device connected to a controller has a separate subdirectory in the -controllers directory. The files listed in table 1-6 are contained in these +controllers directory. The files listed in table 1-7 are contained in these directories. -Table 1-6: IDE device information +Table 1-7: IDE device information .............................................................................. File Content cache The cache @@ -693,12 +831,12 @@ the drive parameters: 1.4 Networking info in /proc/net -------------------------------- -The subdirectory /proc/net follows the usual pattern. Table 1-6 shows the +The subdirectory /proc/net follows the usual pattern. Table 1-8 shows the additional values you get for IP version 6 if you configure the kernel to -support this. Table 1-7 lists the files and their meaning. +support this. Table 1-9 lists the files and their meaning. -Table 1-6: IPv6 info in /proc/net +Table 1-8: IPv6 info in /proc/net .............................................................................. File Content udp6 UDP sockets (IPv6) @@ -713,7 +851,7 @@ Table 1-6: IPv6 info in /proc/net .............................................................................. -Table 1-7: Network info in /proc/net +Table 1-9: Network info in /proc/net .............................................................................. File Content arp Kernel ARP table @@ -837,10 +975,10 @@ The directory /proc/parport contains information about the parallel ports of your system. It has one subdirectory for each port, named after the port number (0,1,2,...). -These directories contain the four files shown in Table 1-8. +These directories contain the four files shown in Table 1-10. -Table 1-8: Files in /proc/parport +Table 1-10: Files in /proc/parport .............................................................................. File Content autoprobe Any IEEE-1284 device ID information that has been acquired. @@ -858,10 +996,10 @@ Table 1-8: Files in /proc/parport Information about the available and actually used tty's can be found in the directory /proc/tty.You'll find entries for drivers and line disciplines in -this directory, as shown in Table 1-9. +this directory, as shown in Table 1-11. -Table 1-9: Files in /proc/tty +Table 1-11: Files in /proc/tty .............................................................................. File Content drivers list of drivers and their usage @@ -952,9 +1090,9 @@ Information about mounted ext4 file systems can be found in /proc/fs/ext4. Each mounted filesystem will have a directory in /proc/fs/ext4 based on its device name (i.e., /proc/fs/ext4/hdc or /proc/fs/ext4/dm-0). The files in each per-device directory are shown -in Table 1-10, below. +in Table 1-12, below. -Table 1-10: Files in /proc/fs/ext4/<devname> +Table 1-12: Files in /proc/fs/ext4/<devname> .............................................................................. File Content mb_groups details of multiblock allocator buddy cache of free blocks |