diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2015-04-14 13:36:04 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2015-04-14 13:36:04 -0700 |
commit | 078838d56574694d0a4815d9c1b7f28e8844638b (patch) | |
tree | 0d8c72d9dc46b0d2e72073fb928ec08e14b02b76 /Documentation/atomic_ops.txt | |
parent | eeee78cf77df0450ca285a7cd6d73842181e825c (diff) | |
parent | 590ee7dbd569a012df705a5204fc5f1066f52b8c (diff) | |
download | lwn-078838d56574694d0a4815d9c1b7f28e8844638b.tar.gz lwn-078838d56574694d0a4815d9c1b7f28e8844638b.zip |
Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RCU changes from Ingo Molnar:
"The main changes in this cycle were:
- changes permitting use of call_rcu() and friends very early in
boot, for example, before rcu_init() is invoked.
- add in-kernel API to enable and disable expediting of normal RCU
grace periods.
- improve RCU's handling of (hotplug-) outgoing CPUs.
- NO_HZ_FULL_SYSIDLE fixes.
- tiny-RCU updates to make it more tiny.
- documentation updates.
- miscellaneous fixes"
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (58 commits)
cpu: Provide smpboot_thread_init() on !CONFIG_SMP kernels as well
cpu: Defer smpboot kthread unparking until CPU known to scheduler
rcu: Associate quiescent-state reports with grace period
rcu: Yet another fix for preemption and CPU hotplug
rcu: Add diagnostics to grace-period cleanup
rcutorture: Default to grace-period-initialization delays
rcu: Handle outgoing CPUs on exit from idle loop
cpu: Make CPU-offline idle-loop transition point more precise
rcu: Eliminate ->onoff_mutex from rcu_node structure
rcu: Process offlining and onlining only at grace-period start
rcu: Move rcu_report_unblock_qs_rnp() to common code
rcu: Rework preemptible expedited bitmask handling
rcu: Remove event tracing from rcu_cpu_notify(), used by offline CPUs
rcutorture: Enable slow grace-period initializations
rcu: Provide diagnostic option to slow down grace-period initialization
rcu: Detect stalls caused by failure to propagate up rcu_node tree
rcu: Eliminate empty HOTPLUG_CPU ifdef
rcu: Simplify sync_rcu_preempt_exp_init()
rcu: Put all orphan-callback-related code under same comment
rcu: Consolidate offline-CPU callback initialization
...
Diffstat (limited to 'Documentation/atomic_ops.txt')
-rw-r--r-- | Documentation/atomic_ops.txt | 45 |
1 files changed, 23 insertions, 22 deletions
diff --git a/Documentation/atomic_ops.txt b/Documentation/atomic_ops.txt index 183e41bdcb69..dab6da3382d9 100644 --- a/Documentation/atomic_ops.txt +++ b/Documentation/atomic_ops.txt @@ -201,11 +201,11 @@ These routines add 1 and subtract 1, respectively, from the given atomic_t and return the new counter value after the operation is performed. -Unlike the above routines, it is required that explicit memory -barriers are performed before and after the operation. It must be -done such that all memory operations before and after the atomic -operation calls are strongly ordered with respect to the atomic -operation itself. +Unlike the above routines, it is required that these primitives +include explicit memory barriers that are performed before and after +the operation. It must be done such that all memory operations before +and after the atomic operation calls are strongly ordered with respect +to the atomic operation itself. For example, it should behave as if a smp_mb() call existed both before and after the atomic operation. @@ -233,21 +233,21 @@ These two routines increment and decrement by 1, respectively, the given atomic counter. They return a boolean indicating whether the resulting counter value was zero or not. -It requires explicit memory barrier semantics around the operation as -above. +Again, these primitives provide explicit memory barrier semantics around +the atomic operation. int atomic_sub_and_test(int i, atomic_t *v); This is identical to atomic_dec_and_test() except that an explicit -decrement is given instead of the implicit "1". It requires explicit -memory barrier semantics around the operation. +decrement is given instead of the implicit "1". This primitive must +provide explicit memory barrier semantics around the operation. int atomic_add_negative(int i, atomic_t *v); -The given increment is added to the given atomic counter value. A -boolean is return which indicates whether the resulting counter value -is negative. It requires explicit memory barrier semantics around the -operation. +The given increment is added to the given atomic counter value. A boolean +is return which indicates whether the resulting counter value is negative. +This primitive must provide explicit memory barrier semantics around +the operation. Then: @@ -257,7 +257,7 @@ This performs an atomic exchange operation on the atomic variable v, setting the given new value. It returns the old value that the atomic variable v had just before the operation. -atomic_xchg requires explicit memory barriers around the operation. +atomic_xchg must provide explicit memory barriers around the operation. int atomic_cmpxchg(atomic_t *v, int old, int new); @@ -266,7 +266,7 @@ with the given old and new values. Like all atomic_xxx operations, atomic_cmpxchg will only satisfy its atomicity semantics as long as all other accesses of *v are performed through atomic_xxx operations. -atomic_cmpxchg requires explicit memory barriers around the operation. +atomic_cmpxchg must provide explicit memory barriers around the operation. The semantics for atomic_cmpxchg are the same as those defined for 'cas' below. @@ -279,8 +279,8 @@ If the atomic value v is not equal to u, this function adds a to v, and returns non zero. If v is equal to u then it returns zero. This is done as an atomic operation. -atomic_add_unless requires explicit memory barriers around the operation -unless it fails (returns 0). +atomic_add_unless must provide explicit memory barriers around the +operation unless it fails (returns 0). atomic_inc_not_zero, equivalent to atomic_add_unless(v, 1, 0) @@ -460,9 +460,9 @@ the return value into an int. There are other places where things like this occur as well. These routines, like the atomic_t counter operations returning values, -require explicit memory barrier semantics around their execution. All -memory operations before the atomic bit operation call must be made -visible globally before the atomic bit operation is made visible. +must provide explicit memory barrier semantics around their execution. +All memory operations before the atomic bit operation call must be +made visible globally before the atomic bit operation is made visible. Likewise, the atomic bit operation must be visible globally before any subsequent memory operation is made visible. For example: @@ -536,8 +536,9 @@ except that two underscores are prefixed to the interface name. These non-atomic variants also do not require any special memory barrier semantics. -The routines xchg() and cmpxchg() need the same exact memory barriers -as the atomic and bit operations returning values. +The routines xchg() and cmpxchg() must provide the same exact +memory-barrier semantics as the atomic and bit operations returning +values. Spinlocks and rwlocks have memory barrier expectations as well. The rule to follow is simple: |