diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2017-12-15 11:44:59 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2017-12-15 11:44:59 -0800 |
commit | 1f76a75561a006fc03559f665c835e0e69c9014d (patch) | |
tree | 013179ea7e602ee4a0666142d91e8ad45b505c10 | |
parent | a58653cc1e8b329fe786d103dcd3048115b65a55 (diff) | |
parent | 92ccc262e485781ff4c0fb3b7c77a619282df49a (diff) | |
download | lwn-1f76a75561a006fc03559f665c835e0e69c9014d.tar.gz lwn-1f76a75561a006fc03559f665c835e0e69c9014d.zip |
Merge branch 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking fixes from Ingo Molnar:
"Misc fixes:
- Fix a S390 boot hang that was caused by the lock-break logic.
Remove lock-break to begin with, as review suggested it was
unreasonably fragile and our confidence in its continued good
health is lower than our confidence in its removal.
- Remove the lockdep cross-release checking code for now, because of
unresolved false positive warnings. This should make lockdep work
well everywhere again.
- Get rid of the final (and single) ACCESS_ONCE() straggler and
remove the API from v4.15.
- Fix a liblockdep build warning"
* 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
tools/lib/lockdep: Add missing declaration of 'pr_cont()'
checkpatch: Remove ACCESS_ONCE() warning
compiler.h: Remove ACCESS_ONCE()
tools/include: Remove ACCESS_ONCE()
tools/perf: Convert ACCESS_ONCE() to READ_ONCE()
locking/lockdep: Remove the cross-release locking checks
locking/core: Remove break_lock field when CONFIG_GENERIC_LOCKBREAK=y
locking/core: Fix deadlock during boot on systems with GENERIC_LOCKBREAK
-rw-r--r-- | Documentation/locking/crossrelease.txt | 874 | ||||
-rw-r--r-- | include/linux/compiler.h | 47 | ||||
-rw-r--r-- | include/linux/completion.h | 45 | ||||
-rw-r--r-- | include/linux/lockdep.h | 125 | ||||
-rw-r--r-- | include/linux/rwlock_types.h | 3 | ||||
-rw-r--r-- | include/linux/sched.h | 11 | ||||
-rw-r--r-- | include/linux/spinlock.h | 5 | ||||
-rw-r--r-- | include/linux/spinlock_types.h | 3 | ||||
-rw-r--r-- | kernel/locking/lockdep.c | 652 | ||||
-rw-r--r-- | kernel/locking/spinlock.c | 13 | ||||
-rw-r--r-- | lib/Kconfig.debug | 33 | ||||
-rwxr-xr-x | scripts/checkpatch.pl | 22 | ||||
-rw-r--r-- | tools/include/linux/compiler.h | 21 | ||||
-rw-r--r-- | tools/include/linux/lockdep.h | 1 | ||||
-rw-r--r-- | tools/perf/util/mmap.h | 2 |
15 files changed, 60 insertions, 1797 deletions
diff --git a/Documentation/locking/crossrelease.txt b/Documentation/locking/crossrelease.txt deleted file mode 100644 index bdf1423d5f99..000000000000 --- a/Documentation/locking/crossrelease.txt +++ /dev/null @@ -1,874 +0,0 @@ -Crossrelease -============ - -Started by Byungchul Park <byungchul.park@lge.com> - -Contents: - - (*) Background - - - What causes deadlock - - How lockdep works - - (*) Limitation - - - Limit lockdep - - Pros from the limitation - - Cons from the limitation - - Relax the limitation - - (*) Crossrelease - - - Introduce crossrelease - - Introduce commit - - (*) Implementation - - - Data structures - - How crossrelease works - - (*) Optimizations - - - Avoid duplication - - Lockless for hot paths - - (*) APPENDIX A: What lockdep does to work aggresively - - (*) APPENDIX B: How to avoid adding false dependencies - - -========== -Background -========== - -What causes deadlock --------------------- - -A deadlock occurs when a context is waiting for an event to happen, -which is impossible because another (or the) context who can trigger the -event is also waiting for another (or the) event to happen, which is -also impossible due to the same reason. - -For example: - - A context going to trigger event C is waiting for event A to happen. - A context going to trigger event A is waiting for event B to happen. - A context going to trigger event B is waiting for event C to happen. - -A deadlock occurs when these three wait operations run at the same time, -because event C cannot be triggered if event A does not happen, which in -turn cannot be triggered if event B does not happen, which in turn -cannot be triggered if event C does not happen. After all, no event can -be triggered since any of them never meets its condition to wake up. - -A dependency might exist between two waiters and a deadlock might happen -due to an incorrect releationship between dependencies. Thus, we must -define what a dependency is first. A dependency exists between them if: - - 1. There are two waiters waiting for each event at a given time. - 2. The only way to wake up each waiter is to trigger its event. - 3. Whether one can be woken up depends on whether the other can. - -Each wait in the example creates its dependency like: - - Event C depends on event A. - Event A depends on event B. - Event B depends on event C. - - NOTE: Precisely speaking, a dependency is one between whether a - waiter for an event can be woken up and whether another waiter for - another event can be woken up. However from now on, we will describe - a dependency as if it's one between an event and another event for - simplicity. - -And they form circular dependencies like: - - -> C -> A -> B - - / \ - \ / - ---------------- - - where 'A -> B' means that event A depends on event B. - -Such circular dependencies lead to a deadlock since no waiter can meet -its condition to wake up as described. - -CONCLUSION - -Circular dependencies cause a deadlock. - - -How lockdep works ------------------ - -Lockdep tries to detect a deadlock by checking dependencies created by -lock operations, acquire and release. Waiting for a lock corresponds to -waiting for an event, and releasing a lock corresponds to triggering an -event in the previous section. - -In short, lockdep does: - - 1. Detect a new dependency. - 2. Add the dependency into a global graph. - 3. Check if that makes dependencies circular. - 4. Report a deadlock or its possibility if so. - -For example, consider a graph built by lockdep that looks like: - - A -> B - - \ - -> E - / - C -> D - - - where A, B,..., E are different lock classes. - -Lockdep will add a dependency into the graph on detection of a new -dependency. For example, it will add a dependency 'E -> C' when a new -dependency between lock E and lock C is detected. Then the graph will be: - - A -> B - - \ - -> E - - / \ - -> C -> D - \ - / / - \ / - ------------------ - - where A, B,..., E are different lock classes. - -This graph contains a subgraph which demonstrates circular dependencies: - - -> E - - / \ - -> C -> D - \ - / / - \ / - ------------------ - - where C, D and E are different lock classes. - -This is the condition under which a deadlock might occur. Lockdep -reports it on detection after adding a new dependency. This is the way -how lockdep works. - -CONCLUSION - -Lockdep detects a deadlock or its possibility by checking if circular -dependencies were created after adding each new dependency. - - -========== -Limitation -========== - -Limit lockdep -------------- - -Limiting lockdep to work on only typical locks e.g. spin locks and -mutexes, which are released within the acquire context, the -implementation becomes simple but its capacity for detection becomes -limited. Let's check pros and cons in next section. - - -Pros from the limitation ------------------------- - -Given the limitation, when acquiring a lock, locks in a held_locks -cannot be released if the context cannot acquire it so has to wait to -acquire it, which means all waiters for the locks in the held_locks are -stuck. It's an exact case to create dependencies between each lock in -the held_locks and the lock to acquire. - -For example: - - CONTEXT X - --------- - acquire A - acquire B /* Add a dependency 'A -> B' */ - release B - release A - - where A and B are different lock classes. - -When acquiring lock A, the held_locks of CONTEXT X is empty thus no -dependency is added. But when acquiring lock B, lockdep detects and adds -a new dependency 'A -> B' between lock A in the held_locks and lock B. -They can be simply added whenever acquiring each lock. - -And data required by lockdep exists in a local structure, held_locks -embedded in task_struct. Forcing to access the data within the context, -lockdep can avoid racy problems without explicit locks while handling -the local data. - -Lastly, lockdep only needs to keep locks currently being held, to build -a dependency graph. However, relaxing the limitation, it needs to keep -even locks already released, because a decision whether they created -dependencies might be long-deferred. - -To sum up, we can expect several advantages from the limitation: - - 1. Lockdep can easily identify a dependency when acquiring a lock. - 2. Races are avoidable while accessing local locks in a held_locks. - 3. Lockdep only needs to keep locks currently being held. - -CONCLUSION - -Given the limitation, the implementation becomes simple and efficient. - - -Cons from the limitation ------------------------- - -Given the limitation, lockdep is applicable only to typical locks. For -example, page locks for page access or completions for synchronization -cannot work with lockdep. - -Can we detect deadlocks below, under the limitation? - -Example 1: - - CONTEXT X CONTEXT Y CONTEXT Z - --------- --------- ---------- - mutex_lock A - lock_page B - lock_page B - mutex_lock A /* DEADLOCK */ - unlock_page B held by X - unlock_page B - mutex_unlock A - mutex_unlock A - - where A and B are different lock classes. - -No, we cannot. - -Example 2: - - CONTEXT X CONTEXT Y - --------- --------- - mutex_lock A - mutex_lock A - wait_for_complete B /* DEADLOCK */ - complete B - mutex_unlock A - mutex_unlock A - - where A is a lock class and B is a completion variable. - -No, we cannot. - -CONCLUSION - -Given the limitation, lockdep cannot detect a deadlock or its -possibility caused by page locks or completions. - - -Relax the limitation --------------------- - -Under the limitation, things to create dependencies are limited to -typical locks. However, synchronization primitives like page locks and -completions, which are allowed to be released in any context, also -create dependencies and can cause a deadlock. So lockdep should track -these locks to do a better job. We have to relax the limitation for -these locks to work with lockdep. - -Detecting dependencies is very important for lockdep to work because -adding a dependency means adding an opportunity to check whether it -causes a deadlock. The more lockdep adds dependencies, the more it -thoroughly works. Thus Lockdep has to do its best to detect and add as -many true dependencies into a graph as possible. - -For example, considering only typical locks, lockdep builds a graph like: - - A -> B - - \ - -> E - / - C -> D - - - where A, B,..., E are different lock classes. - -On the other hand, under the relaxation, additional dependencies might -be created and added. Assuming additional 'FX -> C' and 'E -> GX' are -added thanks to the relaxation, the graph will be: - - A -> B - - \ - -> E -> GX - / - FX -> C -> D - - - where A, B,..., E, FX and GX are different lock classes, and a suffix - 'X' is added on non-typical locks. - -The latter graph gives us more chances to check circular dependencies -than the former. However, it might suffer performance degradation since -relaxing the limitation, with which design and implementation of lockdep -can be efficient, might introduce inefficiency inevitably. So lockdep -should provide two options, strong detection and efficient detection. - -Choosing efficient detection: - - Lockdep works with only locks restricted to be released within the - acquire context. However, lockdep works efficiently. - -Choosing strong detection: - - Lockdep works with all synchronization primitives. However, lockdep - suffers performance degradation. - -CONCLUSION - -Relaxing the limitation, lockdep can add additional dependencies giving -additional opportunities to check circular dependencies. - - -============ -Crossrelease -============ - -Introduce crossrelease ----------------------- - -In order to allow lockdep to handle additional dependencies by what -might be released in any context, namely 'crosslock', we have to be able -to identify those created by crosslocks. The proposed 'crossrelease' -feature provoides a way to do that. - -Crossrelease feature has to do: - - 1. Identify dependencies created by crosslocks. - 2. Add the dependencies into a dependency graph. - -That's all. Once a meaningful dependency is added into graph, then -lockdep would work with the graph as it did. The most important thing -crossrelease feature has to do is to correctly identify and add true -dependencies into the global graph. - -A dependency e.g. 'A -> B' can be identified only in the A's release -context because a decision required to identify the dependency can be -made only in the release context. That is to decide whether A can be -released so that a waiter for A can be woken up. It cannot be made in -other than the A's release context. - -It's no matter for typical locks because each acquire context is same as -its release context, thus lockdep can decide whether a lock can be -released in the acquire context. However for crosslocks, lockdep cannot -make the decision in the acquire context but has to wait until the -release context is identified. - -Therefore, deadlocks by crosslocks cannot be detected just when it -happens, because those cannot be identified until the crosslocks are -released. However, deadlock possibilities can be detected and it's very -worth. See 'APPENDIX A' section to check why. - -CONCLUSION - -Using crossrelease feature, lockdep can work with what might be released -in any context, namely crosslock. - - -Introduce commit ----------------- - -Since crossrelease defers the work adding true dependencies of -crosslocks until they are actually released, crossrelease has to queue -all acquisitions which might create dependencies with the crosslocks. -Then it identifies dependencies using the queued data in batches at a -proper time. We call it 'commit'. - -There are four types of dependencies: - -1. TT type: 'typical lock A -> typical lock B' - - Just when acquiring B, lockdep can see it's in the A's release - context. So the dependency between A and B can be identified - immediately. Commit is unnecessary. - -2. TC type: 'typical lock A -> crosslock BX' - - Just when acquiring BX, lockdep can see it's in the A's release - context. So the dependency between A and BX can be identified - immediately. Commit is unnecessary, too. - -3. CT type: 'crosslock AX -> typical lock B' - - When acquiring B, lockdep cannot identify the dependency because - there's no way to know if it's in the AX's release context. It has - to wait until the decision can be made. Commit is necessary. - -4. CC type: 'crosslock AX -> crosslock BX' - - When acquiring BX, lockdep cannot identify the dependency because - there's no way to know if it's in the AX's release context. It has - to wait until the decision can be made. Commit is necessary. - But, handling CC type is not implemented yet. It's a future work. - -Lockdep can work without commit for typical locks, but commit step is -necessary once crosslocks are involved. Introducing commit, lockdep -performs three steps. What lockdep does in each step is: - -1. Acquisition: For typical locks, lockdep does what it originally did - and queues the lock so that CT type dependencies can be checked using - it at the commit step. For crosslocks, it saves data which will be - used at the commit step and increases a reference count for it. - -2. Commit: No action is reauired for typical locks. For crosslocks, - lockdep adds CT type dependencies using the data saved at the - acquisition step. - -3. Release: No changes are required for typical locks. When a crosslock - is released, it decreases a reference count for it. - -CONCLUSION - -Crossrelease introduces commit step to handle dependencies of crosslocks -in batches at a proper time. - - -============== -Implementation -============== - -Data structures ---------------- - -Crossrelease introduces two main data structures. - -1. hist_lock - - This is an array embedded in task_struct, for keeping lock history so - that dependencies can be added using them at the commit step. Since - it's local data, it can be accessed locklessly in the owner context. - The array is filled at the acquisition step and consumed at the - commit step. And it's managed in circular manner. - -2. cross_lock - - One per lockdep_map exists. This is for keeping data of crosslocks - and used at the commit step. - - -How crossrelease works ----------------------- - -It's the key of how crossrelease works, to defer necessary works to an -appropriate point in time and perform in at once at the commit step. -Let's take a look with examples step by step, starting from how lockdep -works without crossrelease for typical locks. - - acquire A /* Push A onto held_locks */ - acquire B /* Push B onto held_locks and add 'A -> B' */ - acquire C /* Push C onto held_locks and add 'B -> C' */ - release C /* Pop C from held_locks */ - release B /* Pop B from held_locks */ - release A /* Pop A from held_locks */ - - where A, B and C are different lock classes. - - NOTE: This document assumes that readers already understand how - lockdep works without crossrelease thus omits details. But there's - one thing to note. Lockdep pretends to pop a lock from held_locks - when releasing it. But it's subtly different from the original pop - operation because lockdep allows other than the top to be poped. - -In this case, lockdep adds 'the top of held_locks -> the lock to acquire' -dependency every time acquiring a lock. - -After adding 'A -> B', a dependency graph will be: - - A -> B - - where A and B are different lock classes. - -And after adding 'B -> C', the graph will be: - - A -> B -> C - - where A, B and C are different lock classes. - -Let's performs commit step even for typical locks to add dependencies. -Of course, commit step is not necessary for them, however, it would work -well because this is a more general way. - - acquire A - /* - * Queue A into hist_locks - * - * In hist_locks: A - * In graph: Empty - */ - - acquire B - /* - * Queue B into hist_locks - * - * In hist_locks: A, B - * In graph: Empty - */ - - acquire C - /* - * Queue C into hist_locks - * - * In hist_locks: A, B, C - * In graph: Empty - */ - - commit C - /* - * Add 'C -> ?' - * Answer the following to decide '?' - * What has been queued since acquire C: Nothing - * - * In hist_locks: A, B, C - * In graph: Empty - */ - - release C - - commit B - /* - * Add 'B -> ?' - * Answer the following to decide '?' - * What has been queued since acquire B: C - * - * In hist_locks: A, B, C - * In graph: 'B -> C' - */ - - release B - - commit A - /* - * Add 'A -> ?' - * Answer the following to decide '?' - * What has been queued since acquire A: B, C - * - * In hist_locks: A, B, C - * In graph: 'B -> C', 'A -> B', 'A -> C' - */ - - release A - - where A, B and C are different lock classes. - -In this case, dependencies are added at the commit step as described. - -After commits for A, B and C, the graph will be: - - A -> B -> C - - where A, B and C are different lock classes. - - NOTE: A dependency 'A -> C' is optimized out. - -We can see the former graph built without commit step is same as the -latter graph built using commit steps. Of course the former way leads to -earlier finish for building the graph, which means we can detect a -deadlock or its possibility sooner. So the former way would be prefered -when possible. But we cannot avoid using the latter way for crosslocks. - -Let's look at how commit steps work for crosslocks. In this case, the -commit step is performed only on crosslock AX as real. And it assumes -that the AX release context is different from the AX acquire context. - - BX RELEASE CONTEXT BX ACQUIRE CONTEXT - ------------------ ------------------ - acquire A - /* - * Push A onto held_locks - * Queue A into hist_locks - * - * In held_locks: A - * In hist_locks: A - * In graph: Empty - */ - - acquire BX - /* - * Add 'the top of held_locks -> BX' - * - * In held_locks: A - * In hist_locks: A - * In graph: 'A -> BX' - */ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - It must be guaranteed that the following operations are seen after - acquiring BX globally. It can be done by things like barrier. - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - acquire C - /* - * Push C onto held_locks - * Queue C into hist_locks - * - * In held_locks: C - * In hist_locks: C - * In graph: 'A -> BX' - */ - - release C - /* - * Pop C from held_locks - * - * In held_locks: Empty - * In hist_locks: C - * In graph: 'A -> BX' - */ - acquire D - /* - * Push D onto held_locks - * Queue D into hist_locks - * Add 'the top of held_locks -> D' - * - * In held_locks: A, D - * In hist_locks: A, D - * In graph: 'A -> BX', 'A -> D' - */ - acquire E - /* - * Push E onto held_locks - * Queue E into hist_locks - * - * In held_locks: E - * In hist_locks: C, E - * In graph: 'A -> BX', 'A -> D' - */ - - release E - /* - * Pop E from held_locks - * - * In held_locks: Empty - * In hist_locks: D, E - * In graph: 'A -> BX', 'A -> D' - */ - release D - /* - * Pop D from held_locks - * - * In held_locks: A - * In hist_locks: A, D - * In graph: 'A -> BX', 'A -> D' - */ - commit BX - /* - * Add 'BX -> ?' - * What has been queued since acquire BX: C, E - * - * In held_locks: Empty - * In hist_locks: D, E - * In graph: 'A -> BX', 'A -> D', - * 'BX -> C', 'BX -> E' - */ - - release BX - /* - * In held_locks: Empty - * In hist_locks: D, E - * In graph: 'A -> BX', 'A -> D', - * 'BX -> C', 'BX -> E' - */ - release A - /* - * Pop A from held_locks - * - * In held_locks: Empty - * In hist_locks: A, D - * In graph: 'A -> BX', 'A -> D', - * 'BX -> C', 'BX -> E' - */ - - where A, BX, C,..., E are different lock classes, and a suffix 'X' is - added on crosslocks. - -Crossrelease considers all acquisitions after acqiuring BX are -candidates which might create dependencies with BX. True dependencies -will be determined when identifying the release context of BX. Meanwhile, -all typical locks are queued so that they can be used at the commit step. -And then two dependencies 'BX -> C' and 'BX -> E' are added at the -commit step when identifying the release context. - -The final graph will be, with crossrelease: - - -> C - / - -> BX - - / \ - A - -> E - \ - -> D - - where A, BX, C,..., E are different lock classes, and a suffix 'X' is - added on crosslocks. - -However, the final graph will be, without crossrelease: - - A -> D - - where A and D are different lock classes. - -The former graph has three more dependencies, 'A -> BX', 'BX -> C' and -'BX -> E' giving additional opportunities to check if they cause -deadlocks. This way lockdep can detect a deadlock or its possibility -caused by crosslocks. - -CONCLUSION - -We checked how crossrelease works with several examples. - - -============= -Optimizations -============= - -Avoid duplication ------------------ - -Crossrelease feature uses a cache like what lockdep already uses for -dependency chains, but this time it's for caching CT type dependencies. -Once that dependency is cached, the same will never be added again. - - -Lockless for hot paths ----------------------- - -To keep all locks for later use at the commit step, crossrelease adopts -a local array embedded in task_struct, which makes access to the data -lockless by forcing it to happen only within the owner context. It's -like how lockdep handles held_locks. Lockless implmentation is important -since typical locks are very frequently acquired and released. - - -================================================= -APPENDIX A: What lockdep does to work aggresively -================================================= - -A deadlock actually occurs when all wait operations creating circular -dependencies run at the same time. Even though they don't, a potential -deadlock exists if the problematic dependencies exist. Thus it's -meaningful to detect not only an actual deadlock but also its potential -possibility. The latter is rather valuable. When a deadlock occurs -actually, we can identify what happens in the system by some means or -other even without lockdep. However, there's no way to detect possiblity -without lockdep unless the whole code is parsed in head. It's terrible. -Lockdep does the both, and crossrelease only focuses on the latter. - -Whether or not a deadlock actually occurs depends on several factors. -For example, what order contexts are switched in is a factor. Assuming -circular dependencies exist, a deadlock would occur when contexts are -switched so that all wait operations creating the dependencies run -simultaneously. Thus to detect a deadlock possibility even in the case -that it has not occured yet, lockdep should consider all possible -combinations of dependencies, trying to: - -1. Use a global dependency graph. - - Lockdep combines all dependencies into one global graph and uses them, - regardless of which context generates them or what order contexts are - switched in. Aggregated dependencies are only considered so they are - prone to be circular if a problem exists. - -2. Check dependencies between classes instead of instances. - - What actually causes a deadlock are instances of lock. However, - lockdep checks dependencies between classes instead of instances. - This way lockdep can detect a deadlock which has not happened but - might happen in future by others but the same class. - -3. Assume all acquisitions lead to waiting. - - Although locks might be acquired without waiting which is essential - to create dependencies, lockdep assumes all acquisitions lead to - waiting since it might be true some time or another. - -CONCLUSION - -Lockdep detects not only an actual deadlock but also its possibility, -and the latter is more valuable. - - -================================================== -APPENDIX B: How to avoid adding false dependencies -================================================== - -Remind what a dependency is. A dependency exists if: - - 1. There are two waiters waiting for each event at a given time. - 2. The only way to wake up each waiter is to trigger its event. - 3. Whether one can be woken up depends on whether the other can. - -For example: - - acquire A - acquire B /* A dependency 'A -> B' exists */ - release B - release A - - where A and B are different lock classes. - -A depedency 'A -> B' exists since: - - 1. A waiter for A and a waiter for B might exist when acquiring B. - 2. Only way to wake up each is to release what it waits for. - 3. Whether the waiter for A can be woken up depends on whether the - other can. IOW, TASK X cannot release A if it fails to acquire B. - -For another example: - - TASK X TASK Y - ------ ------ - acquire AX - acquire B /* A dependency 'AX -> B' exists */ - release B - release AX held by Y - - where AX and B are different lock classes, and a suffix 'X' is added - on crosslocks. - -Even in this case involving crosslocks, the same rule can be applied. A -depedency 'AX -> B' exists since: - - 1. A waiter for AX and a waiter for B might exist when acquiring B. - 2. Only way to wake up each is to release what it waits for. - 3. Whether the waiter for AX can be woken up depends on whether the - other can. IOW, TASK X cannot release AX if it fails to acquire B. - -Let's take a look at more complicated example: - - TASK X TASK Y - ------ ------ - acquire B - release B - fork Y - acquire AX - acquire C /* A dependency 'AX -> C' exists */ - release C - release AX held by Y - - where AX, B and C are different lock classes, and a suffix 'X' is - added on crosslocks. - -Does a dependency 'AX -> B' exist? Nope. - -Two waiters are essential to create a dependency. However, waiters for -AX and B to create 'AX -> B' cannot exist at the same time in this -example. Thus the dependency 'AX -> B' cannot be created. - -It would be ideal if the full set of true ones can be considered. But -we can ensure nothing but what actually happened. Relying on what -actually happens at runtime, we can anyway add only true ones, though -they might be a subset of true ones. It's similar to how lockdep works -for typical locks. There might be more true dependencies than what -lockdep has detected in runtime. Lockdep has no choice but to rely on -what actually happens. Crossrelease also relies on it. - -CONCLUSION - -Relying on what actually happens, lockdep can avoid adding false -dependencies. diff --git a/include/linux/compiler.h b/include/linux/compiler.h index 188ed9f65517..52e611ab9a6c 100644 --- a/include/linux/compiler.h +++ b/include/linux/compiler.h @@ -220,21 +220,21 @@ static __always_inline void __write_once_size(volatile void *p, void *res, int s /* * Prevent the compiler from merging or refetching reads or writes. The * compiler is also forbidden from reordering successive instances of - * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the - * compiler is aware of some particular ordering. One way to make the - * compiler aware of ordering is to put the two invocations of READ_ONCE, - * WRITE_ONCE or ACCESS_ONCE() in different C statements. + * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some + * particular ordering. One way to make the compiler aware of ordering is to + * put the two invocations of READ_ONCE or WRITE_ONCE in different C + * statements. * - * In contrast to ACCESS_ONCE these two macros will also work on aggregate - * data types like structs or unions. If the size of the accessed data - * type exceeds the word size of the machine (e.g., 32 bits or 64 bits) - * READ_ONCE() and WRITE_ONCE() will fall back to memcpy(). There's at - * least two memcpy()s: one for the __builtin_memcpy() and then one for - * the macro doing the copy of variable - '__u' allocated on the stack. + * These two macros will also work on aggregate data types like structs or + * unions. If the size of the accessed data type exceeds the word size of + * the machine (e.g., 32 bits or 64 bits) READ_ONCE() and WRITE_ONCE() will + * fall back to memcpy(). There's at least two memcpy()s: one for the + * __builtin_memcpy() and then one for the macro doing the copy of variable + * - '__u' allocated on the stack. * * Their two major use cases are: (1) Mediating communication between * process-level code and irq/NMI handlers, all running on the same CPU, - * and (2) Ensuring that the compiler does not fold, spindle, or otherwise + * and (2) Ensuring that the compiler does not fold, spindle, or otherwise * mutilate accesses that either do not require ordering or that interact * with an explicit memory barrier or atomic instruction that provides the * required ordering. @@ -327,29 +327,4 @@ static __always_inline void __write_once_size(volatile void *p, void *res, int s compiletime_assert(__native_word(t), \ "Need native word sized stores/loads for atomicity.") -/* - * Prevent the compiler from merging or refetching accesses. The compiler - * is also forbidden from reordering successive instances of ACCESS_ONCE(), - * but only when the compiler is aware of some particular ordering. One way - * to make the compiler aware of ordering is to put the two invocations of - * ACCESS_ONCE() in different C statements. - * - * ACCESS_ONCE will only work on scalar types. For union types, ACCESS_ONCE - * on a union member will work as long as the size of the member matches the - * size of the union and the size is smaller than word size. - * - * The major use cases of ACCESS_ONCE used to be (1) Mediating communication - * between process-level code and irq/NMI handlers, all running on the same CPU, - * and (2) Ensuring that the compiler does not fold, spindle, or otherwise - * mutilate accesses that either do not require ordering or that interact - * with an explicit memory barrier or atomic instruction that provides the - * required ordering. - * - * If possible use READ_ONCE()/WRITE_ONCE() instead. - */ -#define __ACCESS_ONCE(x) ({ \ - __maybe_unused typeof(x) __var = (__force typeof(x)) 0; \ - (volatile typeof(x) *)&(x); }) -#define ACCESS_ONCE(x) (*__ACCESS_ONCE(x)) - #endif /* __LINUX_COMPILER_H */ diff --git a/include/linux/completion.h b/include/linux/completion.h index 0662a417febe..94a59ba7d422 100644 --- a/include/linux/completion.h +++ b/include/linux/completion.h @@ -10,9 +10,6 @@ */ #include <linux/wait.h> -#ifdef CONFIG_LOCKDEP_COMPLETIONS -#include <linux/lockdep.h> -#endif /* * struct completion - structure used to maintain state for a "completion" @@ -29,58 +26,16 @@ struct completion { unsigned int done; wait_queue_head_t wait; -#ifdef CONFIG_LOCKDEP_COMPLETIONS - struct lockdep_map_cross map; -#endif }; -#ifdef CONFIG_LOCKDEP_COMPLETIONS -static inline void complete_acquire(struct completion *x) -{ - lock_acquire_exclusive((struct lockdep_map *)&x->map, 0, 0, NULL, _RET_IP_); -} - -static inline void complete_release(struct completion *x) -{ - lock_release((struct lockdep_map *)&x->map, 0, _RET_IP_); -} - -static inline void complete_release_commit(struct completion *x) -{ - lock_commit_crosslock((struct lockdep_map *)&x->map); -} - -#define init_completion_map(x, m) \ -do { \ - lockdep_init_map_crosslock((struct lockdep_map *)&(x)->map, \ - (m)->name, (m)->key, 0); \ - __init_completion(x); \ -} while (0) - -#define init_completion(x) \ -do { \ - static struct lock_class_key __key; \ - lockdep_init_map_crosslock((struct lockdep_map *)&(x)->map, \ - "(completion)" #x, \ - &__key, 0); \ - __init_completion(x); \ -} while (0) -#else #define init_completion_map(x, m) __init_completion(x) #define init_completion(x) __init_completion(x) static inline void complete_acquire(struct completion *x) {} static inline void complete_release(struct completion *x) {} static inline void complete_release_commit(struct completion *x) {} -#endif -#ifdef CONFIG_LOCKDEP_COMPLETIONS -#define COMPLETION_INITIALIZER(work) \ - { 0, __WAIT_QUEUE_HEAD_INITIALIZER((work).wait), \ - STATIC_CROSS_LOCKDEP_MAP_INIT("(completion)" #work, &(work)) } -#else #define COMPLETION_INITIALIZER(work) \ { 0, __WAIT_QUEUE_HEAD_INITIALIZER((work).wait) } -#endif #define COMPLETION_INITIALIZER_ONSTACK_MAP(work, map) \ (*({ init_completion_map(&(work), &(map)); &(work); })) diff --git a/include/linux/lockdep.h b/include/linux/lockdep.h index a842551fe044..2e75dc34bff5 100644 --- a/include/linux/lockdep.h +++ b/include/linux/lockdep.h @@ -158,12 +158,6 @@ struct lockdep_map { int cpu; unsigned long ip; #endif -#ifdef CONFIG_LOCKDEP_CROSSRELEASE - /* - * Whether it's a crosslock. - */ - int cross; -#endif }; static inline void lockdep_copy_map(struct lockdep_map *to, @@ -267,96 +261,9 @@ struct held_lock { unsigned int hardirqs_off:1; unsigned int references:12; /* 32 bits */ unsigned int pin_count; -#ifdef CONFIG_LOCKDEP_CROSSRELEASE - /* - * Generation id. - * - * A value of cross_gen_id will be stored when holding this, - * which is globally increased whenever each crosslock is held. - */ - unsigned int gen_id; -#endif -}; - -#ifdef CONFIG_LOCKDEP_CROSSRELEASE -#define MAX_XHLOCK_TRACE_ENTRIES 5 - -/* - * This is for keeping locks waiting for commit so that true dependencies - * can be added at commit step. - */ -struct hist_lock { - /* - * Id for each entry in the ring buffer. This is used to - * decide whether the ring buffer was overwritten or not. - * - * For example, - * - * |<----------- hist_lock ring buffer size ------->| - * pppppppppppppppppppppiiiiiiiiiiiiiiiiiiiiiiiiiiiii - * wrapped > iiiiiiiiiiiiiiiiiiiiiiiiiii....................... - * - * where 'p' represents an acquisition in process - * context, 'i' represents an acquisition in irq - * context. - * - * In this example, the ring buffer was overwritten by - * acquisitions in irq context, that should be detected on - * rollback or commit. - */ - unsigned int hist_id; - - /* - * Seperate stack_trace data. This will be used at commit step. - */ - struct stack_trace trace; - unsigned long trace_entries[MAX_XHLOCK_TRACE_ENTRIES]; - - /* - * Seperate hlock instance. This will be used at commit step. - * - * TODO: Use a smaller data structure containing only necessary - * data. However, we should make lockdep code able to handle the - * smaller one first. - */ - struct held_lock hlock; }; /* - * To initialize a lock as crosslock, lockdep_init_map_crosslock() should - * be called instead of lockdep_init_map(). - */ -struct cross_lock { - /* - * When more than one acquisition of crosslocks are overlapped, - * we have to perform commit for them based on cross_gen_id of - * the first acquisition, which allows us to add more true - * dependencies. - * - * Moreover, when no acquisition of a crosslock is in progress, - * we should not perform commit because the lock might not exist - * any more, which might cause incorrect memory access. So we - * have to track the number of acquisitions of a crosslock. - */ - int nr_acquire; - - /* - * Seperate hlock instance. This will be used at commit step. - * - * TODO: Use a smaller data structure containing only necessary - * data. However, we should make lockdep code able to handle the - * smaller one first. - */ - struct held_lock hlock; -}; - -struct lockdep_map_cross { - struct lockdep_map map; - struct cross_lock xlock; -}; -#endif - -/* * Initialization, self-test and debugging-output methods: */ extern void lockdep_info(void); @@ -560,37 +467,6 @@ enum xhlock_context_t { XHLOCK_CTX_NR, }; -#ifdef CONFIG_LOCKDEP_CROSSRELEASE -extern void lockdep_init_map_crosslock(struct lockdep_map *lock, - const char *name, - struct lock_class_key *key, - int subclass); -extern void lock_commit_crosslock(struct lockdep_map *lock); - -/* - * What we essencially have to initialize is 'nr_acquire'. Other members - * will be initialized in add_xlock(). - */ -#define STATIC_CROSS_LOCK_INIT() \ - { .nr_acquire = 0,} - -#define STATIC_CROSS_LOCKDEP_MAP_INIT(_name, _key) \ - { .map.name = (_name), .map.key = (void *)(_key), \ - .map.cross = 1, .xlock = STATIC_CROSS_LOCK_INIT(), } - -/* - * To initialize a lockdep_map statically use this macro. - * Note that _name must not be NULL. - */ -#define STATIC_LOCKDEP_MAP_INIT(_name, _key) \ - { .name = (_name), .key = (void *)(_key), .cross = 0, } - -extern void crossrelease_hist_start(enum xhlock_context_t c); -extern void crossrelease_hist_end(enum xhlock_context_t c); -extern void lockdep_invariant_state(bool force); -extern void lockdep_init_task(struct task_struct *task); -extern void lockdep_free_task(struct task_struct *task); -#else /* !CROSSRELEASE */ #define lockdep_init_map_crosslock(m, n, k, s) do {} while (0) /* * To initialize a lockdep_map statically use this macro. @@ -604,7 +480,6 @@ static inline void crossrelease_hist_end(enum xhlock_context_t c) {} static inline void lockdep_invariant_state(bool force) {} static inline void lockdep_init_task(struct task_struct *task) {} static inline void lockdep_free_task(struct task_struct *task) {} -#endif /* CROSSRELEASE */ #ifdef CONFIG_LOCK_STAT diff --git a/include/linux/rwlock_types.h b/include/linux/rwlock_types.h index cc0072e93e36..857a72ceb794 100644 --- a/include/linux/rwlock_types.h +++ b/include/linux/rwlock_types.h @@ -10,9 +10,6 @@ */ typedef struct { arch_rwlock_t raw_lock; -#ifdef CONFIG_GENERIC_LOCKBREAK - unsigned int break_lock; -#endif #ifdef CONFIG_DEBUG_SPINLOCK unsigned int magic, owner_cpu; void *owner; diff --git a/include/linux/sched.h b/include/linux/sched.h index 5124ba709830..d2588263a989 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h @@ -849,17 +849,6 @@ struct task_struct { struct held_lock held_locks[MAX_LOCK_DEPTH]; #endif -#ifdef CONFIG_LOCKDEP_CROSSRELEASE -#define MAX_XHLOCKS_NR 64UL - struct hist_lock *xhlocks; /* Crossrelease history locks */ - unsigned int xhlock_idx; - /* For restoring at history boundaries */ - unsigned int xhlock_idx_hist[XHLOCK_CTX_NR]; - unsigned int hist_id; - /* For overwrite check at each context exit */ - unsigned int hist_id_save[XHLOCK_CTX_NR]; -#endif - #ifdef CONFIG_UBSAN unsigned int in_ubsan; #endif diff --git a/include/linux/spinlock.h b/include/linux/spinlock.h index a39186194cd6..3bf273538840 100644 --- a/include/linux/spinlock.h +++ b/include/linux/spinlock.h @@ -107,16 +107,11 @@ do { \ #define raw_spin_is_locked(lock) arch_spin_is_locked(&(lock)->raw_lock) -#ifdef CONFIG_GENERIC_LOCKBREAK -#define raw_spin_is_contended(lock) ((lock)->break_lock) -#else - #ifdef arch_spin_is_contended #define raw_spin_is_contended(lock) arch_spin_is_contended(&(lock)->raw_lock) #else #define raw_spin_is_contended(lock) (((void)(lock), 0)) #endif /*arch_spin_is_contended*/ -#endif /* * This barrier must provide two things: diff --git a/include/linux/spinlock_types.h b/include/linux/spinlock_types.h index 73548eb13a5d..24b4e6f2c1a2 100644 --- a/include/linux/spinlock_types.h +++ b/include/linux/spinlock_types.h @@ -19,9 +19,6 @@ typedef struct raw_spinlock { arch_spinlock_t raw_lock; -#ifdef CONFIG_GENERIC_LOCKBREAK - unsigned int break_lock; -#endif #ifdef CONFIG_DEBUG_SPINLOCK unsigned int magic, owner_cpu; void *owner; diff --git a/kernel/locking/lockdep.c b/kernel/locking/lockdep.c index 670d8d7d8087..5fa1324a4f29 100644 --- a/kernel/locking/lockdep.c +++ b/kernel/locking/lockdep.c @@ -57,10 +57,6 @@ #define CREATE_TRACE_POINTS #include <trace/events/lock.h> -#ifdef CONFIG_LOCKDEP_CROSSRELEASE -#include <linux/slab.h> -#endif - #ifdef CONFIG_PROVE_LOCKING int prove_locking = 1; module_param(prove_locking, int, 0644); @@ -75,19 +71,6 @@ module_param(lock_stat, int, 0644); #define lock_stat 0 #endif -#ifdef CONFIG_BOOTPARAM_LOCKDEP_CROSSRELEASE_FULLSTACK -static int crossrelease_fullstack = 1; -#else -static int crossrelease_fullstack; -#endif -static int __init allow_crossrelease_fullstack(char *str) -{ - crossrelease_fullstack = 1; - return 0; -} - -early_param("crossrelease_fullstack", allow_crossrelease_fullstack); - /* * lockdep_lock: protects the lockdep graph, the hashes and the * class/list/hash allocators. @@ -740,18 +723,6 @@ look_up_lock_class(struct lockdep_map *lock, unsigned int subclass) return is_static || static_obj(lock->key) ? NULL : ERR_PTR(-EINVAL); } -#ifdef CONFIG_LOCKDEP_CROSSRELEASE -static void cross_init(struct lockdep_map *lock, int cross); -static int cross_lock(struct lockdep_map *lock); -static int lock_acquire_crosslock(struct held_lock *hlock); -static int lock_release_crosslock(struct lockdep_map *lock); -#else -static inline void cross_init(struct lockdep_map *lock, int cross) {} -static inline int cross_lock(struct lockdep_map *lock) { return 0; } -static inline int lock_acquire_crosslock(struct held_lock *hlock) { return 2; } -static inline int lock_release_crosslock(struct lockdep_map *lock) { return 2; } -#endif - /* * Register a lock's class in the hash-table, if the class is not present * yet. Otherwise we look it up. We cache the result in the lock object @@ -1151,41 +1122,22 @@ print_circular_lock_scenario(struct held_lock *src, printk(KERN_CONT "\n\n"); } - if (cross_lock(tgt->instance)) { - printk(" Possible unsafe locking scenario by crosslock:\n\n"); - printk(" CPU0 CPU1\n"); - printk(" ---- ----\n"); - printk(" lock("); - __print_lock_name(parent); - printk(KERN_CONT ");\n"); - printk(" lock("); - __print_lock_name(target); - printk(KERN_CONT ");\n"); - printk(" lock("); - __print_lock_name(source); - printk(KERN_CONT ");\n"); - printk(" unlock("); - __print_lock_name(target); - printk(KERN_CONT ");\n"); - printk("\n *** DEADLOCK ***\n\n"); - } else { - printk(" Possible unsafe locking scenario:\n\n"); - printk(" CPU0 CPU1\n"); - printk(" ---- ----\n"); - printk(" lock("); - __print_lock_name(target); - printk(KERN_CONT ");\n"); - printk(" lock("); - __print_lock_name(parent); - printk(KERN_CONT ");\n"); - printk(" lock("); - __print_lock_name(target); - printk(KERN_CONT ");\n"); - printk(" lock("); - __print_lock_name(source); - printk(KERN_CONT ");\n"); - printk("\n *** DEADLOCK ***\n\n"); - } + printk(" Possible unsafe locking scenario:\n\n"); + printk(" CPU0 CPU1\n"); + printk(" ---- ----\n"); + printk(" lock("); + __print_lock_name(target); + printk(KERN_CONT ");\n"); + printk(" lock("); + __print_lock_name(parent); + printk(KERN_CONT ");\n"); + printk(" lock("); + __print_lock_name(target); + printk(KERN_CONT ");\n"); + printk(" lock("); + __print_lock_name(source); + printk(KERN_CONT ");\n"); + printk("\n *** DEADLOCK ***\n\n"); } /* @@ -1211,10 +1163,7 @@ print_circular_bug_header(struct lock_list *entry, unsigned int depth, curr->comm, task_pid_nr(curr)); print_lock(check_src); - if (cross_lock(check_tgt->instance)) - pr_warn("\nbut now in release context of a crosslock acquired at the following:\n"); - else - pr_warn("\nbut task is already holding lock:\n"); + pr_warn("\nbut task is already holding lock:\n"); print_lock(check_tgt); pr_warn("\nwhich lock already depends on the new lock.\n\n"); @@ -1244,9 +1193,7 @@ static noinline int print_circular_bug(struct lock_list *this, if (!debug_locks_off_graph_unlock() || debug_locks_silent) return 0; - if (cross_lock(check_tgt->instance)) - this->trace = *trace; - else if (!save_trace(&this->trace)) + if (!save_trace(&this->trace)) return 0; depth = get_lock_depth(target); @@ -1850,9 +1797,6 @@ check_deadlock(struct task_struct *curr, struct held_lock *next, if (nest) return 2; - if (cross_lock(prev->instance)) - continue; - return print_deadlock_bug(curr, prev, next); } return 1; @@ -2018,31 +1962,26 @@ check_prevs_add(struct task_struct *curr, struct held_lock *next) for (;;) { int distance = curr->lockdep_depth - depth + 1; hlock = curr->held_locks + depth - 1; + /* - * Only non-crosslock entries get new dependencies added. - * Crosslock entries will be added by commit later: + * Only non-recursive-read entries get new dependencies + * added: */ - if (!cross_lock(hlock->instance)) { + if (hlock->read != 2 && hlock->check) { + int ret = check_prev_add(curr, hlock, next, distance, &trace, save_trace); + if (!ret) + return 0; + /* - * Only non-recursive-read entries get new dependencies - * added: + * Stop after the first non-trylock entry, + * as non-trylock entries have added their + * own direct dependencies already, so this + * lock is connected to them indirectly: */ - if (hlock->read != 2 && hlock->check) { - int ret = check_prev_add(curr, hlock, next, - distance, &trace, save_trace); - if (!ret) - return 0; - - /* - * Stop after the first non-trylock entry, - * as non-trylock entries have added their - * own direct dependencies already, so this - * lock is connected to them indirectly: - */ - if (!hlock->trylock) - break; - } + if (!hlock->trylock) + break; } + depth--; /* * End of lock-stack? @@ -3292,21 +3231,10 @@ static void __lockdep_init_map(struct lockdep_map *lock, const char *name, void lockdep_init_map(struct lockdep_map *lock, const char *name, struct lock_class_key *key, int subclass) { - cross_init(lock, 0); __lockdep_init_map(lock, name, key, subclass); } EXPORT_SYMBOL_GPL(lockdep_init_map); -#ifdef CONFIG_LOCKDEP_CROSSRELEASE -void lockdep_init_map_crosslock(struct lockdep_map *lock, const char *name, - struct lock_class_key *key, int subclass) -{ - cross_init(lock, 1); - __lockdep_init_map(lock, name, key, subclass); -} -EXPORT_SYMBOL_GPL(lockdep_init_map_crosslock); -#endif - struct lock_class_key __lockdep_no_validate__; EXPORT_SYMBOL_GPL(__lockdep_no_validate__); @@ -3362,7 +3290,6 @@ static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, int chain_head = 0; int class_idx; u64 chain_key; - int ret; if (unlikely(!debug_locks)) return 0; @@ -3411,8 +3338,7 @@ static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, class_idx = class - lock_classes + 1; - /* TODO: nest_lock is not implemented for crosslock yet. */ - if (depth && !cross_lock(lock)) { + if (depth) { hlock = curr->held_locks + depth - 1; if (hlock->class_idx == class_idx && nest_lock) { if (hlock->references) { @@ -3500,14 +3426,6 @@ static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, if (!validate_chain(curr, lock, hlock, chain_head, chain_key)) return 0; - ret = lock_acquire_crosslock(hlock); - /* - * 2 means normal acquire operations are needed. Otherwise, it's - * ok just to return with '0:fail, 1:success'. - */ - if (ret != 2) - return ret; - curr->curr_chain_key = chain_key; curr->lockdep_depth++; check_chain_key(curr); @@ -3745,19 +3663,11 @@ __lock_release(struct lockdep_map *lock, int nested, unsigned long ip) struct task_struct *curr = current; struct held_lock *hlock; unsigned int depth; - int ret, i; + int i; if (unlikely(!debug_locks)) return 0; - ret = lock_release_crosslock(lock); - /* - * 2 means normal release operations are needed. Otherwise, it's - * ok just to return with '0:fail, 1:success'. - */ - if (ret != 2) - return ret; - depth = curr->lockdep_depth; /* * So we're all set to release this lock.. wait what lock? We don't @@ -4675,495 +4585,3 @@ void lockdep_rcu_suspicious(const char *file, const int line, const char *s) dump_stack(); } EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); - -#ifdef CONFIG_LOCKDEP_CROSSRELEASE - -/* - * Crossrelease works by recording a lock history for each thread and - * connecting those historic locks that were taken after the - * wait_for_completion() in the complete() context. - * - * Task-A Task-B - * - * mutex_lock(&A); - * mutex_unlock(&A); - * - * wait_for_completion(&C); - * lock_acquire_crosslock(); - * atomic_inc_return(&cross_gen_id); - * | - * | mutex_lock(&B); - * | mutex_unlock(&B); - * | - * | complete(&C); - * `-- lock_commit_crosslock(); - * - * Which will then add a dependency between B and C. - */ - -#define xhlock(i) (current->xhlocks[(i) % MAX_XHLOCKS_NR]) - -/* - * Whenever a crosslock is held, cross_gen_id will be increased. - */ -static atomic_t cross_gen_id; /* Can be wrapped */ - -/* - * Make an entry of the ring buffer invalid. - */ -static inline void invalidate_xhlock(struct hist_lock *xhlock) -{ - /* - * Normally, xhlock->hlock.instance must be !NULL. - */ - xhlock->hlock.instance = NULL; -} - -/* - * Lock history stacks; we have 2 nested lock history stacks: - * - * HARD(IRQ) - * SOFT(IRQ) - * - * The thing is that once we complete a HARD/SOFT IRQ the future task locks - * should not depend on any of the locks observed while running the IRQ. So - * what we do is rewind the history buffer and erase all our knowledge of that - * temporal event. - */ - -void crossrelease_hist_start(enum xhlock_context_t c) -{ - struct task_struct *cur = current; - - if (!cur->xhlocks) - return; - - cur->xhlock_idx_hist[c] = cur->xhlock_idx; - cur->hist_id_save[c] = cur->hist_id; -} - -void crossrelease_hist_end(enum xhlock_context_t c) -{ - struct task_struct *cur = current; - - if (cur->xhlocks) { - unsigned int idx = cur->xhlock_idx_hist[c]; - struct hist_lock *h = &xhlock(idx); - - cur->xhlock_idx = idx; - - /* Check if the ring was overwritten. */ - if (h->hist_id != cur->hist_id_save[c]) - invalidate_xhlock(h); - } -} - -/* - * lockdep_invariant_state() is used to annotate independence inside a task, to - * make one task look like multiple independent 'tasks'. - * - * Take for instance workqueues; each work is independent of the last. The - * completion of a future work does not depend on the completion of a past work - * (in general). Therefore we must not carry that (lock) dependency across - * works. - * - * This is true for many things; pretty much all kthreads fall into this - * pattern, where they have an invariant state and future completions do not - * depend on past completions. Its just that since they all have the 'same' - * form -- the kthread does the same over and over -- it doesn't typically - * matter. - * - * The same is true for system-calls, once a system call is completed (we've - * returned to userspace) the next system call does not depend on the lock - * history of the previous system call. - * - * They key property for independence, this invariant state, is that it must be - * a point where we hold no locks and have no history. Because if we were to - * hold locks, the restore at _end() would not necessarily recover it's history - * entry. Similarly, independence per-definition means it does not depend on - * prior state. - */ -void lockdep_invariant_state(bool force) -{ - /* - * We call this at an invariant point, no current state, no history. - * Verify the former, enforce the latter. - */ - WARN_ON_ONCE(!force && current->lockdep_depth); - if (current->xhlocks) - invalidate_xhlock(&xhlock(current->xhlock_idx)); -} - -static int cross_lock(struct lockdep_map *lock) -{ - return lock ? lock->cross : 0; -} - -/* - * This is needed to decide the relationship between wrapable variables. - */ -static inline int before(unsigned int a, unsigned int b) -{ - return (int)(a - b) < 0; -} - -static inline struct lock_class *xhlock_class(struct hist_lock *xhlock) -{ - return hlock_class(&xhlock->hlock); -} - -static inline struct lock_class *xlock_class(struct cross_lock *xlock) -{ - return hlock_class(&xlock->hlock); -} - -/* - * Should we check a dependency with previous one? - */ -static inline int depend_before(struct held_lock *hlock) -{ - return hlock->read != 2 && hlock->check && !hlock->trylock; -} - -/* - * Should we check a dependency with next one? - */ -static inline int depend_after(struct held_lock *hlock) -{ - return hlock->read != 2 && hlock->check; -} - -/* - * Check if the xhlock is valid, which would be false if, - * - * 1. Has not used after initializaion yet. - * 2. Got invalidated. - * - * Remind hist_lock is implemented as a ring buffer. - */ -static inline int xhlock_valid(struct hist_lock *xhlock) -{ - /* - * xhlock->hlock.instance must be !NULL. - */ - return !!xhlock->hlock.instance; -} - -/* - * Record a hist_lock entry. - * - * Irq disable is only required. - */ -static void add_xhlock(struct held_lock *hlock) -{ - unsigned int idx = ++current->xhlock_idx; - struct hist_lock *xhlock = &xhlock(idx); - -#ifdef CONFIG_DEBUG_LOCKDEP - /* - * This can be done locklessly because they are all task-local - * state, we must however ensure IRQs are disabled. - */ - WARN_ON_ONCE(!irqs_disabled()); -#endif - - /* Initialize hist_lock's members */ - xhlock->hlock = *hlock; - xhlock->hist_id = ++current->hist_id; - - xhlock->trace.nr_entries = 0; - xhlock->trace.max_entries = MAX_XHLOCK_TRACE_ENTRIES; - xhlock->trace.entries = xhlock->trace_entries; - - if (crossrelease_fullstack) { - xhlock->trace.skip = 3; - save_stack_trace(&xhlock->trace); - } else { - xhlock->trace.nr_entries = 1; - xhlock->trace.entries[0] = hlock->acquire_ip; - } -} - -static inline int same_context_xhlock(struct hist_lock *xhlock) -{ - return xhlock->hlock.irq_context == task_irq_context(current); -} - -/* - * This should be lockless as far as possible because this would be - * called very frequently. - */ -static void check_add_xhlock(struct held_lock *hlock) -{ - /* - * Record a hist_lock, only in case that acquisitions ahead - * could depend on the held_lock. For example, if the held_lock - * is trylock then acquisitions ahead never depends on that. - * In that case, we don't need to record it. Just return. - */ - if (!current->xhlocks || !depend_before(hlock)) - return; - - add_xhlock(hlock); -} - -/* - * For crosslock. - */ -static int add_xlock(struct held_lock *hlock) -{ - struct cross_lock *xlock; - unsigned int gen_id; - - if (!graph_lock()) - return 0; - - xlock = &((struct lockdep_map_cross *)hlock->instance)->xlock; - - /* - * When acquisitions for a crosslock are overlapped, we use - * nr_acquire to perform commit for them, based on cross_gen_id - * of the first acquisition, which allows to add additional - * dependencies. - * - * Moreover, when no acquisition of a crosslock is in progress, - * we should not perform commit because the lock might not exist - * any more, which might cause incorrect memory access. So we - * have to track the number of acquisitions of a crosslock. - * - * depend_after() is necessary to initialize only the first - * valid xlock so that the xlock can be used on its commit. - */ - if (xlock->nr_acquire++ && depend_after(&xlock->hlock)) - goto unlock; - - gen_id = (unsigned int)atomic_inc_return(&cross_gen_id); - xlock->hlock = *hlock; - xlock->hlock.gen_id = gen_id; -unlock: - graph_unlock(); - return 1; -} - -/* - * Called for both normal and crosslock acquires. Normal locks will be - * pushed on the hist_lock queue. Cross locks will record state and - * stop regular lock_acquire() to avoid being placed on the held_lock - * stack. - * - * Return: 0 - failure; - * 1 - crosslock, done; - * 2 - normal lock, continue to held_lock[] ops. - */ -static int lock_acquire_crosslock(struct held_lock *hlock) -{ - /* - * CONTEXT 1 CONTEXT 2 - * --------- --------- - * lock A (cross) - * X = atomic_inc_return(&cross_gen_id) - * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - * Y = atomic_read_acquire(&cross_gen_id) - * lock B - * - * atomic_read_acquire() is for ordering between A and B, - * IOW, A happens before B, when CONTEXT 2 see Y >= X. - * - * Pairs with atomic_inc_return() in add_xlock(). - */ - hlock->gen_id = (unsigned int)atomic_read_acquire(&cross_gen_id); - - if (cross_lock(hlock->instance)) - return add_xlock(hlock); - - check_add_xhlock(hlock); - return 2; -} - -static int copy_trace(struct stack_trace *trace) -{ - unsigned long *buf = stack_trace + nr_stack_trace_entries; - unsigned int max_nr = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries; - unsigned int nr = min(max_nr, trace->nr_entries); - - trace->nr_entries = nr; - memcpy(buf, trace->entries, nr * sizeof(trace->entries[0])); - trace->entries = buf; - nr_stack_trace_entries += nr; - - if (nr_stack_trace_entries >= MAX_STACK_TRACE_ENTRIES-1) { - if (!debug_locks_off_graph_unlock()) - return 0; - - print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); - dump_stack(); - - return 0; - } - - return 1; -} - -static int commit_xhlock(struct cross_lock *xlock, struct hist_lock *xhlock) -{ - unsigned int xid, pid; - u64 chain_key; - - xid = xlock_class(xlock) - lock_classes; - chain_key = iterate_chain_key((u64)0, xid); - pid = xhlock_class(xhlock) - lock_classes; - chain_key = iterate_chain_key(chain_key, pid); - - if (lookup_chain_cache(chain_key)) - return 1; - - if (!add_chain_cache_classes(xid, pid, xhlock->hlock.irq_context, - chain_key)) - return 0; - - if (!check_prev_add(current, &xlock->hlock, &xhlock->hlock, 1, - &xhlock->trace, copy_trace)) - return 0; - - return 1; -} - -static void commit_xhlocks(struct cross_lock *xlock) -{ - unsigned int cur = current->xhlock_idx; - unsigned int prev_hist_id = xhlock(cur).hist_id; - unsigned int i; - - if (!graph_lock()) - return; - - if (xlock->nr_acquire) { - for (i = 0; i < MAX_XHLOCKS_NR; i++) { - struct hist_lock *xhlock = &xhlock(cur - i); - - if (!xhlock_valid(xhlock)) - break; - - if (before(xhlock->hlock.gen_id, xlock->hlock.gen_id)) - break; - - if (!same_context_xhlock(xhlock)) - break; - - /* - * Filter out the cases where the ring buffer was - * overwritten and the current entry has a bigger - * hist_id than the previous one, which is impossible - * otherwise: - */ - if (unlikely(before(prev_hist_id, xhlock->hist_id))) - break; - - prev_hist_id = xhlock->hist_id; - - /* - * commit_xhlock() returns 0 with graph_lock already - * released if fail. - */ - if (!commit_xhlock(xlock, xhlock)) - return; - } - } - - graph_unlock(); -} - -void lock_commit_crosslock(struct lockdep_map *lock) -{ - struct cross_lock *xlock; - unsigned long flags; - - if (unlikely(!debug_locks || current->lockdep_recursion)) - return; - - if (!current->xhlocks) - return; - - /* - * Do commit hist_locks with the cross_lock, only in case that - * the cross_lock could depend on acquisitions after that. - * - * For example, if the cross_lock does not have the 'check' flag - * then we don't need to check dependencies and commit for that. - * Just skip it. In that case, of course, the cross_lock does - * not depend on acquisitions ahead, either. - * - * WARNING: Don't do that in add_xlock() in advance. When an - * acquisition context is different from the commit context, - * invalid(skipped) cross_lock might be accessed. - */ - if (!depend_after(&((struct lockdep_map_cross *)lock)->xlock.hlock)) - return; - - raw_local_irq_save(flags); - check_flags(flags); - current->lockdep_recursion = 1; - xlock = &((struct lockdep_map_cross *)lock)->xlock; - commit_xhlocks(xlock); - current->lockdep_recursion = 0; - raw_local_irq_restore(flags); -} -EXPORT_SYMBOL_GPL(lock_commit_crosslock); - -/* - * Return: 0 - failure; - * 1 - crosslock, done; - * 2 - normal lock, continue to held_lock[] ops. - */ -static int lock_release_crosslock(struct lockdep_map *lock) -{ - if (cross_lock(lock)) { - if (!graph_lock()) - return 0; - ((struct lockdep_map_cross *)lock)->xlock.nr_acquire--; - graph_unlock(); - return 1; - } - return 2; -} - -static void cross_init(struct lockdep_map *lock, int cross) -{ - if (cross) - ((struct lockdep_map_cross *)lock)->xlock.nr_acquire = 0; - - lock->cross = cross; - - /* - * Crossrelease assumes that the ring buffer size of xhlocks - * is aligned with power of 2. So force it on build. - */ - BUILD_BUG_ON(MAX_XHLOCKS_NR & (MAX_XHLOCKS_NR - 1)); -} - -void lockdep_init_task(struct task_struct *task) -{ - int i; - - task->xhlock_idx = UINT_MAX; - task->hist_id = 0; - - for (i = 0; i < XHLOCK_CTX_NR; i++) { - task->xhlock_idx_hist[i] = UINT_MAX; - task->hist_id_save[i] = 0; - } - - task->xhlocks = kzalloc(sizeof(struct hist_lock) * MAX_XHLOCKS_NR, - GFP_KERNEL); -} - -void lockdep_free_task(struct task_struct *task) -{ - if (task->xhlocks) { - void *tmp = task->xhlocks; - /* Diable crossrelease for current */ - task->xhlocks = NULL; - kfree(tmp); - } -} -#endif diff --git a/kernel/locking/spinlock.c b/kernel/locking/spinlock.c index 1fd1a7543cdd..936f3d14dd6b 100644 --- a/kernel/locking/spinlock.c +++ b/kernel/locking/spinlock.c @@ -66,12 +66,8 @@ void __lockfunc __raw_##op##_lock(locktype##_t *lock) \ break; \ preempt_enable(); \ \ - if (!(lock)->break_lock) \ - (lock)->break_lock = 1; \ - while ((lock)->break_lock) \ - arch_##op##_relax(&lock->raw_lock); \ + arch_##op##_relax(&lock->raw_lock); \ } \ - (lock)->break_lock = 0; \ } \ \ unsigned long __lockfunc __raw_##op##_lock_irqsave(locktype##_t *lock) \ @@ -86,12 +82,9 @@ unsigned long __lockfunc __raw_##op##_lock_irqsave(locktype##_t *lock) \ local_irq_restore(flags); \ preempt_enable(); \ \ - if (!(lock)->break_lock) \ - (lock)->break_lock = 1; \ - while ((lock)->break_lock) \ - arch_##op##_relax(&lock->raw_lock); \ + arch_##op##_relax(&lock->raw_lock); \ } \ - (lock)->break_lock = 0; \ + \ return flags; \ } \ \ diff --git a/lib/Kconfig.debug b/lib/Kconfig.debug index 947d3e2ed5c2..9d5b78aad4c5 100644 --- a/lib/Kconfig.debug +++ b/lib/Kconfig.debug @@ -1099,8 +1099,6 @@ config PROVE_LOCKING select DEBUG_MUTEXES select DEBUG_RT_MUTEXES if RT_MUTEXES select DEBUG_LOCK_ALLOC - select LOCKDEP_CROSSRELEASE - select LOCKDEP_COMPLETIONS select TRACE_IRQFLAGS default n help @@ -1170,37 +1168,6 @@ config LOCK_STAT CONFIG_LOCK_STAT defines "contended" and "acquired" lock events. (CONFIG_LOCKDEP defines "acquire" and "release" events.) -config LOCKDEP_CROSSRELEASE - bool - help - This makes lockdep work for crosslock which is a lock allowed to - be released in a different context from the acquisition context. - Normally a lock must be released in the context acquiring the lock. - However, relexing this constraint helps synchronization primitives - such as page locks or completions can use the lock correctness - detector, lockdep. - -config LOCKDEP_COMPLETIONS - bool - help - A deadlock caused by wait_for_completion() and complete() can be - detected by lockdep using crossrelease feature. - -config BOOTPARAM_LOCKDEP_CROSSRELEASE_FULLSTACK - bool "Enable the boot parameter, crossrelease_fullstack" - depends on LOCKDEP_CROSSRELEASE - default n - help - The lockdep "cross-release" feature needs to record stack traces - (of calling functions) for all acquisitions, for eventual later - use during analysis. By default only a single caller is recorded, - because the unwind operation can be very expensive with deeper - stack chains. - - However a boot parameter, crossrelease_fullstack, was - introduced since sometimes deeper traces are required for full - analysis. This option turns on the boot parameter. - config DEBUG_LOCKDEP bool "Lock dependency engine debugging" depends on DEBUG_KERNEL && LOCKDEP diff --git a/scripts/checkpatch.pl b/scripts/checkpatch.pl index 040aa79e1d9d..31031f10fe56 100755 --- a/scripts/checkpatch.pl +++ b/scripts/checkpatch.pl @@ -6233,28 +6233,6 @@ sub process { } } -# whine about ACCESS_ONCE - if ($^V && $^V ge 5.10.0 && - $line =~ /\bACCESS_ONCE\s*$balanced_parens\s*(=(?!=))?\s*($FuncArg)?/) { - my $par = $1; - my $eq = $2; - my $fun = $3; - $par =~ s/^\(\s*(.*)\s*\)$/$1/; - if (defined($eq)) { - if (WARN("PREFER_WRITE_ONCE", - "Prefer WRITE_ONCE(<FOO>, <BAR>) over ACCESS_ONCE(<FOO>) = <BAR>\n" . $herecurr) && - $fix) { - $fixed[$fixlinenr] =~ s/\bACCESS_ONCE\s*\(\s*\Q$par\E\s*\)\s*$eq\s*\Q$fun\E/WRITE_ONCE($par, $fun)/; - } - } else { - if (WARN("PREFER_READ_ONCE", - "Prefer READ_ONCE(<FOO>) over ACCESS_ONCE(<FOO>)\n" . $herecurr) && - $fix) { - $fixed[$fixlinenr] =~ s/\bACCESS_ONCE\s*\(\s*\Q$par\E\s*\)/READ_ONCE($par)/; - } - } - } - # check for mutex_trylock_recursive usage if ($line =~ /mutex_trylock_recursive/) { ERROR("LOCKING", diff --git a/tools/include/linux/compiler.h b/tools/include/linux/compiler.h index 07fd03c74a77..04e32f965ad7 100644 --- a/tools/include/linux/compiler.h +++ b/tools/include/linux/compiler.h @@ -84,8 +84,6 @@ #define uninitialized_var(x) x = *(&(x)) -#define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x)) - #include <linux/types.h> /* @@ -135,20 +133,19 @@ static __always_inline void __write_once_size(volatile void *p, void *res, int s /* * Prevent the compiler from merging or refetching reads or writes. The * compiler is also forbidden from reordering successive instances of - * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the - * compiler is aware of some particular ordering. One way to make the - * compiler aware of ordering is to put the two invocations of READ_ONCE, - * WRITE_ONCE or ACCESS_ONCE() in different C statements. + * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some + * particular ordering. One way to make the compiler aware of ordering is to + * put the two invocations of READ_ONCE or WRITE_ONCE in different C + * statements. * - * In contrast to ACCESS_ONCE these two macros will also work on aggregate - * data types like structs or unions. If the size of the accessed data - * type exceeds the word size of the machine (e.g., 32 bits or 64 bits) - * READ_ONCE() and WRITE_ONCE() will fall back to memcpy and print a - * compile-time warning. + * These two macros will also work on aggregate data types like structs or + * unions. If the size of the accessed data type exceeds the word size of + * the machine (e.g., 32 bits or 64 bits) READ_ONCE() and WRITE_ONCE() will + * fall back to memcpy and print a compile-time warning. * * Their two major use cases are: (1) Mediating communication between * process-level code and irq/NMI handlers, all running on the same CPU, - * and (2) Ensuring that the compiler does not fold, spindle, or otherwise + * and (2) Ensuring that the compiler does not fold, spindle, or otherwise * mutilate accesses that either do not require ordering or that interact * with an explicit memory barrier or atomic instruction that provides the * required ordering. diff --git a/tools/include/linux/lockdep.h b/tools/include/linux/lockdep.h index 940c1b075659..6b0c36a58fcb 100644 --- a/tools/include/linux/lockdep.h +++ b/tools/include/linux/lockdep.h @@ -48,6 +48,7 @@ static inline int debug_locks_off(void) #define printk(...) dprintf(STDOUT_FILENO, __VA_ARGS__) #define pr_err(format, ...) fprintf (stderr, format, ## __VA_ARGS__) #define pr_warn pr_err +#define pr_cont pr_err #define list_del_rcu list_del diff --git a/tools/perf/util/mmap.h b/tools/perf/util/mmap.h index efd78b827b05..3a5cb5a6e94a 100644 --- a/tools/perf/util/mmap.h +++ b/tools/perf/util/mmap.h @@ -70,7 +70,7 @@ void perf_mmap__read_catchup(struct perf_mmap *md); static inline u64 perf_mmap__read_head(struct perf_mmap *mm) { struct perf_event_mmap_page *pc = mm->base; - u64 head = ACCESS_ONCE(pc->data_head); + u64 head = READ_ONCE(pc->data_head); rmb(); return head; } |