diff options
author | Tom Lendacky <thomas.lendacky@amd.com> | 2013-11-12 11:46:45 -0600 |
---|---|---|
committer | Herbert Xu <herbert@gondor.apana.org.au> | 2013-12-05 21:28:39 +0800 |
commit | 0ab0a1d505ab6f684076b9c5ef9279e29c2b08ae (patch) | |
tree | fe69079a312d4fe556322e0caa959318e91f74fb | |
parent | 1d6b8a6f64076aee9e63474c0778a50f95c054ee (diff) | |
download | lwn-0ab0a1d505ab6f684076b9c5ef9279e29c2b08ae.tar.gz lwn-0ab0a1d505ab6f684076b9c5ef9279e29c2b08ae.zip |
crypto: ccp - CCP SHA crypto API support
These routines provide crypto API support for SHA1, SHA224 and SHA256
on the AMD CCP. HMAC support for these SHA modes is also provided.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-rw-r--r-- | drivers/crypto/ccp/ccp-crypto-sha.c | 497 |
1 files changed, 497 insertions, 0 deletions
diff --git a/drivers/crypto/ccp/ccp-crypto-sha.c b/drivers/crypto/ccp/ccp-crypto-sha.c new file mode 100644 index 000000000000..44ff00a09c8a --- /dev/null +++ b/drivers/crypto/ccp/ccp-crypto-sha.c @@ -0,0 +1,497 @@ +/* + * AMD Cryptographic Coprocessor (CCP) SHA crypto API support + * + * Copyright (C) 2013 Advanced Micro Devices, Inc. + * + * Author: Tom Lendacky <thomas.lendacky@amd.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ + +#include <linux/module.h> +#include <linux/sched.h> +#include <linux/delay.h> +#include <linux/scatterlist.h> +#include <linux/crypto.h> +#include <crypto/algapi.h> +#include <crypto/hash.h> +#include <crypto/internal/hash.h> +#include <crypto/sha.h> +#include <crypto/scatterwalk.h> + +#include "ccp-crypto.h" + + +struct ccp_sha_result { + struct completion completion; + int err; +}; + +static void ccp_sync_hash_complete(struct crypto_async_request *req, int err) +{ + struct ccp_sha_result *result = req->data; + + if (err == -EINPROGRESS) + return; + + result->err = err; + complete(&result->completion); +} + +static int ccp_sync_hash(struct crypto_ahash *tfm, u8 *buf, + struct scatterlist *sg, unsigned int len) +{ + struct ccp_sha_result result; + struct ahash_request *req; + int ret; + + init_completion(&result.completion); + + req = ahash_request_alloc(tfm, GFP_KERNEL); + if (!req) + return -ENOMEM; + + ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, + ccp_sync_hash_complete, &result); + ahash_request_set_crypt(req, sg, buf, len); + + ret = crypto_ahash_digest(req); + if ((ret == -EINPROGRESS) || (ret == -EBUSY)) { + ret = wait_for_completion_interruptible(&result.completion); + if (!ret) + ret = result.err; + } + + ahash_request_free(req); + + return ret; +} + +static int ccp_sha_finish_hmac(struct crypto_async_request *async_req) +{ + struct ahash_request *req = ahash_request_cast(async_req); + struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); + struct ccp_ctx *ctx = crypto_ahash_ctx(tfm); + struct scatterlist sg[2]; + unsigned int block_size = + crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); + unsigned int digest_size = crypto_ahash_digestsize(tfm); + + sg_init_table(sg, ARRAY_SIZE(sg)); + sg_set_buf(&sg[0], ctx->u.sha.opad, block_size); + sg_set_buf(&sg[1], req->result, digest_size); + + return ccp_sync_hash(ctx->u.sha.hmac_tfm, req->result, sg, + block_size + digest_size); +} + +static int ccp_sha_complete(struct crypto_async_request *async_req, int ret) +{ + struct ahash_request *req = ahash_request_cast(async_req); + struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); + struct ccp_ctx *ctx = crypto_ahash_ctx(tfm); + struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); + unsigned int digest_size = crypto_ahash_digestsize(tfm); + + if (ret) + goto e_free; + + if (rctx->hash_rem) { + /* Save remaining data to buffer */ + scatterwalk_map_and_copy(rctx->buf, rctx->cmd.u.sha.src, + rctx->hash_cnt, rctx->hash_rem, 0); + rctx->buf_count = rctx->hash_rem; + } else + rctx->buf_count = 0; + + memcpy(req->result, rctx->ctx, digest_size); + + /* If we're doing an HMAC, we need to perform that on the final op */ + if (rctx->final && ctx->u.sha.key_len) + ret = ccp_sha_finish_hmac(async_req); + +e_free: + sg_free_table(&rctx->data_sg); + + return ret; +} + +static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes, + unsigned int final) +{ + struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); + struct ccp_ctx *ctx = crypto_ahash_ctx(tfm); + struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); + struct scatterlist *sg; + unsigned int block_size = + crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); + unsigned int len, sg_count; + int ret; + + if (!final && ((nbytes + rctx->buf_count) <= block_size)) { + scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src, + 0, nbytes, 0); + rctx->buf_count += nbytes; + + return 0; + } + + len = rctx->buf_count + nbytes; + + rctx->final = final; + rctx->hash_cnt = final ? len : len & ~(block_size - 1); + rctx->hash_rem = final ? 0 : len & (block_size - 1); + if (!final && (rctx->hash_cnt == len)) { + /* CCP can't do zero length final, so keep some data around */ + rctx->hash_cnt -= block_size; + rctx->hash_rem = block_size; + } + + /* Initialize the context scatterlist */ + sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx)); + + /* Build the data scatterlist table - allocate enough entries for all + * possible data pieces (hmac ipad, buffer, input data) + */ + sg_count = (nbytes) ? sg_nents(req->src) + 2 : 2; + ret = sg_alloc_table(&rctx->data_sg, sg_count, GFP_KERNEL); + if (ret) + return ret; + + sg = NULL; + if (rctx->first && ctx->u.sha.key_len) { + rctx->hash_cnt += block_size; + + sg_init_one(&rctx->pad_sg, ctx->u.sha.ipad, block_size); + sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->pad_sg); + } + + if (rctx->buf_count) { + sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count); + sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg); + } + + if (nbytes) + sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src); + + if (sg) + sg_mark_end(sg); + + rctx->msg_bits += (rctx->hash_cnt << 3); /* Total in bits */ + + memset(&rctx->cmd, 0, sizeof(rctx->cmd)); + INIT_LIST_HEAD(&rctx->cmd.entry); + rctx->cmd.engine = CCP_ENGINE_SHA; + rctx->cmd.u.sha.type = rctx->type; + rctx->cmd.u.sha.ctx = &rctx->ctx_sg; + rctx->cmd.u.sha.ctx_len = sizeof(rctx->ctx); + rctx->cmd.u.sha.src = (sg) ? rctx->data_sg.sgl : NULL; + rctx->cmd.u.sha.src_len = rctx->hash_cnt; + rctx->cmd.u.sha.final = rctx->final; + rctx->cmd.u.sha.msg_bits = rctx->msg_bits; + + rctx->first = 0; + + ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd); + + return ret; +} + +static int ccp_sha_init(struct ahash_request *req) +{ + struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); + struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); + struct ccp_crypto_ahash_alg *alg = + ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm)); + + memset(rctx, 0, sizeof(*rctx)); + + memcpy(rctx->ctx, alg->init, sizeof(rctx->ctx)); + rctx->type = alg->type; + rctx->first = 1; + + return 0; +} + +static int ccp_sha_update(struct ahash_request *req) +{ + return ccp_do_sha_update(req, req->nbytes, 0); +} + +static int ccp_sha_final(struct ahash_request *req) +{ + return ccp_do_sha_update(req, 0, 1); +} + +static int ccp_sha_finup(struct ahash_request *req) +{ + return ccp_do_sha_update(req, req->nbytes, 1); +} + +static int ccp_sha_digest(struct ahash_request *req) +{ + ccp_sha_init(req); + + return ccp_do_sha_update(req, req->nbytes, 1); +} + +static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key, + unsigned int key_len) +{ + struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm)); + struct scatterlist sg; + unsigned int block_size = + crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); + unsigned int digest_size = crypto_ahash_digestsize(tfm); + int i, ret; + + /* Set to zero until complete */ + ctx->u.sha.key_len = 0; + + /* Clear key area to provide zero padding for keys smaller + * than the block size + */ + memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key)); + + if (key_len > block_size) { + /* Must hash the input key */ + sg_init_one(&sg, key, key_len); + ret = ccp_sync_hash(tfm, ctx->u.sha.key, &sg, key_len); + if (ret) { + crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); + return -EINVAL; + } + + key_len = digest_size; + } else + memcpy(ctx->u.sha.key, key, key_len); + + for (i = 0; i < block_size; i++) { + ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ 0x36; + ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ 0x5c; + } + + ctx->u.sha.key_len = key_len; + + return 0; +} + +static int ccp_sha_cra_init(struct crypto_tfm *tfm) +{ + struct ccp_ctx *ctx = crypto_tfm_ctx(tfm); + struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); + + ctx->complete = ccp_sha_complete; + ctx->u.sha.key_len = 0; + + crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx)); + + return 0; +} + +static void ccp_sha_cra_exit(struct crypto_tfm *tfm) +{ +} + +static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm) +{ + struct ccp_ctx *ctx = crypto_tfm_ctx(tfm); + struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm); + struct crypto_ahash *hmac_tfm; + + hmac_tfm = crypto_alloc_ahash(alg->child_alg, + CRYPTO_ALG_TYPE_AHASH, 0); + if (IS_ERR(hmac_tfm)) { + pr_warn("could not load driver %s need for HMAC support\n", + alg->child_alg); + return PTR_ERR(hmac_tfm); + } + + ctx->u.sha.hmac_tfm = hmac_tfm; + + return ccp_sha_cra_init(tfm); +} + +static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm) +{ + struct ccp_ctx *ctx = crypto_tfm_ctx(tfm); + + if (ctx->u.sha.hmac_tfm) + crypto_free_ahash(ctx->u.sha.hmac_tfm); + + ccp_sha_cra_exit(tfm); +} + +static const u32 sha1_init[CCP_SHA_CTXSIZE / sizeof(u32)] = { + cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1), + cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3), + cpu_to_be32(SHA1_H4), 0, 0, 0, +}; + +static const u32 sha224_init[CCP_SHA_CTXSIZE / sizeof(u32)] = { + cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1), + cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3), + cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5), + cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7), +}; + +static const u32 sha256_init[CCP_SHA_CTXSIZE / sizeof(u32)] = { + cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1), + cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3), + cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5), + cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7), +}; + +struct ccp_sha_def { + const char *name; + const char *drv_name; + const u32 *init; + enum ccp_sha_type type; + u32 digest_size; + u32 block_size; +}; + +static struct ccp_sha_def sha_algs[] = { + { + .name = "sha1", + .drv_name = "sha1-ccp", + .init = sha1_init, + .type = CCP_SHA_TYPE_1, + .digest_size = SHA1_DIGEST_SIZE, + .block_size = SHA1_BLOCK_SIZE, + }, + { + .name = "sha224", + .drv_name = "sha224-ccp", + .init = sha224_init, + .type = CCP_SHA_TYPE_224, + .digest_size = SHA224_DIGEST_SIZE, + .block_size = SHA224_BLOCK_SIZE, + }, + { + .name = "sha256", + .drv_name = "sha256-ccp", + .init = sha256_init, + .type = CCP_SHA_TYPE_256, + .digest_size = SHA256_DIGEST_SIZE, + .block_size = SHA256_BLOCK_SIZE, + }, +}; + +static int ccp_register_hmac_alg(struct list_head *head, + const struct ccp_sha_def *def, + const struct ccp_crypto_ahash_alg *base_alg) +{ + struct ccp_crypto_ahash_alg *ccp_alg; + struct ahash_alg *alg; + struct hash_alg_common *halg; + struct crypto_alg *base; + int ret; + + ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL); + if (!ccp_alg) + return -ENOMEM; + + /* Copy the base algorithm and only change what's necessary */ + memcpy(ccp_alg, base_alg, sizeof(*ccp_alg)); + INIT_LIST_HEAD(&ccp_alg->entry); + + strncpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME); + + alg = &ccp_alg->alg; + alg->setkey = ccp_sha_setkey; + + halg = &alg->halg; + + base = &halg->base; + snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name); + snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s", + def->drv_name); + base->cra_init = ccp_hmac_sha_cra_init; + base->cra_exit = ccp_hmac_sha_cra_exit; + + ret = crypto_register_ahash(alg); + if (ret) { + pr_err("%s ahash algorithm registration error (%d)\n", + base->cra_name, ret); + kfree(ccp_alg); + return ret; + } + + list_add(&ccp_alg->entry, head); + + return ret; +} + +static int ccp_register_sha_alg(struct list_head *head, + const struct ccp_sha_def *def) +{ + struct ccp_crypto_ahash_alg *ccp_alg; + struct ahash_alg *alg; + struct hash_alg_common *halg; + struct crypto_alg *base; + int ret; + + ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL); + if (!ccp_alg) + return -ENOMEM; + + INIT_LIST_HEAD(&ccp_alg->entry); + + ccp_alg->init = def->init; + ccp_alg->type = def->type; + + alg = &ccp_alg->alg; + alg->init = ccp_sha_init; + alg->update = ccp_sha_update; + alg->final = ccp_sha_final; + alg->finup = ccp_sha_finup; + alg->digest = ccp_sha_digest; + + halg = &alg->halg; + halg->digestsize = def->digest_size; + + base = &halg->base; + snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name); + snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", + def->drv_name); + base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | + CRYPTO_ALG_KERN_DRIVER_ONLY | + CRYPTO_ALG_NEED_FALLBACK; + base->cra_blocksize = def->block_size; + base->cra_ctxsize = sizeof(struct ccp_ctx); + base->cra_priority = CCP_CRA_PRIORITY; + base->cra_type = &crypto_ahash_type; + base->cra_init = ccp_sha_cra_init; + base->cra_exit = ccp_sha_cra_exit; + base->cra_module = THIS_MODULE; + + ret = crypto_register_ahash(alg); + if (ret) { + pr_err("%s ahash algorithm registration error (%d)\n", + base->cra_name, ret); + kfree(ccp_alg); + return ret; + } + + list_add(&ccp_alg->entry, head); + + ret = ccp_register_hmac_alg(head, def, ccp_alg); + + return ret; +} + +int ccp_register_sha_algs(struct list_head *head) +{ + int i, ret; + + for (i = 0; i < ARRAY_SIZE(sha_algs); i++) { + ret = ccp_register_sha_alg(head, &sha_algs[i]); + if (ret) + return ret; + } + + return 0; +} |