summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorPeter Zijlstra <a.p.zijlstra@chello.nl>2007-10-15 17:00:05 +0200
committerIngo Molnar <mingo@elte.hu>2007-10-15 17:00:05 +0200
commit6d0f0ebd063e36cd0ebae9be15973b02c4245a99 (patch)
tree007ce4f7942afd92cd21d82f89033b38dcb2de59
parent4d78e7b656aa6440c337302fe065338ce840a64e (diff)
downloadlwn-6d0f0ebd063e36cd0ebae9be15973b02c4245a99.tar.gz
lwn-6d0f0ebd063e36cd0ebae9be15973b02c4245a99.zip
sched: simplify adaptive latency
simplify adaptive latency. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Mike Galbraith <efault@gmx.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
-rw-r--r--kernel/sched_fair.c113
1 files changed, 9 insertions, 104 deletions
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c
index 95487e3c8b06..3179d1129a80 100644
--- a/kernel/sched_fair.c
+++ b/kernel/sched_fair.c
@@ -217,77 +217,14 @@ static u64 __sched_period(unsigned long nr_running)
return period;
}
-/*
- * Calculate the preemption granularity needed to schedule every
- * runnable task once per sysctl_sched_latency amount of time.
- * (down to a sensible low limit on granularity)
- *
- * For example, if there are 2 tasks running and latency is 10 msecs,
- * we switch tasks every 5 msecs. If we have 3 tasks running, we have
- * to switch tasks every 3.33 msecs to get a 10 msecs observed latency
- * for each task. We do finer and finer scheduling up to until we
- * reach the minimum granularity value.
- *
- * To achieve this we use the following dynamic-granularity rule:
- *
- * gran = lat/nr - lat/nr/nr
- *
- * This comes out of the following equations:
- *
- * kA1 + gran = kB1
- * kB2 + gran = kA2
- * kA2 = kA1
- * kB2 = kB1 - d + d/nr
- * lat = d * nr
- *
- * Where 'k' is key, 'A' is task A (waiting), 'B' is task B (running),
- * '1' is start of time, '2' is end of time, 'd' is delay between
- * 1 and 2 (during which task B was running), 'nr' is number of tasks
- * running, 'lat' is the the period of each task. ('lat' is the
- * sched_latency that we aim for.)
- */
-static long
-sched_granularity(struct cfs_rq *cfs_rq)
+static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
- unsigned int gran = sysctl_sched_latency;
- unsigned int nr = cfs_rq->nr_running;
-
- if (nr > 1) {
- gran = gran/nr - gran/nr/nr;
- gran = max(gran, sysctl_sched_min_granularity);
- }
+ u64 period = __sched_period(cfs_rq->nr_running);
- return gran;
-}
+ period *= se->load.weight;
+ do_div(period, cfs_rq->load.weight);
-/*
- * We rescale the rescheduling granularity of tasks according to their
- * nice level, but only linearly, not exponentially:
- */
-static long
-niced_granularity(struct sched_entity *curr, unsigned long granularity)
-{
- u64 tmp;
-
- if (likely(curr->load.weight == NICE_0_LOAD))
- return granularity;
- /*
- * Positive nice levels get the same granularity as nice-0:
- */
- if (likely(curr->load.weight < NICE_0_LOAD)) {
- tmp = curr->load.weight * (u64)granularity;
- return (long) (tmp >> NICE_0_SHIFT);
- }
- /*
- * Negative nice level tasks get linearly finer
- * granularity:
- */
- tmp = curr->load.inv_weight * (u64)granularity;
-
- /*
- * It will always fit into 'long':
- */
- return (long) (tmp >> (WMULT_SHIFT-NICE_0_SHIFT));
+ return period;
}
static inline void
@@ -646,36 +583,13 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
*/
static void
__check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
- struct sched_entity *curr, unsigned long granularity)
+ struct sched_entity *curr)
{
- s64 __delta = curr->fair_key - se->fair_key;
unsigned long ideal_runtime, delta_exec;
- /*
- * ideal_runtime is compared against sum_exec_runtime, which is
- * walltime, hence do not scale.
- */
- ideal_runtime = max(sysctl_sched_latency / cfs_rq->nr_running,
- (unsigned long)sysctl_sched_min_granularity);
-
- /*
- * If we executed more than what the latency constraint suggests,
- * reduce the rescheduling granularity. This way the total latency
- * of how much a task is not scheduled converges to
- * sysctl_sched_latency:
- */
+ ideal_runtime = sched_slice(cfs_rq, curr);
delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
if (delta_exec > ideal_runtime)
- granularity = 0;
-
- /*
- * Take scheduling granularity into account - do not
- * preempt the current task unless the best task has
- * a larger than sched_granularity fairness advantage:
- *
- * scale granularity as key space is in fair_clock.
- */
- if (__delta > niced_granularity(curr, granularity))
resched_task(rq_of(cfs_rq)->curr);
}
@@ -749,8 +663,7 @@ static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
if (next == curr)
return;
- __check_preempt_curr_fair(cfs_rq, next, curr,
- sched_granularity(cfs_rq));
+ __check_preempt_curr_fair(cfs_rq, next, curr);
}
/**************************************************
@@ -944,7 +857,6 @@ static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
{
struct task_struct *curr = rq->curr;
struct cfs_rq *cfs_rq = task_cfs_rq(curr);
- unsigned long gran;
if (unlikely(rt_prio(p->prio))) {
update_rq_clock(rq);
@@ -953,15 +865,8 @@ static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
return;
}
- gran = sysctl_sched_wakeup_granularity;
- /*
- * Batch tasks prefer throughput over latency:
- */
- if (unlikely(p->policy == SCHED_BATCH))
- gran = sysctl_sched_batch_wakeup_granularity;
-
if (is_same_group(curr, p))
- __check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
+ __check_preempt_curr_fair(cfs_rq, &p->se, &curr->se);
}
static struct task_struct *pick_next_task_fair(struct rq *rq)