summaryrefslogblamecommitdiff
path: root/virt/kvm/arm/vgic-v3-emul.c
blob: b3f154631515eda6bccef2a6094757cf0f0b135f (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843










































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                          














































































































                                                                                        






















































                                                           


                                                  























                                                
/*
 * GICv3 distributor and redistributor emulation
 *
 * GICv3 emulation is currently only supported on a GICv3 host (because
 * we rely on the hardware's CPU interface virtualization support), but
 * supports both hardware with or without the optional GICv2 backwards
 * compatibility features.
 *
 * Limitations of the emulation:
 * (RAZ/WI: read as zero, write ignore, RAO/WI: read as one, write ignore)
 * - We do not support LPIs (yet). TYPER.LPIS is reported as 0 and is RAZ/WI.
 * - We do not support the message based interrupts (MBIs) triggered by
 *   writes to the GICD_{SET,CLR}SPI_* registers. TYPER.MBIS is reported as 0.
 * - We do not support the (optional) backwards compatibility feature.
 *   GICD_CTLR.ARE resets to 1 and is RAO/WI. If the _host_ GIC supports
 *   the compatiblity feature, you can use a GICv2 in the guest, though.
 * - We only support a single security state. GICD_CTLR.DS is 1 and is RAO/WI.
 * - Priorities are not emulated (same as the GICv2 emulation). Linux
 *   as a guest is fine with this, because it does not use priorities.
 * - We only support Group1 interrupts. Again Linux uses only those.
 *
 * Copyright (C) 2014 ARM Ltd.
 * Author: Andre Przywara <andre.przywara@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>

#include <linux/irqchip/arm-gic-v3.h>
#include <kvm/arm_vgic.h>

#include <asm/kvm_emulate.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>

#include "vgic.h"

static bool handle_mmio_rao_wi(struct kvm_vcpu *vcpu,
			       struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	u32 reg = 0xffffffff;

	vgic_reg_access(mmio, &reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);

	return false;
}

static bool handle_mmio_ctlr(struct kvm_vcpu *vcpu,
			     struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	u32 reg = 0;

	/*
	 * Force ARE and DS to 1, the guest cannot change this.
	 * For the time being we only support Group1 interrupts.
	 */
	if (vcpu->kvm->arch.vgic.enabled)
		reg = GICD_CTLR_ENABLE_SS_G1;
	reg |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;

	vgic_reg_access(mmio, &reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
	if (mmio->is_write) {
		if (reg & GICD_CTLR_ENABLE_SS_G0)
			kvm_info("guest tried to enable unsupported Group0 interrupts\n");
		vcpu->kvm->arch.vgic.enabled = !!(reg & GICD_CTLR_ENABLE_SS_G1);
		vgic_update_state(vcpu->kvm);
		return true;
	}
	return false;
}

/*
 * As this implementation does not provide compatibility
 * with GICv2 (ARE==1), we report zero CPUs in bits [5..7].
 * Also LPIs and MBIs are not supported, so we set the respective bits to 0.
 * Also we report at most 2**10=1024 interrupt IDs (to match 1024 SPIs).
 */
#define INTERRUPT_ID_BITS 10
static bool handle_mmio_typer(struct kvm_vcpu *vcpu,
			      struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	u32 reg;

	reg = (min(vcpu->kvm->arch.vgic.nr_irqs, 1024) >> 5) - 1;

	reg |= (INTERRUPT_ID_BITS - 1) << 19;

	vgic_reg_access(mmio, &reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);

	return false;
}

static bool handle_mmio_iidr(struct kvm_vcpu *vcpu,
			     struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	u32 reg;

	reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
	vgic_reg_access(mmio, &reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);

	return false;
}

static bool handle_mmio_set_enable_reg_dist(struct kvm_vcpu *vcpu,
					    struct kvm_exit_mmio *mmio,
					    phys_addr_t offset)
{
	if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
		return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
					      vcpu->vcpu_id,
					      ACCESS_WRITE_SETBIT);

	vgic_reg_access(mmio, NULL, offset,
			ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
	return false;
}

static bool handle_mmio_clear_enable_reg_dist(struct kvm_vcpu *vcpu,
					      struct kvm_exit_mmio *mmio,
					      phys_addr_t offset)
{
	if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
		return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
					      vcpu->vcpu_id,
					      ACCESS_WRITE_CLEARBIT);

	vgic_reg_access(mmio, NULL, offset,
			ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
	return false;
}

static bool handle_mmio_set_pending_reg_dist(struct kvm_vcpu *vcpu,
					     struct kvm_exit_mmio *mmio,
					     phys_addr_t offset)
{
	if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
		return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset,
						   vcpu->vcpu_id);

	vgic_reg_access(mmio, NULL, offset,
			ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
	return false;
}

static bool handle_mmio_clear_pending_reg_dist(struct kvm_vcpu *vcpu,
					       struct kvm_exit_mmio *mmio,
					       phys_addr_t offset)
{
	if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
		return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset,
						     vcpu->vcpu_id);

	vgic_reg_access(mmio, NULL, offset,
			ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
	return false;
}

static bool handle_mmio_priority_reg_dist(struct kvm_vcpu *vcpu,
					  struct kvm_exit_mmio *mmio,
					  phys_addr_t offset)
{
	u32 *reg;

	if (unlikely(offset < VGIC_NR_PRIVATE_IRQS)) {
		vgic_reg_access(mmio, NULL, offset,
				ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
		return false;
	}

	reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
				   vcpu->vcpu_id, offset);
	vgic_reg_access(mmio, reg, offset,
		ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
	return false;
}

static bool handle_mmio_cfg_reg_dist(struct kvm_vcpu *vcpu,
				     struct kvm_exit_mmio *mmio,
				     phys_addr_t offset)
{
	u32 *reg;

	if (unlikely(offset < VGIC_NR_PRIVATE_IRQS / 4)) {
		vgic_reg_access(mmio, NULL, offset,
				ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
		return false;
	}

	reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
				  vcpu->vcpu_id, offset >> 1);

	return vgic_handle_cfg_reg(reg, mmio, offset);
}

/*
 * We use a compressed version of the MPIDR (all 32 bits in one 32-bit word)
 * when we store the target MPIDR written by the guest.
 */
static u32 compress_mpidr(unsigned long mpidr)
{
	u32 ret;

	ret = MPIDR_AFFINITY_LEVEL(mpidr, 0);
	ret |= MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8;
	ret |= MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16;
	ret |= MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24;

	return ret;
}

static unsigned long uncompress_mpidr(u32 value)
{
	unsigned long mpidr;

	mpidr  = ((value >>  0) & 0xFF) << MPIDR_LEVEL_SHIFT(0);
	mpidr |= ((value >>  8) & 0xFF) << MPIDR_LEVEL_SHIFT(1);
	mpidr |= ((value >> 16) & 0xFF) << MPIDR_LEVEL_SHIFT(2);
	mpidr |= (u64)((value >> 24) & 0xFF) << MPIDR_LEVEL_SHIFT(3);

	return mpidr;
}

/*
 * Lookup the given MPIDR value to get the vcpu_id (if there is one)
 * and store that in the irq_spi_cpu[] array.
 * This limits the number of VCPUs to 255 for now, extending the data
 * type (or storing kvm_vcpu pointers) should lift the limit.
 * Store the original MPIDR value in an extra array to support read-as-written.
 * Unallocated MPIDRs are translated to a special value and caught
 * before any array accesses.
 */
static bool handle_mmio_route_reg(struct kvm_vcpu *vcpu,
				  struct kvm_exit_mmio *mmio,
				  phys_addr_t offset)
{
	struct kvm *kvm = vcpu->kvm;
	struct vgic_dist *dist = &kvm->arch.vgic;
	int spi;
	u32 reg;
	int vcpu_id;
	unsigned long *bmap, mpidr;

	/*
	 * The upper 32 bits of each 64 bit register are zero,
	 * as we don't support Aff3.
	 */
	if ((offset & 4)) {
		vgic_reg_access(mmio, NULL, offset,
				ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
		return false;
	}

	/* This region only covers SPIs, so no handling of private IRQs here. */
	spi = offset / 8;

	/* get the stored MPIDR for this IRQ */
	mpidr = uncompress_mpidr(dist->irq_spi_mpidr[spi]);
	reg = mpidr;

	vgic_reg_access(mmio, &reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);

	if (!mmio->is_write)
		return false;

	/*
	 * Now clear the currently assigned vCPU from the map, making room
	 * for the new one to be written below
	 */
	vcpu = kvm_mpidr_to_vcpu(kvm, mpidr);
	if (likely(vcpu)) {
		vcpu_id = vcpu->vcpu_id;
		bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]);
		__clear_bit(spi, bmap);
	}

	dist->irq_spi_mpidr[spi] = compress_mpidr(reg);
	vcpu = kvm_mpidr_to_vcpu(kvm, reg & MPIDR_HWID_BITMASK);

	/*
	 * The spec says that non-existent MPIDR values should not be
	 * forwarded to any existent (v)CPU, but should be able to become
	 * pending anyway. We simply keep the irq_spi_target[] array empty, so
	 * the interrupt will never be injected.
	 * irq_spi_cpu[irq] gets a magic value in this case.
	 */
	if (likely(vcpu)) {
		vcpu_id = vcpu->vcpu_id;
		dist->irq_spi_cpu[spi] = vcpu_id;
		bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]);
		__set_bit(spi, bmap);
	} else {
		dist->irq_spi_cpu[spi] = VCPU_NOT_ALLOCATED;
	}

	vgic_update_state(kvm);

	return true;
}

/*
 * We should be careful about promising too much when a guest reads
 * this register. Don't claim to be like any hardware implementation,
 * but just report the GIC as version 3 - which is what a Linux guest
 * would check.
 */
static bool handle_mmio_idregs(struct kvm_vcpu *vcpu,
			       struct kvm_exit_mmio *mmio,
			       phys_addr_t offset)
{
	u32 reg = 0;

	switch (offset + GICD_IDREGS) {
	case GICD_PIDR2:
		reg = 0x3b;
		break;
	}

	vgic_reg_access(mmio, &reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);

	return false;
}

static const struct kvm_mmio_range vgic_v3_dist_ranges[] = {
	{
		.base           = GICD_CTLR,
		.len            = 0x04,
		.bits_per_irq   = 0,
		.handle_mmio    = handle_mmio_ctlr,
	},
	{
		.base           = GICD_TYPER,
		.len            = 0x04,
		.bits_per_irq   = 0,
		.handle_mmio    = handle_mmio_typer,
	},
	{
		.base           = GICD_IIDR,
		.len            = 0x04,
		.bits_per_irq   = 0,
		.handle_mmio    = handle_mmio_iidr,
	},
	{
		/* this register is optional, it is RAZ/WI if not implemented */
		.base           = GICD_STATUSR,
		.len            = 0x04,
		.bits_per_irq   = 0,
		.handle_mmio    = handle_mmio_raz_wi,
	},
	{
		/* this write only register is WI when TYPER.MBIS=0 */
		.base		= GICD_SETSPI_NSR,
		.len		= 0x04,
		.bits_per_irq	= 0,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		/* this write only register is WI when TYPER.MBIS=0 */
		.base		= GICD_CLRSPI_NSR,
		.len		= 0x04,
		.bits_per_irq	= 0,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		/* this is RAZ/WI when DS=1 */
		.base		= GICD_SETSPI_SR,
		.len		= 0x04,
		.bits_per_irq	= 0,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		/* this is RAZ/WI when DS=1 */
		.base		= GICD_CLRSPI_SR,
		.len		= 0x04,
		.bits_per_irq	= 0,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		.base		= GICD_IGROUPR,
		.len		= 0x80,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_rao_wi,
	},
	{
		.base		= GICD_ISENABLER,
		.len		= 0x80,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_set_enable_reg_dist,
	},
	{
		.base		= GICD_ICENABLER,
		.len		= 0x80,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_clear_enable_reg_dist,
	},
	{
		.base		= GICD_ISPENDR,
		.len		= 0x80,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_set_pending_reg_dist,
	},
	{
		.base		= GICD_ICPENDR,
		.len		= 0x80,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_clear_pending_reg_dist,
	},
	{
		.base		= GICD_ISACTIVER,
		.len		= 0x80,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		.base		= GICD_ICACTIVER,
		.len		= 0x80,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		.base		= GICD_IPRIORITYR,
		.len		= 0x400,
		.bits_per_irq	= 8,
		.handle_mmio	= handle_mmio_priority_reg_dist,
	},
	{
		/* TARGETSRn is RES0 when ARE=1 */
		.base		= GICD_ITARGETSR,
		.len		= 0x400,
		.bits_per_irq	= 8,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		.base		= GICD_ICFGR,
		.len		= 0x100,
		.bits_per_irq	= 2,
		.handle_mmio	= handle_mmio_cfg_reg_dist,
	},
	{
		/* this is RAZ/WI when DS=1 */
		.base		= GICD_IGRPMODR,
		.len		= 0x80,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		/* this is RAZ/WI when DS=1 */
		.base		= GICD_NSACR,
		.len		= 0x100,
		.bits_per_irq	= 2,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		/* this is RAZ/WI when ARE=1 */
		.base		= GICD_SGIR,
		.len		= 0x04,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		/* this is RAZ/WI when ARE=1 */
		.base		= GICD_CPENDSGIR,
		.len		= 0x10,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		/* this is RAZ/WI when ARE=1 */
		.base           = GICD_SPENDSGIR,
		.len            = 0x10,
		.handle_mmio    = handle_mmio_raz_wi,
	},
	{
		.base		= GICD_IROUTER + 0x100,
		.len		= 0x1ee0,
		.bits_per_irq	= 64,
		.handle_mmio	= handle_mmio_route_reg,
	},
	{
		.base           = GICD_IDREGS,
		.len            = 0x30,
		.bits_per_irq   = 0,
		.handle_mmio    = handle_mmio_idregs,
	},
	{},
};

static bool handle_mmio_set_enable_reg_redist(struct kvm_vcpu *vcpu,
					      struct kvm_exit_mmio *mmio,
					      phys_addr_t offset)
{
	struct kvm_vcpu *redist_vcpu = mmio->private;

	return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
				      redist_vcpu->vcpu_id,
				      ACCESS_WRITE_SETBIT);
}

static bool handle_mmio_clear_enable_reg_redist(struct kvm_vcpu *vcpu,
						struct kvm_exit_mmio *mmio,
						phys_addr_t offset)
{
	struct kvm_vcpu *redist_vcpu = mmio->private;

	return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
				      redist_vcpu->vcpu_id,
				      ACCESS_WRITE_CLEARBIT);
}

static bool handle_mmio_set_pending_reg_redist(struct kvm_vcpu *vcpu,
					       struct kvm_exit_mmio *mmio,
					       phys_addr_t offset)
{
	struct kvm_vcpu *redist_vcpu = mmio->private;

	return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset,
					   redist_vcpu->vcpu_id);
}

static bool handle_mmio_clear_pending_reg_redist(struct kvm_vcpu *vcpu,
						 struct kvm_exit_mmio *mmio,
						 phys_addr_t offset)
{
	struct kvm_vcpu *redist_vcpu = mmio->private;

	return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset,
					     redist_vcpu->vcpu_id);
}

static bool handle_mmio_priority_reg_redist(struct kvm_vcpu *vcpu,
					    struct kvm_exit_mmio *mmio,
					    phys_addr_t offset)
{
	struct kvm_vcpu *redist_vcpu = mmio->private;
	u32 *reg;

	reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
				   redist_vcpu->vcpu_id, offset);
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
	return false;
}

static bool handle_mmio_cfg_reg_redist(struct kvm_vcpu *vcpu,
				       struct kvm_exit_mmio *mmio,
				       phys_addr_t offset)
{
	struct kvm_vcpu *redist_vcpu = mmio->private;

	u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
				       redist_vcpu->vcpu_id, offset >> 1);

	return vgic_handle_cfg_reg(reg, mmio, offset);
}

static const struct kvm_mmio_range vgic_redist_sgi_ranges[] = {
	{
		.base		= GICR_IGROUPR0,
		.len		= 0x04,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_rao_wi,
	},
	{
		.base		= GICR_ISENABLER0,
		.len		= 0x04,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_set_enable_reg_redist,
	},
	{
		.base		= GICR_ICENABLER0,
		.len		= 0x04,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_clear_enable_reg_redist,
	},
	{
		.base		= GICR_ISPENDR0,
		.len		= 0x04,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_set_pending_reg_redist,
	},
	{
		.base		= GICR_ICPENDR0,
		.len		= 0x04,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_clear_pending_reg_redist,
	},
	{
		.base		= GICR_ISACTIVER0,
		.len		= 0x04,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		.base		= GICR_ICACTIVER0,
		.len		= 0x04,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		.base		= GICR_IPRIORITYR0,
		.len		= 0x20,
		.bits_per_irq	= 8,
		.handle_mmio	= handle_mmio_priority_reg_redist,
	},
	{
		.base		= GICR_ICFGR0,
		.len		= 0x08,
		.bits_per_irq	= 2,
		.handle_mmio	= handle_mmio_cfg_reg_redist,
	},
	{
		.base		= GICR_IGRPMODR0,
		.len		= 0x04,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		.base		= GICR_NSACR,
		.len		= 0x04,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{},
};

static bool handle_mmio_ctlr_redist(struct kvm_vcpu *vcpu,
				    struct kvm_exit_mmio *mmio,
				    phys_addr_t offset)
{
	/* since we don't support LPIs, this register is zero for now */
	vgic_reg_access(mmio, NULL, offset,
			ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
	return false;
}

static bool handle_mmio_typer_redist(struct kvm_vcpu *vcpu,
				     struct kvm_exit_mmio *mmio,
				     phys_addr_t offset)
{
	u32 reg;
	u64 mpidr;
	struct kvm_vcpu *redist_vcpu = mmio->private;
	int target_vcpu_id = redist_vcpu->vcpu_id;

	/* the upper 32 bits contain the affinity value */
	if ((offset & ~3) == 4) {
		mpidr = kvm_vcpu_get_mpidr_aff(redist_vcpu);
		reg = compress_mpidr(mpidr);

		vgic_reg_access(mmio, &reg, offset,
				ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
		return false;
	}

	reg = redist_vcpu->vcpu_id << 8;
	if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1)
		reg |= GICR_TYPER_LAST;
	vgic_reg_access(mmio, &reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
	return false;
}

static const struct kvm_mmio_range vgic_redist_ranges[] = {
	{
		.base           = GICR_CTLR,
		.len            = 0x04,
		.bits_per_irq   = 0,
		.handle_mmio    = handle_mmio_ctlr_redist,
	},
	{
		.base           = GICR_TYPER,
		.len            = 0x08,
		.bits_per_irq   = 0,
		.handle_mmio    = handle_mmio_typer_redist,
	},
	{
		.base           = GICR_IIDR,
		.len            = 0x04,
		.bits_per_irq   = 0,
		.handle_mmio    = handle_mmio_iidr,
	},
	{
		.base           = GICR_WAKER,
		.len            = 0x04,
		.bits_per_irq   = 0,
		.handle_mmio    = handle_mmio_raz_wi,
	},
	{
		.base           = GICR_IDREGS,
		.len            = 0x30,
		.bits_per_irq   = 0,
		.handle_mmio    = handle_mmio_idregs,
	},
	{},
};

/*
 * This function splits accesses between the distributor and the two
 * redistributor parts (private/SPI). As each redistributor is accessible
 * from any CPU, we have to determine the affected VCPU by taking the faulting
 * address into account. We then pass this VCPU to the handler function via
 * the private parameter.
 */
#define SGI_BASE_OFFSET SZ_64K
static bool vgic_v3_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
				struct kvm_exit_mmio *mmio)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	unsigned long dbase = dist->vgic_dist_base;
	unsigned long rdbase = dist->vgic_redist_base;
	int nrcpus = atomic_read(&vcpu->kvm->online_vcpus);
	int vcpu_id;
	const struct kvm_mmio_range *mmio_range;

	if (is_in_range(mmio->phys_addr, mmio->len, dbase, GIC_V3_DIST_SIZE)) {
		return vgic_handle_mmio_range(vcpu, run, mmio,
					      vgic_v3_dist_ranges, dbase);
	}

	if (!is_in_range(mmio->phys_addr, mmio->len, rdbase,
	    GIC_V3_REDIST_SIZE * nrcpus))
		return false;

	vcpu_id = (mmio->phys_addr - rdbase) / GIC_V3_REDIST_SIZE;
	rdbase += (vcpu_id * GIC_V3_REDIST_SIZE);
	mmio->private = kvm_get_vcpu(vcpu->kvm, vcpu_id);

	if (mmio->phys_addr >= rdbase + SGI_BASE_OFFSET) {
		rdbase += SGI_BASE_OFFSET;
		mmio_range = vgic_redist_sgi_ranges;
	} else {
		mmio_range = vgic_redist_ranges;
	}
	return vgic_handle_mmio_range(vcpu, run, mmio, mmio_range, rdbase);
}

static bool vgic_v3_queue_sgi(struct kvm_vcpu *vcpu, int irq)
{
	if (vgic_queue_irq(vcpu, 0, irq)) {
		vgic_dist_irq_clear_pending(vcpu, irq);
		vgic_cpu_irq_clear(vcpu, irq);
		return true;
	}

	return false;
}

static int vgic_v3_map_resources(struct kvm *kvm,
				 const struct vgic_params *params)
{
	int ret = 0;
	struct vgic_dist *dist = &kvm->arch.vgic;

	if (!irqchip_in_kernel(kvm))
		return 0;

	mutex_lock(&kvm->lock);

	if (vgic_ready(kvm))
		goto out;

	if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) ||
	    IS_VGIC_ADDR_UNDEF(dist->vgic_redist_base)) {
		kvm_err("Need to set vgic distributor addresses first\n");
		ret = -ENXIO;
		goto out;
	}

	/*
	 * For a VGICv3 we require the userland to explicitly initialize
	 * the VGIC before we need to use it.
	 */
	if (!vgic_initialized(kvm)) {
		ret = -EBUSY;
		goto out;
	}

	kvm->arch.vgic.ready = true;
out:
	if (ret)
		kvm_vgic_destroy(kvm);
	mutex_unlock(&kvm->lock);
	return ret;
}

static int vgic_v3_init_model(struct kvm *kvm)
{
	int i;
	u32 mpidr;
	struct vgic_dist *dist = &kvm->arch.vgic;
	int nr_spis = dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;

	dist->irq_spi_mpidr = kcalloc(nr_spis, sizeof(dist->irq_spi_mpidr[0]),
				      GFP_KERNEL);

	if (!dist->irq_spi_mpidr)
		return -ENOMEM;

	/* Initialize the target VCPUs for each IRQ to VCPU 0 */
	mpidr = compress_mpidr(kvm_vcpu_get_mpidr_aff(kvm_get_vcpu(kvm, 0)));
	for (i = VGIC_NR_PRIVATE_IRQS; i < dist->nr_irqs; i++) {
		dist->irq_spi_cpu[i - VGIC_NR_PRIVATE_IRQS] = 0;
		dist->irq_spi_mpidr[i - VGIC_NR_PRIVATE_IRQS] = mpidr;
		vgic_bitmap_set_irq_val(dist->irq_spi_target, 0, i, 1);
	}

	return 0;
}

/* GICv3 does not keep track of SGI sources anymore. */
static void vgic_v3_add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
{
}

void vgic_v3_init_emulation(struct kvm *kvm)
{
	struct vgic_dist *dist = &kvm->arch.vgic;

	dist->vm_ops.handle_mmio = vgic_v3_handle_mmio;
	dist->vm_ops.queue_sgi = vgic_v3_queue_sgi;
	dist->vm_ops.add_sgi_source = vgic_v3_add_sgi_source;
	dist->vm_ops.init_model = vgic_v3_init_model;
	dist->vm_ops.map_resources = vgic_v3_map_resources;

	kvm->arch.max_vcpus = KVM_MAX_VCPUS;
}

/*
 * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
 * generation register ICC_SGI1R_EL1) with a given VCPU.
 * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
 * return -1.
 */
static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
{
	unsigned long affinity;
	int level0;

	/*
	 * Split the current VCPU's MPIDR into affinity level 0 and the
	 * rest as this is what we have to compare against.
	 */
	affinity = kvm_vcpu_get_mpidr_aff(vcpu);
	level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
	affinity &= ~MPIDR_LEVEL_MASK;

	/* bail out if the upper three levels don't match */
	if (sgi_aff != affinity)
		return -1;

	/* Is this VCPU's bit set in the mask ? */
	if (!(sgi_cpu_mask & BIT(level0)))
		return -1;

	return level0;
}

#define SGI_AFFINITY_LEVEL(reg, level) \
	((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
	>> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))

/**
 * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
 * @vcpu: The VCPU requesting a SGI
 * @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU
 *
 * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
 * This will trap in sys_regs.c and call this function.
 * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
 * target processors as well as a bitmask of 16 Aff0 CPUs.
 * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
 * check for matching ones. If this bit is set, we signal all, but not the
 * calling VCPU.
 */
void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg)
{
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *c_vcpu;
	struct vgic_dist *dist = &kvm->arch.vgic;
	u16 target_cpus;
	u64 mpidr;
	int sgi, c;
	int vcpu_id = vcpu->vcpu_id;
	bool broadcast;
	int updated = 0;

	sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
	broadcast = reg & BIT(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
	target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
	mpidr = SGI_AFFINITY_LEVEL(reg, 3);
	mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
	mpidr |= SGI_AFFINITY_LEVEL(reg, 1);

	/*
	 * We take the dist lock here, because we come from the sysregs
	 * code path and not from the MMIO one (which already takes the lock).
	 */
	spin_lock(&dist->lock);

	/*
	 * We iterate over all VCPUs to find the MPIDRs matching the request.
	 * If we have handled one CPU, we clear it's bit to detect early
	 * if we are already finished. This avoids iterating through all
	 * VCPUs when most of the times we just signal a single VCPU.
	 */
	kvm_for_each_vcpu(c, c_vcpu, kvm) {

		/* Exit early if we have dealt with all requested CPUs */
		if (!broadcast && target_cpus == 0)
			break;

		 /* Don't signal the calling VCPU */
		if (broadcast && c == vcpu_id)
			continue;

		if (!broadcast) {
			int level0;

			level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
			if (level0 == -1)
				continue;

			/* remove this matching VCPU from the mask */
			target_cpus &= ~BIT(level0);
		}

		/* Flag the SGI as pending */
		vgic_dist_irq_set_pending(c_vcpu, sgi);
		updated = 1;
		kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
	}
	if (updated)
		vgic_update_state(vcpu->kvm);
	spin_unlock(&dist->lock);
	if (updated)
		vgic_kick_vcpus(vcpu->kvm);
}

static int vgic_v3_create(struct kvm_device *dev, u32 type)
{
	return kvm_vgic_create(dev->kvm, type);
}

static void vgic_v3_destroy(struct kvm_device *dev)
{
	kfree(dev);
}

static int vgic_v3_set_attr(struct kvm_device *dev,
			    struct kvm_device_attr *attr)
{
	int ret;

	ret = vgic_set_common_attr(dev, attr);
	if (ret != -ENXIO)
		return ret;

	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
		return -ENXIO;
	}

	return -ENXIO;
}

static int vgic_v3_get_attr(struct kvm_device *dev,
			    struct kvm_device_attr *attr)
{
	int ret;

	ret = vgic_get_common_attr(dev, attr);
	if (ret != -ENXIO)
		return ret;

	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
		return -ENXIO;
	}

	return -ENXIO;
}

static int vgic_v3_has_attr(struct kvm_device *dev,
			    struct kvm_device_attr *attr)
{
	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR:
		switch (attr->attr) {
		case KVM_VGIC_V2_ADDR_TYPE_DIST:
		case KVM_VGIC_V2_ADDR_TYPE_CPU:
			return -ENXIO;
		case KVM_VGIC_V3_ADDR_TYPE_DIST:
		case KVM_VGIC_V3_ADDR_TYPE_REDIST:
			return 0;
		}
		break;
	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
		return -ENXIO;
	case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
		return 0;
	case KVM_DEV_ARM_VGIC_GRP_CTRL:
		switch (attr->attr) {
		case KVM_DEV_ARM_VGIC_CTRL_INIT:
			return 0;
		}
	}
	return -ENXIO;
}

struct kvm_device_ops kvm_arm_vgic_v3_ops = {
	.name = "kvm-arm-vgic-v3",
	.create = vgic_v3_create,
	.destroy = vgic_v3_destroy,
	.set_attr = vgic_v3_set_attr,
	.get_attr = vgic_v3_get_attr,
	.has_attr = vgic_v3_has_attr,
};