/*
* Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
*
* Parts came from builtin-{top,stat,record}.c, see those files for further
* copyright notes.
*
* Released under the GPL v2. (and only v2, not any later version)
*/
#include "util.h"
#include <api/fs/debugfs.h>
#include <poll.h>
#include "cpumap.h"
#include "thread_map.h"
#include "target.h"
#include "evlist.h"
#include "evsel.h"
#include "debug.h"
#include <unistd.h>
#include "parse-events.h"
#include "parse-options.h"
#include <sys/mman.h>
#include <linux/bitops.h>
#include <linux/hash.h>
#define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
#define SID(e, x, y) xyarray__entry(e->sample_id, x, y)
void perf_evlist__init(struct perf_evlist *evlist, struct cpu_map *cpus,
struct thread_map *threads)
{
int i;
for (i = 0; i < PERF_EVLIST__HLIST_SIZE; ++i)
INIT_HLIST_HEAD(&evlist->heads[i]);
INIT_LIST_HEAD(&evlist->entries);
perf_evlist__set_maps(evlist, cpus, threads);
evlist->workload.pid = -1;
}
struct perf_evlist *perf_evlist__new(void)
{
struct perf_evlist *evlist = zalloc(sizeof(*evlist));
if (evlist != NULL)
perf_evlist__init(evlist, NULL, NULL);
return evlist;
}
struct perf_evlist *perf_evlist__new_default(void)
{
struct perf_evlist *evlist = perf_evlist__new();
if (evlist && perf_evlist__add_default(evlist)) {
perf_evlist__delete(evlist);
evlist = NULL;
}
return evlist;
}
/**
* perf_evlist__set_id_pos - set the positions of event ids.
* @evlist: selected event list
*
* Events with compatible sample types all have the same id_pos
* and is_pos. For convenience, put a copy on evlist.
*/
void perf_evlist__set_id_pos(struct perf_evlist *evlist)
{
struct perf_evsel *first = perf_evlist__first(evlist);
evlist->id_pos = first->id_pos;
evlist->is_pos = first->is_pos;
}
static void perf_evlist__update_id_pos(struct perf_evlist *evlist)
{
struct perf_evsel *evsel;
evlist__for_each(evlist, evsel)
perf_evsel__calc_id_pos(evsel);
perf_evlist__set_id_pos(evlist);
}
static void perf_evlist__purge(struct perf_evlist *evlist)
{
struct perf_evsel *pos, *n;
evlist__for_each_safe(evlist, n, pos) {
list_del_init(&pos->node);
perf_evsel__delete(pos);
}
evlist->nr_entries = 0;
}
void perf_evlist__exit(struct perf_evlist *evlist)
{
zfree(&evlist->mmap);
zfree(&evlist->pollfd);
}
void perf_evlist__delete(struct perf_evlist *evlist)
{
perf_evlist__munmap(evlist);
perf_evlist__close(evlist);
cpu_map__delete(evlist->cpus);
thread_map__delete(evlist->threads);
evlist->cpus = NULL;
evlist->threads = NULL;
perf_evlist__purge(evlist);
perf_evlist__exit(evlist);
free(evlist);
}
void perf_evlist__add(struct perf_evlist *evlist, struct perf_evsel *entry)
{
list_add_tail(&entry->node, &evlist->entries);
entry->idx = evlist->nr_entries;
if (!evlist->nr_entries++)
perf_evlist__set_id_pos(evlist);
}
void perf_evlist__splice_list_tail(struct perf_evlist *evlist,
struct list_head *list,
int nr_entries)
{
bool set_id_pos = !evlist->nr_entries;
list_splice_tail(list, &evlist->entries);
evlist->nr_entries += nr_entries;
if (set_id_pos)
perf_evlist__set_id_pos(evlist);
}
void __perf_evlist__set_leader(struct list_head *list)
{
struct perf_evsel *evsel, *leader;
leader = list_entry(list->next, struct perf_evsel, node);
evsel = list_entry(list->prev, struct perf_evsel, node);
leader->nr_members = evsel->idx - leader->idx + 1;
__evlist__for_each(list, evsel) {
evsel->leader = leader;
}
}
void perf_evlist__set_leader(struct perf_evlist *evlist)
{
if (evlist->nr_entries) {
evlist->nr_groups = evlist->nr_entries > 1 ? 1 : 0;
__perf_evlist__set_leader(&evlist->entries);
}
}
int perf_evlist__add_default(struct perf_evlist *evlist)
{
struct perf_event_attr attr = {
.type = PERF_TYPE_HARDWARE,
.config = PERF_COUNT_HW_CPU_CYCLES,
};
struct perf_evsel *evsel;
event_attr_init(&attr);
evsel = perf_evsel__new(&attr);
if (evsel == NULL)
goto error;
/* use strdup() because free(evsel) assumes name is allocated */
evsel->name = strdup("cycles");
if (!evsel->name)
goto error_free;
perf_evlist__add(evlist, evsel);
return 0;
error_free:
perf_evsel__delete(evsel);
error:
return -ENOMEM;
}
static int perf_evlist__add_attrs(struct perf_evlist *evlist,
struct perf_event_attr *attrs, size_t nr_attrs)
{
struct perf_evsel *evsel, *n;
LIST_HEAD(head);
size_t i;
for (i = 0; i < nr_attrs; i++) {
evsel = perf_evsel__new_idx(attrs + i, evlist->nr_entries + i);
if (evsel == NULL)
goto out_delete_partial_list;
list_add_tail(&evsel->node, &head);
}
perf_evlist__splice_list_tail(evlist, &head, nr_attrs);
return 0;
out_delete_partial_list:
__evlist__for_each_safe(&head, n, evsel)
perf_evsel__delete(evsel);
return -1;
}
int __perf_evlist__add_default_attrs(struct perf_evlist *evlist,
struct perf_event_attr *attrs, size_t nr_attrs)
{
size_t i;
for (i = 0; i < nr_attrs; i++)
event_attr_init(attrs + i);
return perf_evlist__add_attrs(evlist, attrs, nr_attrs);
}
struct perf_evsel *
perf_evlist__find_tracepoint_by_id(struct perf_evlist *evlist, int id)
{
struct perf_evsel *evsel;
evlist__for_each(evlist, evsel) {
if (evsel->attr.type == PERF_TYPE_TRACEPOINT &&
(int)evsel->attr.config == id)
return evsel;
}
return NULL;
}
struct perf_evsel *
perf_evlist__find_tracepoint_by_name(struct perf_evlist *evlist,
const char *name)
{
struct perf_evsel *evsel;
evlist__for_each(evlist, evsel) {
if ((evsel->attr.type == PERF_TYPE_TRACEPOINT) &&
(strcmp(evsel->name, name) == 0))
return evsel;
}
return NULL;
}
int perf_evlist__add_newtp(struct perf_evlist *evlist,
const char *sys, const char *name, void *handler)
{
struct perf_evsel *evsel = perf_evsel__newtp(sys, name);
if (evsel == NULL)
return -1;
evsel->handler = handler;
perf_evlist__add(evlist, evsel);
return 0;
}
void perf_evlist__disable(struct perf_evlist *evlist)
{
int cpu, thread;
struct perf_evsel *pos;
int nr_cpus = cpu_map__nr(evlist->cpus);
int nr_threads = thread_map__nr(evlist->threads);
for (cpu = 0; cpu < nr_cpus; cpu++) {
evlist__for_each(evlist, pos) {
if (!perf_evsel__is_group_leader(pos) || !pos->fd)
continue;
for (thread = 0; thread < nr_threads; thread++)
ioctl(FD(pos, cpu, thread),
PERF_EVENT_IOC_DISABLE, 0);
}
}
}
void perf_evlist__enable(struct perf_evlist *evlist)
{
int cpu, thread;
struct perf_evsel *pos;
int nr_cpus = cpu_map__nr(evlist->cpus);
int nr_threads = thread_map__nr(evlist->threads);
for (cpu = 0; cpu < nr_cpus; cpu++) {
evlist__for_each(evlist, pos) {
if (!perf_evsel__is_group_leader(pos) || !pos->fd)
continue;
for (thread = 0; thread < nr_threads; thread++)
ioctl(FD(pos, cpu, thread),
PERF_EVENT_IOC_ENABLE, 0);
}
}
}
int perf_evlist__disable_event(struct perf_evlist *evlist,
struct perf_evsel *evsel)
{
int cpu, thread, err;
if (!evsel->fd)
return 0;
for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
for (thread = 0; thread < evlist->threads->nr; thread++) {
err = ioctl(FD(evsel, cpu, thread),
PERF_EVENT_IOC_DISABLE, 0);
if (err)
return err;
}
}
return 0;
}
int perf_evlist__enable_event(struct perf_evlist *evlist,
struct perf_evsel *evsel)
{
int cpu, thread, err;
if (!evsel->fd)
return -EINVAL;
for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
for (thread = 0; thread < evlist->threads->nr; thread++) {
err = ioctl(FD(evsel, cpu, thread),
PERF_EVENT_IOC_ENABLE, 0);
if (err)
return err;
}
}
return 0;
}
static int perf_evlist__alloc_pollfd(struct perf_evlist *evlist)
{
int nr_cpus = cpu_map__nr(evlist->cpus);
int nr_threads = thread_map__nr(evlist->threads);
int nfds = nr_cpus * nr_threads * evlist->nr_entries;
evlist->pollfd = malloc(sizeof(struct pollfd) * nfds);
return evlist->pollfd != NULL ? 0 : -ENOMEM;
}
void perf_evlist__add_pollfd(struct perf_evlist *evlist, int fd)
{
fcntl(fd, F_SETFL, O_NONBLOCK);
evlist->pollfd[evlist->nr_fds].fd = fd;
evlist->pollfd[evlist->nr_fds].events = POLLIN;
evlist->nr_fds++;
}
static void perf_evlist__id_hash(struct perf_evlist *evlist,
struct perf_evsel *evsel,
int cpu, int thread, u64 id)
{
int hash;
struct perf_sample_id *sid = SID(evsel, cpu, thread);
sid->id = id;
sid->evsel = evsel;
hash = hash_64(sid->id, PERF_EVLIST__HLIST_BITS);
hlist_add_head(&sid->node, &evlist->heads[hash]);
}
void perf_evlist__id_add(struct perf_evlist *evlist, struct perf_evsel *evsel,
int cpu, int thread, u64 id)
{
perf_evlist__id_hash(evlist, evsel, cpu, thread, id);
evsel->id[evsel->ids++] = id;
}
static int perf_evlist__id_add_fd(struct perf_evlist *evlist,
struct perf_evsel *evsel,
int cpu, int thread, int fd)
{
u64 read_data[4] = { 0, };
int id_idx = 1; /* The first entry is the counter value */
u64 id;
int ret;
ret = ioctl(fd, PERF_EVENT_IOC_ID, &id);
if (!ret)
goto add;
if (errno != ENOTTY)
return -1;
/* Legacy way to get event id.. All hail to old kernels! */
/*
* This way does not work with group format read, so bail
* out in that case.
*/
if (perf_evlist__read_format(evlist) & PERF_FORMAT_GROUP)
return -1;
if (!(evsel->attr.read_format & PERF_FORMAT_ID) ||
read(fd, &read_data, sizeof(read_data)) == -1)
return -1;
if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
++id_idx;
if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
++id_idx;
id = read_data[id_idx];
add:
perf_evlist__id_add(evlist, evsel, cpu, thread, id);
return 0;
}
struct perf_sample_id *perf_evlist__id2sid(struct perf_evlist *evlist, u64 id)
{
struct hlist_head *head;
struct perf_sample_id *sid;
int hash;
hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
head = &evlist->heads[hash];
hlist_for_each_entry(sid, head, node)
if (sid->id == id)
return sid;
return NULL;
}
struct perf_evsel *perf_evlist__id2evsel(struct perf_evlist *evlist, u64 id)
{
struct perf_sample_id *sid;
if (evlist->nr_entries == 1)
return perf_evlist__first(evlist);
sid = perf_evlist__id2sid(evlist, id);
if (sid)
return sid->evsel;
if (!perf_evlist__sample_id_all(evlist))
return perf_evlist__first(evlist);
return NULL;
}
static int perf_evlist__event2id(struct perf_evlist *evlist,
union perf_event *event, u64 *id)
{
const u64 *array = event->sample.array;
ssize_t n;
n = (event->header.size - sizeof(event->header)) >> 3;
if (event->header.type == PERF_RECORD_SAMPLE) {
if (evlist->id_pos >= n)
return -1;
*id = array[evlist->id_pos];
} else {
if (evlist->is_pos > n)
return -1;
n -= evlist->is_pos;
*id = array[n];
}
return 0;
}
static struct perf_evsel *perf_evlist__event2evsel(struct perf_evlist *evlist,
union perf_event *event)
{
struct perf_evsel *first = perf_evlist__first(evlist);
struct hlist_head *head;
struct perf_sample_id *sid;
int hash;
u64 id;
if (evlist->nr_entries == 1)
return first;
if (!first->attr.sample_id_all &&
event->header.type != PERF_RECORD_SAMPLE)
return first;
if (perf_evlist__event2id(evlist, event, &id))
return NULL;
/* Synthesized events have an id of zero */
if (!id)
return first;
hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
head = &evlist->heads[hash];
hlist_for_each_entry(sid, head, node) {
if (sid->id == id)
return sid->evsel;
}
return NULL;
}
union perf_event *perf_evlist__mmap_read(struct perf_evlist *evlist, int idx)
{
struct perf_mmap *md = &evlist->mmap[idx];
unsigned int head = perf_mmap__read_head(md);
unsigned int old = md->prev;
unsigned char *data = md->base + page_size;
union perf_event *event = NULL;
if (evlist->overwrite) {
/*
* If we're further behind than half the buffer, there's a chance
* the writer will bite our tail and mess up the samples under us.
*
* If we somehow ended up ahead of the head, we got messed up.
*
* In either case, truncate and restart at head.
*/
int diff = head - old;
if (diff > md->mask / 2 || diff < 0) {
fprintf(stderr, "WARNING: failed to keep up with mmap data.\n");
/*
* head points to a known good entry, start there.
*/
old = head;
}
}
if (old != head) {
size_t size;
event = (union perf_event *)&data[old & md->mask];
size = event->header.size;
/*
* Event straddles the mmap boundary -- header should always
* be inside due to u64 alignment of output.
*/
if ((old & md->mask) + size != ((old + size) & md->mask)) {
unsigned int offset = old;
unsigned int len = min(sizeof(*event), size), cpy;
void *dst = md->event_copy;
do {
cpy = min(md->mask + 1 - (offset & md->mask), len);
memcpy(dst, &data[offset & md->mask], cpy);
offset += cpy;
dst += cpy;
len -= cpy;
} while (len);
event = (union perf_event *) md->event_copy;
}
old += size;
}
md->prev = old;
return event;
}
void perf_evlist__mmap_consume(struct perf_evlist *evlist, int idx)
{
if (!evlist->overwrite) {
struct perf_mmap *md = &evlist->mmap[idx];
unsigned int old = md->prev;
perf_mmap__write_tail(md, old);
}
}
static void __perf_evlist__munmap(struct perf_evlist *evlist, int idx)
{
if (evlist->mmap[idx].base != NULL) {
munmap(evlist->mmap[idx].base, evlist->mmap_len);
evlist->mmap[idx].base = NULL;
}
}
void perf_evlist__munmap(struct perf_evlist *evlist)
{
int i;
if (evlist->mmap == NULL)
return;
for (i = 0; i < evlist->nr_mmaps; i++)
__perf_evlist__munmap(evlist, i);
zfree(&evlist->mmap);
}
static int perf_evlist__alloc_mmap(struct perf_evlist *evlist)
{
evlist->nr_mmaps = cpu_map__nr(evlist->cpus);
if (cpu_map__empty(evlist->cpus))
evlist->nr_mmaps = thread_map__nr(evlist->threads);
evlist->mmap = zalloc(evlist->nr_mmaps * sizeof(struct perf_mmap));
return evlist->mmap != NULL ? 0 : -ENOMEM;
}
static int __perf_evlist__mmap(struct perf_evlist *evlist,
int idx, int prot, int mask, int fd)
{
evlist->mmap[idx].prev = 0;
evlist->mmap[idx].mask = mask;
evlist->mmap[idx].base = mmap(NULL, evlist->mmap_len, prot,
MAP_SHARED, fd, 0);
if (evlist->mmap[idx].base == MAP_FAILED) {
pr_debug2("failed to mmap perf event ring buffer, error %d\n",
errno);
evlist->mmap[idx].base = NULL;
return -1;
}
perf_evlist__add_pollfd(evlist, fd);
return 0;
}
static int perf_evlist__mmap_per_evsel(struct perf_evlist *evlist, int idx,
int prot, int mask, int cpu, int thread,
int *output)
{
struct perf_evsel *evsel;
evlist__for_each(evlist, evsel) {
int fd = FD(evsel, cpu, thread);
if (*output == -1) {
*output = fd;
if (__perf_evlist__mmap(evlist, idx, prot, mask,
*output) < 0)
return -1;
} else {
if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, *output) != 0)
return -1;
}
if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
perf_evlist__id_add_fd(evlist, evsel, cpu, thread, fd) < 0)
return -1;
}
return 0;
}
static int perf_evlist__mmap_per_cpu(struct perf_evlist *evlist, int prot,
int mask)
{
int cpu, thread;
int nr_cpus = cpu_map__nr(evlist->cpus);
int nr_threads = thread_map__nr(evlist->threads);
pr_debug2("perf event ring buffer mmapped per cpu\n");
for (cpu = 0; cpu < nr_cpus; cpu++) {
int output = -1;
for (thread = 0; thread < nr_threads; thread++) {
if (perf_evlist__mmap_per_evsel(evlist, cpu, prot, mask,
cpu, thread, &output))
goto out_unmap;
}
}
return 0;
out_unmap:
for (cpu = 0; cpu < nr_cpus; cpu++)
__perf_evlist__munmap(evlist, cpu);
return -1;
}
static int perf_evlist__mmap_per_thread(struct perf_evlist *evlist, int prot,
int mask)
{
int thread;
int nr_threads = thread_map__nr(evlist->threads);
pr_debug2("perf event ring buffer mmapped per thread\n");
for (thread = 0; thread < nr_threads; thread++) {
int output = -1;
if (perf_evlist__mmap_per_evsel(evlist, thread, prot, mask, 0,
thread, &output))
goto out_unmap;
}
return 0;
out_unmap:
for (thread = 0; thread < nr_threads; thread++)
__perf_evlist__munmap(evlist, thread);
return -1;
}
static size_t perf_evlist__mmap_size(unsigned long pages)
{
/* 512 kiB: default amount of unprivileged mlocked memory */
if (pages == UINT_MAX)
pages = (512 * 1024) / page_size;
else if (!is_power_of_2(pages))
return 0;
return (pages + 1) * page_size;
}
static long parse_pages_arg(const char *str, unsigned long min,
unsigned long max)
{
unsigned long pages, val;
static struct parse_tag tags[] = {
{ .tag = 'B', .mult = 1 },
{ .tag = 'K', .mult = 1 << 10 },
{ .tag = 'M', .mult = 1 << 20 },
{ .tag = 'G', .mult = 1 << 30 },
{ .tag = 0 },
};
if (str == NULL)
return -EINVAL;
val = parse_tag_value(str, tags);
if (val != (unsigned long) -1) {
/* we got file size value */
pages = PERF_ALIGN(val, page_size) / page_size;
} else {
/* we got pages count value */
char *eptr;
pages = strtoul(str, &eptr, 10);
if (*eptr != '\0')
return -EINVAL;
}
if (pages == 0 && min == 0) {
/* leave number of pages at 0 */
} else if (!is_power_of_2(pages)) {
/* round pages up to next power of 2 */
pages = next_pow2_l(pages);
if (!pages)
return -EINVAL;
pr_info("rounding mmap pages size to %lu bytes (%lu pages)\n",
pages * page_size, pages);
}
if (pages > max)
return -EINVAL;
return pages;
}
int perf_evlist__parse_mmap_pages(const struct option *opt, const char *str,
int unset __maybe_unused)
{
unsigned int *mmap_pages = opt->value;
unsigned long max = UINT_MAX;
long pages;
if (max > SIZE_MAX / page_size)
max = SIZE_MAX / page_size;
pages = parse_pages_arg(str, 1, max);
if (pages < 0) {
pr_err("Invalid argument for --mmap_pages/-m\n");
return -1;
}
*mmap_pages = pages;
return 0;
}
/**
* perf_evlist__mmap - Create mmaps to receive events.
* @evlist: list of events
* @pages: map length in pages
* @overwrite: overwrite older events?
*
* If @overwrite is %false the user needs to signal event consumption using
* perf_mmap__write_tail(). Using perf_evlist__mmap_read() does this
* automatically.
*
* Return: %0 on success, negative error code otherwise.
*/
int perf_evlist__mmap(struct perf_evlist *evlist, unsigned int pages,
bool overwrite)
{
struct perf_evsel *evsel;
const struct cpu_map *cpus = evlist->cpus;
const struct thread_map *threads = evlist->threads;
int prot = PROT_READ | (overwrite ? 0 : PROT_WRITE), mask;
if (evlist->mmap == NULL && perf_evlist__alloc_mmap(evlist) < 0)
return -ENOMEM;
if (evlist->pollfd == NULL && perf_evlist__alloc_pollfd(evlist) < 0)
return -ENOMEM;
evlist->overwrite = overwrite;
evlist->mmap_len = perf_evlist__mmap_size(pages);
pr_debug("mmap size %zuB\n", evlist->mmap_len);
mask = evlist->mmap_len - page_size - 1;
evlist__for_each(evlist, evsel) {
if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
evsel->sample_id == NULL &&
perf_evsel__alloc_id(evsel, cpu_map__nr(cpus), threads->nr) < 0)
return -ENOMEM;
}
if (cpu_map__empty(cpus))
return perf_evlist__mmap_per_thread(evlist, prot, mask);
return perf_evlist__mmap_per_cpu(evlist, prot, mask);
}
int perf_evlist__create_maps(struct perf_evlist *evlist, struct target *target)
{
evlist->threads = thread_map__new_str(target->pid, target->tid,
target->uid);
if (evlist->threads == NULL)
return -1;
if (target__uses_dummy_map(target))
evlist->cpus = cpu_map__dummy_new();
else
evlist->cpus = cpu_map__new(target->cpu_list);
if (evlist->cpus == NULL)
goto out_delete_threads;
return 0;
out_delete_threads:
thread_map__delete(evlist->threads);
return -1;
}
int perf_evlist__apply_filters(struct perf_evlist *evlist)
{
struct perf_evsel *evsel;
int err = 0;
const int ncpus = cpu_map__nr(evlist->cpus),
nthreads = thread_map__nr(evlist->threads);
evlist__for_each(evlist, evsel) {
if (evsel->filter == NULL)
continue;
err = perf_evsel__set_filter(evsel, ncpus, nthreads, evsel->filter);
if (err)
break;
}
return err;
}
int perf_evlist__set_filter(struct perf_evlist *evlist, const char *filter)
{
struct perf_evsel *evsel;
int err = 0;
const int ncpus = cpu_map__nr(evlist->cpus),
nthreads = thread_map__nr(evlist->threads);
evlist__for_each(evlist, evsel) {
err = perf_evsel__set_filter(evsel, ncpus, nthreads, filter);
if (err)
break;
}
return err;
}
bool perf_evlist__valid_sample_type(struct perf_evlist *evlist)
{
struct perf_evsel *pos;
if (evlist->nr_entries == 1)
return true;
if (evlist->id_pos < 0 || evlist->is_pos < 0)
return false;
evlist__for_each(evlist, pos) {
if (pos->id_pos != evlist->id_pos ||
pos->is_pos != evlist->is_pos)
return false;
}
return true;
}
u64 __perf_evlist__combined_sample_type(struct perf_evlist *evlist)
{
struct perf_evsel *evsel;
if (evlist->combined_sample_type)
return evlist->combined_sample_type;
evlist__for_each(evlist, evsel)
evlist->combined_sample_type |= evsel->attr.sample_type;
return evlist->combined_sample_type;
}
u64 perf_evlist__combined_sample_type(struct perf_evlist *evlist)
{
evlist->combined_sample_type = 0;
return __perf_evlist__combined_sample_type(evlist);
}
bool perf_evlist__valid_read_format(struct perf_evlist *evlist)
{
struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
u64 read_format = first->attr.read_format;
u64 sample_type = first->attr.sample_type;
evlist__for_each(evlist, pos) {
if (read_format != pos->attr.read_format)
return false;
}
/* PERF_SAMPLE_READ imples PERF_FORMAT_ID. */
if ((sample_type & PERF_SAMPLE_READ) &&
!(read_format & PERF_FORMAT_ID)) {
return false;
}
return true;
}
u64 perf_evlist__read_format(struct perf_evlist *evlist)
{
struct perf_evsel *first = perf_evlist__first(evlist);
return first->attr.read_format;
}
u16 perf_evlist__id_hdr_size(struct perf_evlist *evlist)
{
struct perf_evsel *first = perf_evlist__first(evlist);
struct perf_sample *data;
u64 sample_type;
u16 size = 0;
if (!first->attr.sample_id_all)
goto out;
sample_type = first->attr.sample_type;
if (sample_type & PERF_SAMPLE_TID)
size += sizeof(data->tid) * 2;
if (sample_type & PERF_SAMPLE_TIME)
size += sizeof(data->time);
if (sample_type & PERF_SAMPLE_ID)
size += sizeof(data->id);
if (sample_type & PERF_SAMPLE_STREAM_ID)
size += sizeof(data->stream_id);
if (sample_type & PERF_SAMPLE_CPU)
size += sizeof(data->cpu) * 2;
if (sample_type & PERF_SAMPLE_IDENTIFIER)
size += sizeof(data->id);
out:
return size;
}
bool perf_evlist__valid_sample_id_all(struct perf_evlist *evlist)
{
struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
evlist__for_each_continue(evlist, pos) {
if (first->attr.sample_id_all != pos->attr.sample_id_all)
return false;
}
return true;
}
bool perf_evlist__sample_id_all(struct perf_evlist *evlist)
{
struct perf_evsel *first = perf_evlist__first(evlist);
return first->attr.sample_id_all;
}
void perf_evlist__set_selected(struct perf_evlist *evlist,
struct perf_evsel *evsel)
{
evlist->selected = evsel;
}
void perf_evlist__close(struct perf_evlist *evlist)
{
struct perf_evsel *evsel;
int ncpus = cpu_map__nr(evlist->cpus);
int nthreads = thread_map__nr(evlist->threads);
int n;
evlist__for_each_reverse(evlist, evsel) {
n = evsel->cpus ? evsel->cpus->nr : ncpus;
perf_evsel__close(evsel, n, nthreads);
}
}
int perf_evlist__open(struct perf_evlist *evlist)
{
struct perf_evsel *evsel;
int err;
perf_evlist__update_id_pos(evlist);
evlist__for_each(evlist, evsel) {
err = perf_evsel__open(evsel, evlist->cpus, evlist->threads);
if (err < 0)
goto out_err;
}
return 0;
out_err:
perf_evlist__close(evlist);
errno = -err;
return err;
}
int perf_evlist__prepare_workload(struct perf_evlist *evlist, struct target *target,
const char *argv[], bool pipe_output,
void (*exec_error)(int signo, siginfo_t *info, void *ucontext))
{
int child_ready_pipe[2], go_pipe[2];
char bf;
if (pipe(child_ready_pipe) < 0) {
perror("failed to create 'ready' pipe");
return -1;
}
if (pipe(go_pipe) < 0) {
perror("failed to create 'go' pipe");
goto out_close_ready_pipe;
}
evlist->workload.pid = fork();
if (evlist->workload.pid < 0) {
perror("failed to fork");
goto out_close_pipes;
}
if (!evlist->workload.pid) {
if (pipe_output)
dup2(2, 1);
signal(SIGTERM, SIG_DFL);
close(child_ready_pipe[0]);
close(go_pipe[1]);
fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
/*
* Tell the parent we're ready to go
*/
close(child_ready_pipe[1]);
/*
* Wait until the parent tells us to go.
*/
if (read(go_pipe[0], &bf, 1) == -1)
perror("unable to read pipe");
execvp(argv[0], (char **)argv);
if (exec_error) {
union sigval val;
val.sival_int = errno;
if (sigqueue(getppid(), SIGUSR1, val))
perror(argv[0]);
} else
perror(argv[0]);
exit(-1);
}
if (exec_error) {
struct sigaction act = {
.sa_flags = SA_SIGINFO,
.sa_sigaction = exec_error,
};
sigaction(SIGUSR1, &act, NULL);
}
if (target__none(target))
evlist->threads->map[0] = evlist->workload.pid;
close(child_ready_pipe[1]);
close(go_pipe[0]);
/*
* wait for child to settle
*/
if (read(child_ready_pipe[0], &bf, 1) == -1) {
perror("unable to read pipe");
goto out_close_pipes;
}
fcntl(go_pipe[1], F_SETFD, FD_CLOEXEC);
evlist->workload.cork_fd = go_pipe[1];
close(child_ready_pipe[0]);
return 0;
out_close_pipes:
close(go_pipe[0]);
close(go_pipe[1]);
out_close_ready_pipe:
close(child_ready_pipe[0]);
close(child_ready_pipe[1]);
return -1;
}
int perf_evlist__start_workload(struct perf_evlist *evlist)
{
if (evlist->workload.cork_fd > 0) {
char bf = 0;
int ret;
/*
* Remove the cork, let it rip!
*/
ret = write(evlist->workload.cork_fd, &bf, 1);
if (ret < 0)
perror("enable to write to pipe");
close(evlist->workload.cork_fd);
return ret;
}
return 0;
}
int perf_evlist__parse_sample(struct perf_evlist *evlist, union perf_event *event,
struct perf_sample *sample)
{
struct perf_evsel *evsel = perf_evlist__event2evsel(evlist, event);
if (!evsel)
return -EFAULT;
return perf_evsel__parse_sample(evsel, event, sample);
}
size_t perf_evlist__fprintf(struct perf_evlist *evlist, FILE *fp)
{
struct perf_evsel *evsel;
size_t printed = 0;
evlist__for_each(evlist, evsel) {
printed += fprintf(fp, "%s%s", evsel->idx ? ", " : "",
perf_evsel__name(evsel));
}
return printed + fprintf(fp, "\n");
}
int perf_evlist__strerror_tp(struct perf_evlist *evlist __maybe_unused,
int err, char *buf, size_t size)
{
char sbuf[128];
switch (err) {
case ENOENT:
scnprintf(buf, size, "%s",
"Error:\tUnable to find debugfs\n"
"Hint:\tWas your kernel was compiled with debugfs support?\n"
"Hint:\tIs the debugfs filesystem mounted?\n"
"Hint:\tTry 'sudo mount -t debugfs nodev /sys/kernel/debug'");
break;
case EACCES:
scnprintf(buf, size,
"Error:\tNo permissions to read %s/tracing/events/raw_syscalls\n"
"Hint:\tTry 'sudo mount -o remount,mode=755 %s'\n",
debugfs_mountpoint, debugfs_mountpoint);
break;
default:
scnprintf(buf, size, "%s", strerror_r(err, sbuf, sizeof(sbuf)));
break;
}
return 0;
}
int perf_evlist__strerror_open(struct perf_evlist *evlist __maybe_unused,
int err, char *buf, size_t size)
{
int printed, value;
char sbuf[128], *emsg = strerror_r(err, sbuf, sizeof(sbuf));
switch (err) {
case EACCES:
case EPERM:
printed = scnprintf(buf, size,
"Error:\t%s.\n"
"Hint:\tCheck /proc/sys/kernel/perf_event_paranoid setting.", emsg);
value = perf_event_paranoid();
printed += scnprintf(buf + printed, size - printed, "\nHint:\t");
if (value >= 2) {
printed += scnprintf(buf + printed, size - printed,
"For your workloads it needs to be <= 1\nHint:\t");
}
printed += scnprintf(buf + printed, size - printed,
"For system wide tracing it needs to be set to -1");
printed += scnprintf(buf + printed, size - printed,
".\nHint:\tThe current value is %d.", value);
break;
default:
scnprintf(buf, size, "%s", emsg);
break;
}
return 0;
}
void perf_evlist__to_front(struct perf_evlist *evlist,
struct perf_evsel *move_evsel)
{
struct perf_evsel *evsel, *n;
LIST_HEAD(move);
if (move_evsel == perf_evlist__first(evlist))
return;
evlist__for_each_safe(evlist, n, evsel) {
if (evsel->leader == move_evsel->leader)
list_move_tail(&evsel->node, &move);
}
list_splice(&move, &evlist->entries);
}