/*
* omap-mcbsp.c -- OMAP ALSA SoC DAI driver using McBSP port
*
* Copyright (C) 2008 Nokia Corporation
*
* Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
* Peter Ujfalusi <peter.ujfalusi@ti.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>
#include <linux/platform_data/asoc-ti-mcbsp.h>
#include "mcbsp.h"
#include "omap-mcbsp.h"
#include "omap-pcm.h"
#define OMAP_MCBSP_RATES (SNDRV_PCM_RATE_8000_96000)
#define OMAP_MCBSP_SOC_SINGLE_S16_EXT(xname, xmin, xmax, \
xhandler_get, xhandler_put) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.info = omap_mcbsp_st_info_volsw, \
.get = xhandler_get, .put = xhandler_put, \
.private_value = (unsigned long) &(struct soc_mixer_control) \
{.min = xmin, .max = xmax} }
enum {
OMAP_MCBSP_WORD_8 = 0,
OMAP_MCBSP_WORD_12,
OMAP_MCBSP_WORD_16,
OMAP_MCBSP_WORD_20,
OMAP_MCBSP_WORD_24,
OMAP_MCBSP_WORD_32,
};
/*
* Stream DMA parameters. DMA request line and port address are set runtime
* since they are different between OMAP1 and later OMAPs
*/
static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
struct omap_pcm_dma_data *dma_data;
int words;
dma_data = snd_soc_dai_get_dma_data(rtd->cpu_dai, substream);
/*
* Configure McBSP threshold based on either:
* packet_size, when the sDMA is in packet mode, or based on the
* period size in THRESHOLD mode, otherwise use McBSP threshold = 1
* for mono streams.
*/
if (dma_data->packet_size)
words = dma_data->packet_size;
else
words = 1;
/* Configure McBSP internal buffer usage */
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
omap_mcbsp_set_tx_threshold(mcbsp, words);
else
omap_mcbsp_set_rx_threshold(mcbsp, words);
}
static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct snd_interval *buffer_size = hw_param_interval(params,
SNDRV_PCM_HW_PARAM_BUFFER_SIZE);
struct snd_interval *channels = hw_param_interval(params,
SNDRV_PCM_HW_PARAM_CHANNELS);
struct omap_mcbsp *mcbsp = rule->private;
struct snd_interval frames;
int size;
snd_interval_any(&frames);
size = mcbsp->pdata->buffer_size;
frames.min = size / channels->min;
frames.integer = 1;
return snd_interval_refine(buffer_size, &frames);
}
static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
int err = 0;
if (!cpu_dai->active)
err = omap_mcbsp_request(mcbsp);
/*
* OMAP3 McBSP FIFO is word structured.
* McBSP2 has 1024 + 256 = 1280 word long buffer,
* McBSP1,3,4,5 has 128 word long buffer
* This means that the size of the FIFO depends on the sample format.
* For example on McBSP3:
* 16bit samples: size is 128 * 2 = 256 bytes
* 32bit samples: size is 128 * 4 = 512 bytes
* It is simpler to place constraint for buffer and period based on
* channels.
* McBSP3 as example again (16 or 32 bit samples):
* 1 channel (mono): size is 128 frames (128 words)
* 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words)
* 4 channels: size is 128 / 4 = 32 frames (4 * 32 words)
*/
if (mcbsp->pdata->buffer_size) {
/*
* Rule for the buffer size. We should not allow
* smaller buffer than the FIFO size to avoid underruns.
* This applies only for the playback stream.
*/
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
snd_pcm_hw_rule_add(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
omap_mcbsp_hwrule_min_buffersize,
mcbsp,
SNDRV_PCM_HW_PARAM_CHANNELS, -1);
/* Make sure, that the period size is always even */
snd_pcm_hw_constraint_step(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
}
snd_soc_dai_set_dma_data(cpu_dai, substream,
&mcbsp->dma_data[substream->stream]);
return err;
}
static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
if (!cpu_dai->active) {
omap_mcbsp_free(mcbsp);
mcbsp->configured = 0;
}
}
static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *cpu_dai)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
int err = 0, play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
mcbsp->active++;
omap_mcbsp_start(mcbsp, play, !play);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
omap_mcbsp_stop(mcbsp, play, !play);
mcbsp->active--;
break;
default:
err = -EINVAL;
}
return err;
}
static snd_pcm_sframes_t omap_mcbsp_dai_delay(
struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
u16 fifo_use;
snd_pcm_sframes_t delay;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
fifo_use = omap_mcbsp_get_tx_delay(mcbsp);
else
fifo_use = omap_mcbsp_get_rx_delay(mcbsp);
/*
* Divide the used locations with the channel count to get the
* FIFO usage in samples (don't care about partial samples in the
* buffer).
*/
delay = fifo_use / substream->runtime->channels;
return delay;
}
static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *cpu_dai)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
struct omap_pcm_dma_data *dma_data;
int wlen, channels, wpf;
int pkt_size = 0;
unsigned int format, div, framesize, master;
dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream);
channels = params_channels(params);
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
wlen = 16;
break;
case SNDRV_PCM_FORMAT_S32_LE:
wlen = 32;
break;
default:
return -EINVAL;
}
if (mcbsp->pdata->buffer_size) {
dma_data->set_threshold = omap_mcbsp_set_threshold;
if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) {
int period_words, max_thrsh;
int divider = 0;
period_words = params_period_bytes(params) / (wlen / 8);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
max_thrsh = mcbsp->max_tx_thres;
else
max_thrsh = mcbsp->max_rx_thres;
/*
* Use sDMA packet mode if McBSP is in threshold mode:
* If period words less than the FIFO size the packet
* size is set to the number of period words, otherwise
* Look for the biggest threshold value which divides
* the period size evenly.
*/
divider = period_words / max_thrsh;
if (period_words % max_thrsh)
divider++;
while (period_words % divider &&
divider < period_words)
divider++;
if (divider == period_words)
return -EINVAL;
pkt_size = period_words / divider;
} else if (channels > 1) {
/* Use packet mode for non mono streams */
pkt_size = channels;
}
}
dma_data->packet_size = pkt_size;
if (mcbsp->configured) {
/* McBSP already configured by another stream */
return 0;
}
regs->rcr2 &= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7));
regs->xcr2 &= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7));
regs->rcr1 &= ~(RFRLEN1(0x7f) | RWDLEN1(7));
regs->xcr1 &= ~(XFRLEN1(0x7f) | XWDLEN1(7));
format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
wpf = channels;
if (channels == 2 && (format == SND_SOC_DAIFMT_I2S ||
format == SND_SOC_DAIFMT_LEFT_J)) {
/* Use dual-phase frames */
regs->rcr2 |= RPHASE;
regs->xcr2 |= XPHASE;
/* Set 1 word per (McBSP) frame for phase1 and phase2 */
wpf--;
regs->rcr2 |= RFRLEN2(wpf - 1);
regs->xcr2 |= XFRLEN2(wpf - 1);
}
regs->rcr1 |= RFRLEN1(wpf - 1);
regs->xcr1 |= XFRLEN1(wpf - 1);
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
/* Set word lengths */
regs->rcr2 |= RWDLEN2(OMAP_MCBSP_WORD_16);
regs->rcr1 |= RWDLEN1(OMAP_MCBSP_WORD_16);
regs->xcr2 |= XWDLEN2(OMAP_MCBSP_WORD_16);
regs->xcr1 |= XWDLEN1(OMAP_MCBSP_WORD_16);
break;
case SNDRV_PCM_FORMAT_S32_LE:
/* Set word lengths */
regs->rcr2 |= RWDLEN2(OMAP_MCBSP_WORD_32);
regs->rcr1 |= RWDLEN1(OMAP_MCBSP_WORD_32);
regs->xcr2 |= XWDLEN2(OMAP_MCBSP_WORD_32);
regs->xcr1 |= XWDLEN1(OMAP_MCBSP_WORD_32);
break;
default:
/* Unsupported PCM format */
return -EINVAL;
}
/* In McBSP master modes, FRAME (i.e. sample rate) is generated
* by _counting_ BCLKs. Calculate frame size in BCLKs */
master = mcbsp->fmt & SND_SOC_DAIFMT_MASTER_MASK;
if (master == SND_SOC_DAIFMT_CBS_CFS) {
div = mcbsp->clk_div ? mcbsp->clk_div : 1;
framesize = (mcbsp->in_freq / div) / params_rate(params);
if (framesize < wlen * channels) {
printk(KERN_ERR "%s: not enough bandwidth for desired rate and "
"channels\n", __func__);
return -EINVAL;
}
} else
framesize = wlen * channels;
/* Set FS period and length in terms of bit clock periods */
regs->srgr2 &= ~FPER(0xfff);
regs->srgr1 &= ~FWID(0xff);
switch (format) {
case SND_SOC_DAIFMT_I2S:
case SND_SOC_DAIFMT_LEFT_J:
regs->srgr2 |= FPER(framesize - 1);
regs->srgr1 |= FWID((framesize >> 1) - 1);
break;
case SND_SOC_DAIFMT_DSP_A:
case SND_SOC_DAIFMT_DSP_B:
regs->srgr2 |= FPER(framesize - 1);
regs->srgr1 |= FWID(0);
break;
}
omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs);
mcbsp->wlen = wlen;
mcbsp->configured = 1;
return 0;
}
/*
* This must be called before _set_clkdiv and _set_sysclk since McBSP register
* cache is initialized here
*/
static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai,
unsigned int fmt)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
bool inv_fs = false;
if (mcbsp->configured)
return 0;
mcbsp->fmt = fmt;
memset(regs, 0, sizeof(*regs));
/* Generic McBSP register settings */
regs->spcr2 |= XINTM(3) | FREE;
regs->spcr1 |= RINTM(3);
/* RFIG and XFIG are not defined in 2430 and on OMAP3+ */
if (!mcbsp->pdata->has_ccr) {
regs->rcr2 |= RFIG;
regs->xcr2 |= XFIG;
}
/* Configure XCCR/RCCR only for revisions which have ccr registers */
if (mcbsp->pdata->has_ccr) {
regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE;
regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
/* 1-bit data delay */
regs->rcr2 |= RDATDLY(1);
regs->xcr2 |= XDATDLY(1);
break;
case SND_SOC_DAIFMT_LEFT_J:
/* 0-bit data delay */
regs->rcr2 |= RDATDLY(0);
regs->xcr2 |= XDATDLY(0);
regs->spcr1 |= RJUST(2);
/* Invert FS polarity configuration */
inv_fs = true;
break;
case SND_SOC_DAIFMT_DSP_A:
/* 1-bit data delay */
regs->rcr2 |= RDATDLY(1);
regs->xcr2 |= XDATDLY(1);
/* Invert FS polarity configuration */
inv_fs = true;
break;
case SND_SOC_DAIFMT_DSP_B:
/* 0-bit data delay */
regs->rcr2 |= RDATDLY(0);
regs->xcr2 |= XDATDLY(0);
/* Invert FS polarity configuration */
inv_fs = true;
break;
default:
/* Unsupported data format */
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBS_CFS:
/* McBSP master. Set FS and bit clocks as outputs */
regs->pcr0 |= FSXM | FSRM |
CLKXM | CLKRM;
/* Sample rate generator drives the FS */
regs->srgr2 |= FSGM;
break;
case SND_SOC_DAIFMT_CBM_CFM:
/* McBSP slave */
break;
default:
/* Unsupported master/slave configuration */
return -EINVAL;
}
/* Set bit clock (CLKX/CLKR) and FS polarities */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
/*
* Normal BCLK + FS.
* FS active low. TX data driven on falling edge of bit clock
* and RX data sampled on rising edge of bit clock.
*/
regs->pcr0 |= FSXP | FSRP |
CLKXP | CLKRP;
break;
case SND_SOC_DAIFMT_NB_IF:
regs->pcr0 |= CLKXP | CLKRP;
break;
case SND_SOC_DAIFMT_IB_NF:
regs->pcr0 |= FSXP | FSRP;
break;
case SND_SOC_DAIFMT_IB_IF:
break;
default:
return -EINVAL;
}
if (inv_fs == true)
regs->pcr0 ^= FSXP | FSRP;
return 0;
}
static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai,
int div_id, int div)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
if (div_id != OMAP_MCBSP_CLKGDV)
return -ENODEV;
mcbsp->clk_div = div;
regs->srgr1 &= ~CLKGDV(0xff);
regs->srgr1 |= CLKGDV(div - 1);
return 0;
}
static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
int clk_id, unsigned int freq,
int dir)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
int err = 0;
if (mcbsp->active) {
if (freq == mcbsp->in_freq)
return 0;
else
return -EBUSY;
}
mcbsp->in_freq = freq;
regs->srgr2 &= ~CLKSM;
regs->pcr0 &= ~SCLKME;
switch (clk_id) {
case OMAP_MCBSP_SYSCLK_CLK:
regs->srgr2 |= CLKSM;
break;
case OMAP_MCBSP_SYSCLK_CLKS_FCLK:
if (mcbsp_omap1()) {
err = -EINVAL;
break;
}
err = omap2_mcbsp_set_clks_src(mcbsp,
MCBSP_CLKS_PRCM_SRC);
break;
case OMAP_MCBSP_SYSCLK_CLKS_EXT:
if (mcbsp_omap1()) {
err = 0;
break;
}
err = omap2_mcbsp_set_clks_src(mcbsp,
MCBSP_CLKS_PAD_SRC);
break;
case OMAP_MCBSP_SYSCLK_CLKX_EXT:
regs->srgr2 |= CLKSM;
case OMAP_MCBSP_SYSCLK_CLKR_EXT:
regs->pcr0 |= SCLKME;
break;
default:
err = -ENODEV;
}
return err;
}
static const struct snd_soc_dai_ops mcbsp_dai_ops = {
.startup = omap_mcbsp_dai_startup,
.shutdown = omap_mcbsp_dai_shutdown,
.trigger = omap_mcbsp_dai_trigger,
.delay = omap_mcbsp_dai_delay,
.hw_params = omap_mcbsp_dai_hw_params,
.set_fmt = omap_mcbsp_dai_set_dai_fmt,
.set_clkdiv = omap_mcbsp_dai_set_clkdiv,
.set_sysclk = omap_mcbsp_dai_set_dai_sysclk,
};
static int omap_mcbsp_probe(struct snd_soc_dai *dai)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
pm_runtime_enable(mcbsp->dev);
return 0;
}
static int omap_mcbsp_remove(struct snd_soc_dai *dai)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
pm_runtime_disable(mcbsp->dev);
return 0;
}
static struct snd_soc_dai_driver omap_mcbsp_dai = {
.probe = omap_mcbsp_probe,
.remove = omap_mcbsp_remove,
.playback = {
.channels_min = 1,
.channels_max = 16,
.rates = OMAP_MCBSP_RATES,
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
},
.capture = {
.channels_min = 1,
.channels_max = 16,
.rates = OMAP_MCBSP_RATES,
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
},
.ops = &mcbsp_dai_ops,
};
static int omap_mcbsp_st_info_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
int max = mc->max;
int min = mc->min;
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = min;
uinfo->value.integer.max = max;
return 0;
}
#define OMAP_MCBSP_ST_CHANNEL_VOLUME(channel) \
static int \
omap_mcbsp_set_st_ch##channel##_volume(struct snd_kcontrol *kc, \
struct snd_ctl_elem_value *uc) \
{ \
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kc); \
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); \
struct soc_mixer_control *mc = \
(struct soc_mixer_control *)kc->private_value; \
int max = mc->max; \
int min = mc->min; \
int val = uc->value.integer.value[0]; \
\
if (val < min || val > max) \
return -EINVAL; \
\
/* OMAP McBSP implementation uses index values 0..4 */ \
return omap_st_set_chgain(mcbsp, channel, val); \
} \
\
static int \
omap_mcbsp_get_st_ch##channel##_volume(struct snd_kcontrol *kc, \
struct snd_ctl_elem_value *uc) \
{ \
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kc); \
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); \
s16 chgain; \
\
if (omap_st_get_chgain(mcbsp, channel, &chgain)) \
return -EAGAIN; \
\
uc->value.integer.value[0] = chgain; \
return 0; \
}
OMAP_MCBSP_ST_CHANNEL_VOLUME(0)
OMAP_MCBSP_ST_CHANNEL_VOLUME(1)
static int omap_mcbsp_st_put_mode(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
u8 value = ucontrol->value.integer.value[0];
if (value == omap_st_is_enabled(mcbsp))
return 0;
if (value)
omap_st_enable(mcbsp);
else
omap_st_disable(mcbsp);
return 1;
}
static int omap_mcbsp_st_get_mode(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
ucontrol->value.integer.value[0] = omap_st_is_enabled(mcbsp);
return 0;
}
#define OMAP_MCBSP_ST_CONTROLS(port) \
static const struct snd_kcontrol_new omap_mcbsp##port##_st_controls[] = { \
SOC_SINGLE_EXT("McBSP" #port " Sidetone Switch", 1, 0, 1, 0, \
omap_mcbsp_st_get_mode, omap_mcbsp_st_put_mode), \
OMAP_MCBSP_SOC_SINGLE_S16_EXT("McBSP" #port " Sidetone Channel 0 Volume", \
-32768, 32767, \
omap_mcbsp_get_st_ch0_volume, \
omap_mcbsp_set_st_ch0_volume), \
OMAP_MCBSP_SOC_SINGLE_S16_EXT("McBSP" #port " Sidetone Channel 1 Volume", \
-32768, 32767, \
omap_mcbsp_get_st_ch1_volume, \
omap_mcbsp_set_st_ch1_volume), \
}
OMAP_MCBSP_ST_CONTROLS(2);
OMAP_MCBSP_ST_CONTROLS(3);
int omap_mcbsp_st_add_controls(struct snd_soc_pcm_runtime *rtd)
{
struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
if (!mcbsp->st_data) {
dev_warn(mcbsp->dev, "No sidetone data for port\n");
return 0;
}
switch (mcbsp->id) {
case 2: /* McBSP 2 */
return snd_soc_add_dai_controls(cpu_dai,
omap_mcbsp2_st_controls,
ARRAY_SIZE(omap_mcbsp2_st_controls));
case 3: /* McBSP 3 */
return snd_soc_add_dai_controls(cpu_dai,
omap_mcbsp3_st_controls,
ARRAY_SIZE(omap_mcbsp3_st_controls));
default:
break;
}
return -EINVAL;
}
EXPORT_SYMBOL_GPL(omap_mcbsp_st_add_controls);
static struct omap_mcbsp_platform_data omap2420_pdata = {
.reg_step = 4,
.reg_size = 2,
};
static struct omap_mcbsp_platform_data omap2430_pdata = {
.reg_step = 4,
.reg_size = 4,
.has_ccr = true,
};
static struct omap_mcbsp_platform_data omap3_pdata = {
.reg_step = 4,
.reg_size = 4,
.has_ccr = true,
.has_wakeup = true,
};
static struct omap_mcbsp_platform_data omap4_pdata = {
.reg_step = 4,
.reg_size = 4,
.has_ccr = true,
.has_wakeup = true,
};
static const struct of_device_id omap_mcbsp_of_match[] = {
{
.compatible = "ti,omap2420-mcbsp",
.data = &omap2420_pdata,
},
{
.compatible = "ti,omap2430-mcbsp",
.data = &omap2430_pdata,
},
{
.compatible = "ti,omap3-mcbsp",
.data = &omap3_pdata,
},
{
.compatible = "ti,omap4-mcbsp",
.data = &omap4_pdata,
},
{ },
};
MODULE_DEVICE_TABLE(of, omap_mcbsp_of_match);
static int asoc_mcbsp_probe(struct platform_device *pdev)
{
struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev);
struct omap_mcbsp *mcbsp;
const struct of_device_id *match;
int ret;
match = of_match_device(omap_mcbsp_of_match, &pdev->dev);
if (match) {
struct device_node *node = pdev->dev.of_node;
int buffer_size;
pdata = devm_kzalloc(&pdev->dev,
sizeof(struct omap_mcbsp_platform_data),
GFP_KERNEL);
if (!pdata)
return -ENOMEM;
memcpy(pdata, match->data, sizeof(*pdata));
if (!of_property_read_u32(node, "ti,buffer-size", &buffer_size))
pdata->buffer_size = buffer_size;
} else if (!pdata) {
dev_err(&pdev->dev, "missing platform data.\n");
return -EINVAL;
}
mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL);
if (!mcbsp)
return -ENOMEM;
mcbsp->id = pdev->id;
mcbsp->pdata = pdata;
mcbsp->dev = &pdev->dev;
platform_set_drvdata(pdev, mcbsp);
ret = omap_mcbsp_init(pdev);
if (!ret)
return snd_soc_register_dai(&pdev->dev, &omap_mcbsp_dai);
return ret;
}
static int asoc_mcbsp_remove(struct platform_device *pdev)
{
struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
snd_soc_unregister_dai(&pdev->dev);
if (mcbsp->pdata->ops && mcbsp->pdata->ops->free)
mcbsp->pdata->ops->free(mcbsp->id);
omap_mcbsp_sysfs_remove(mcbsp);
clk_put(mcbsp->fclk);
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver asoc_mcbsp_driver = {
.driver = {
.name = "omap-mcbsp",
.owner = THIS_MODULE,
.of_match_table = omap_mcbsp_of_match,
},
.probe = asoc_mcbsp_probe,
.remove = asoc_mcbsp_remove,
};
module_platform_driver(asoc_mcbsp_driver);
MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>");
MODULE_DESCRIPTION("OMAP I2S SoC Interface");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:omap-mcbsp");