summaryrefslogblamecommitdiff
path: root/net/sched/sch_cake.c
blob: 2950a8d078874ee59029d3a67a3ad8b210894d70 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885




















































































































































































































































































































































































































































                                                                                

                                                   






















                                                                              
                                                               





































































































































































































































































































































































































































                                                                               


                                                          







































                                                                       

                                                


































































                                                                               







































                                                                                





















































































































































































































































































                                                                                



                                                                            


                                






                                                             




                                                                      

                                                      





















































































































































































                                                                                













                                                                     


























































































































                                                                          







                                                                        


























































































































































































































































































                                                                                
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause

/* COMMON Applications Kept Enhanced (CAKE) discipline
 *
 * Copyright (C) 2014-2018 Jonathan Morton <chromatix99@gmail.com>
 * Copyright (C) 2015-2018 Toke Høiland-Jørgensen <toke@toke.dk>
 * Copyright (C) 2014-2018 Dave Täht <dave.taht@gmail.com>
 * Copyright (C) 2015-2018 Sebastian Moeller <moeller0@gmx.de>
 * (C) 2015-2018 Kevin Darbyshire-Bryant <kevin@darbyshire-bryant.me.uk>
 * Copyright (C) 2017-2018 Ryan Mounce <ryan@mounce.com.au>
 *
 * The CAKE Principles:
 *		   (or, how to have your cake and eat it too)
 *
 * This is a combination of several shaping, AQM and FQ techniques into one
 * easy-to-use package:
 *
 * - An overall bandwidth shaper, to move the bottleneck away from dumb CPE
 *   equipment and bloated MACs.  This operates in deficit mode (as in sch_fq),
 *   eliminating the need for any sort of burst parameter (eg. token bucket
 *   depth).  Burst support is limited to that necessary to overcome scheduling
 *   latency.
 *
 * - A Diffserv-aware priority queue, giving more priority to certain classes,
 *   up to a specified fraction of bandwidth.  Above that bandwidth threshold,
 *   the priority is reduced to avoid starving other tins.
 *
 * - Each priority tin has a separate Flow Queue system, to isolate traffic
 *   flows from each other.  This prevents a burst on one flow from increasing
 *   the delay to another.  Flows are distributed to queues using a
 *   set-associative hash function.
 *
 * - Each queue is actively managed by Cobalt, which is a combination of the
 *   Codel and Blue AQM algorithms.  This serves flows fairly, and signals
 *   congestion early via ECN (if available) and/or packet drops, to keep
 *   latency low.  The codel parameters are auto-tuned based on the bandwidth
 *   setting, as is necessary at low bandwidths.
 *
 * The configuration parameters are kept deliberately simple for ease of use.
 * Everything has sane defaults.  Complete generality of configuration is *not*
 * a goal.
 *
 * The priority queue operates according to a weighted DRR scheme, combined with
 * a bandwidth tracker which reuses the shaper logic to detect which side of the
 * bandwidth sharing threshold the tin is operating.  This determines whether a
 * priority-based weight (high) or a bandwidth-based weight (low) is used for
 * that tin in the current pass.
 *
 * This qdisc was inspired by Eric Dumazet's fq_codel code, which he kindly
 * granted us permission to leverage.
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/jiffies.h>
#include <linux/string.h>
#include <linux/in.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/jhash.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/reciprocal_div.h>
#include <net/netlink.h>
#include <linux/version.h>
#include <linux/if_vlan.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
#include <net/tcp.h>
#include <net/flow_dissector.h>

#define CAKE_SET_WAYS (8)
#define CAKE_MAX_TINS (8)
#define CAKE_QUEUES (1024)
#define CAKE_FLOW_MASK 63
#define CAKE_FLOW_NAT_FLAG 64

/* struct cobalt_params - contains codel and blue parameters
 * @interval:	codel initial drop rate
 * @target:     maximum persistent sojourn time & blue update rate
 * @mtu_time:   serialisation delay of maximum-size packet
 * @p_inc:      increment of blue drop probability (0.32 fxp)
 * @p_dec:      decrement of blue drop probability (0.32 fxp)
 */
struct cobalt_params {
	u64	interval;
	u64	target;
	u64	mtu_time;
	u32	p_inc;
	u32	p_dec;
};

/* struct cobalt_vars - contains codel and blue variables
 * @count:		codel dropping frequency
 * @rec_inv_sqrt:	reciprocal value of sqrt(count) >> 1
 * @drop_next:		time to drop next packet, or when we dropped last
 * @blue_timer:		Blue time to next drop
 * @p_drop:		BLUE drop probability (0.32 fxp)
 * @dropping:		set if in dropping state
 * @ecn_marked:		set if marked
 */
struct cobalt_vars {
	u32	count;
	u32	rec_inv_sqrt;
	ktime_t	drop_next;
	ktime_t	blue_timer;
	u32     p_drop;
	bool	dropping;
	bool    ecn_marked;
};

enum {
	CAKE_SET_NONE = 0,
	CAKE_SET_SPARSE,
	CAKE_SET_SPARSE_WAIT, /* counted in SPARSE, actually in BULK */
	CAKE_SET_BULK,
	CAKE_SET_DECAYING
};

struct cake_flow {
	/* this stuff is all needed per-flow at dequeue time */
	struct sk_buff	  *head;
	struct sk_buff	  *tail;
	struct list_head  flowchain;
	s32		  deficit;
	u32		  dropped;
	struct cobalt_vars cvars;
	u16		  srchost; /* index into cake_host table */
	u16		  dsthost;
	u8		  set;
}; /* please try to keep this structure <= 64 bytes */

struct cake_host {
	u32 srchost_tag;
	u32 dsthost_tag;
	u16 srchost_refcnt;
	u16 dsthost_refcnt;
};

struct cake_heap_entry {
	u16 t:3, b:10;
};

struct cake_tin_data {
	struct cake_flow flows[CAKE_QUEUES];
	u32	backlogs[CAKE_QUEUES];
	u32	tags[CAKE_QUEUES]; /* for set association */
	u16	overflow_idx[CAKE_QUEUES];
	struct cake_host hosts[CAKE_QUEUES]; /* for triple isolation */
	u16	flow_quantum;

	struct cobalt_params cparams;
	u32	drop_overlimit;
	u16	bulk_flow_count;
	u16	sparse_flow_count;
	u16	decaying_flow_count;
	u16	unresponsive_flow_count;

	u32	max_skblen;

	struct list_head new_flows;
	struct list_head old_flows;
	struct list_head decaying_flows;

	/* time_next = time_this + ((len * rate_ns) >> rate_shft) */
	ktime_t	time_next_packet;
	u64	tin_rate_ns;
	u64	tin_rate_bps;
	u16	tin_rate_shft;

	u16	tin_quantum_prio;
	u16	tin_quantum_band;
	s32	tin_deficit;
	u32	tin_backlog;
	u32	tin_dropped;
	u32	tin_ecn_mark;

	u32	packets;
	u64	bytes;

	u32	ack_drops;

	/* moving averages */
	u64 avge_delay;
	u64 peak_delay;
	u64 base_delay;

	/* hash function stats */
	u32	way_directs;
	u32	way_hits;
	u32	way_misses;
	u32	way_collisions;
}; /* number of tins is small, so size of this struct doesn't matter much */

struct cake_sched_data {
	struct tcf_proto __rcu *filter_list; /* optional external classifier */
	struct tcf_block *block;
	struct cake_tin_data *tins;

	struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS];
	u16		overflow_timeout;

	u16		tin_cnt;
	u8		tin_mode;
	u8		flow_mode;
	u8		ack_filter;
	u8		atm_mode;

	/* time_next = time_this + ((len * rate_ns) >> rate_shft) */
	u16		rate_shft;
	ktime_t		time_next_packet;
	ktime_t		failsafe_next_packet;
	u64		rate_ns;
	u64		rate_bps;
	u16		rate_flags;
	s16		rate_overhead;
	u16		rate_mpu;
	u64		interval;
	u64		target;

	/* resource tracking */
	u32		buffer_used;
	u32		buffer_max_used;
	u32		buffer_limit;
	u32		buffer_config_limit;

	/* indices for dequeue */
	u16		cur_tin;
	u16		cur_flow;

	struct qdisc_watchdog watchdog;
	const u8	*tin_index;
	const u8	*tin_order;

	/* bandwidth capacity estimate */
	ktime_t		last_packet_time;
	ktime_t		avg_window_begin;
	u64		avg_packet_interval;
	u64		avg_window_bytes;
	u64		avg_peak_bandwidth;
	ktime_t		last_reconfig_time;

	/* packet length stats */
	u32		avg_netoff;
	u16		max_netlen;
	u16		max_adjlen;
	u16		min_netlen;
	u16		min_adjlen;
};

enum {
	CAKE_FLAG_OVERHEAD	   = BIT(0),
	CAKE_FLAG_AUTORATE_INGRESS = BIT(1),
	CAKE_FLAG_INGRESS	   = BIT(2),
	CAKE_FLAG_WASH		   = BIT(3),
	CAKE_FLAG_SPLIT_GSO	   = BIT(4)
};

/* COBALT operates the Codel and BLUE algorithms in parallel, in order to
 * obtain the best features of each.  Codel is excellent on flows which
 * respond to congestion signals in a TCP-like way.  BLUE is more effective on
 * unresponsive flows.
 */

struct cobalt_skb_cb {
	ktime_t enqueue_time;
};

static u64 us_to_ns(u64 us)
{
	return us * NSEC_PER_USEC;
}

static struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb)
{
	qdisc_cb_private_validate(skb, sizeof(struct cobalt_skb_cb));
	return (struct cobalt_skb_cb *)qdisc_skb_cb(skb)->data;
}

static ktime_t cobalt_get_enqueue_time(const struct sk_buff *skb)
{
	return get_cobalt_cb(skb)->enqueue_time;
}

static void cobalt_set_enqueue_time(struct sk_buff *skb,
				    ktime_t now)
{
	get_cobalt_cb(skb)->enqueue_time = now;
}

static u16 quantum_div[CAKE_QUEUES + 1] = {0};

#define REC_INV_SQRT_CACHE (16)
static u32 cobalt_rec_inv_sqrt_cache[REC_INV_SQRT_CACHE] = {0};

/* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
 * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2)
 *
 * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32
 */

static void cobalt_newton_step(struct cobalt_vars *vars)
{
	u32 invsqrt, invsqrt2;
	u64 val;

	invsqrt = vars->rec_inv_sqrt;
	invsqrt2 = ((u64)invsqrt * invsqrt) >> 32;
	val = (3LL << 32) - ((u64)vars->count * invsqrt2);

	val >>= 2; /* avoid overflow in following multiply */
	val = (val * invsqrt) >> (32 - 2 + 1);

	vars->rec_inv_sqrt = val;
}

static void cobalt_invsqrt(struct cobalt_vars *vars)
{
	if (vars->count < REC_INV_SQRT_CACHE)
		vars->rec_inv_sqrt = cobalt_rec_inv_sqrt_cache[vars->count];
	else
		cobalt_newton_step(vars);
}

/* There is a big difference in timing between the accurate values placed in
 * the cache and the approximations given by a single Newton step for small
 * count values, particularly when stepping from count 1 to 2 or vice versa.
 * Above 16, a single Newton step gives sufficient accuracy in either
 * direction, given the precision stored.
 *
 * The magnitude of the error when stepping up to count 2 is such as to give
 * the value that *should* have been produced at count 4.
 */

static void cobalt_cache_init(void)
{
	struct cobalt_vars v;

	memset(&v, 0, sizeof(v));
	v.rec_inv_sqrt = ~0U;
	cobalt_rec_inv_sqrt_cache[0] = v.rec_inv_sqrt;

	for (v.count = 1; v.count < REC_INV_SQRT_CACHE; v.count++) {
		cobalt_newton_step(&v);
		cobalt_newton_step(&v);
		cobalt_newton_step(&v);
		cobalt_newton_step(&v);

		cobalt_rec_inv_sqrt_cache[v.count] = v.rec_inv_sqrt;
	}
}

static void cobalt_vars_init(struct cobalt_vars *vars)
{
	memset(vars, 0, sizeof(*vars));

	if (!cobalt_rec_inv_sqrt_cache[0]) {
		cobalt_cache_init();
		cobalt_rec_inv_sqrt_cache[0] = ~0;
	}
}

/* CoDel control_law is t + interval/sqrt(count)
 * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid
 * both sqrt() and divide operation.
 */
static ktime_t cobalt_control(ktime_t t,
			      u64 interval,
			      u32 rec_inv_sqrt)
{
	return ktime_add_ns(t, reciprocal_scale(interval,
						rec_inv_sqrt));
}

/* Call this when a packet had to be dropped due to queue overflow.  Returns
 * true if the BLUE state was quiescent before but active after this call.
 */
static bool cobalt_queue_full(struct cobalt_vars *vars,
			      struct cobalt_params *p,
			      ktime_t now)
{
	bool up = false;

	if (ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
		up = !vars->p_drop;
		vars->p_drop += p->p_inc;
		if (vars->p_drop < p->p_inc)
			vars->p_drop = ~0;
		vars->blue_timer = now;
	}
	vars->dropping = true;
	vars->drop_next = now;
	if (!vars->count)
		vars->count = 1;

	return up;
}

/* Call this when the queue was serviced but turned out to be empty.  Returns
 * true if the BLUE state was active before but quiescent after this call.
 */
static bool cobalt_queue_empty(struct cobalt_vars *vars,
			       struct cobalt_params *p,
			       ktime_t now)
{
	bool down = false;

	if (vars->p_drop &&
	    ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
		if (vars->p_drop < p->p_dec)
			vars->p_drop = 0;
		else
			vars->p_drop -= p->p_dec;
		vars->blue_timer = now;
		down = !vars->p_drop;
	}
	vars->dropping = false;

	if (vars->count && ktime_to_ns(ktime_sub(now, vars->drop_next)) >= 0) {
		vars->count--;
		cobalt_invsqrt(vars);
		vars->drop_next = cobalt_control(vars->drop_next,
						 p->interval,
						 vars->rec_inv_sqrt);
	}

	return down;
}

/* Call this with a freshly dequeued packet for possible congestion marking.
 * Returns true as an instruction to drop the packet, false for delivery.
 */
static bool cobalt_should_drop(struct cobalt_vars *vars,
			       struct cobalt_params *p,
			       ktime_t now,
			       struct sk_buff *skb,
			       u32 bulk_flows)
{
	bool next_due, over_target, drop = false;
	ktime_t schedule;
	u64 sojourn;

/* The 'schedule' variable records, in its sign, whether 'now' is before or
 * after 'drop_next'.  This allows 'drop_next' to be updated before the next
 * scheduling decision is actually branched, without destroying that
 * information.  Similarly, the first 'schedule' value calculated is preserved
 * in the boolean 'next_due'.
 *
 * As for 'drop_next', we take advantage of the fact that 'interval' is both
 * the delay between first exceeding 'target' and the first signalling event,
 * *and* the scaling factor for the signalling frequency.  It's therefore very
 * natural to use a single mechanism for both purposes, and eliminates a
 * significant amount of reference Codel's spaghetti code.  To help with this,
 * both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as close
 * as possible to 1.0 in fixed-point.
 */

	sojourn = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
	schedule = ktime_sub(now, vars->drop_next);
	over_target = sojourn > p->target &&
		      sojourn > p->mtu_time * bulk_flows * 2 &&
		      sojourn > p->mtu_time * 4;
	next_due = vars->count && ktime_to_ns(schedule) >= 0;

	vars->ecn_marked = false;

	if (over_target) {
		if (!vars->dropping) {
			vars->dropping = true;
			vars->drop_next = cobalt_control(now,
							 p->interval,
							 vars->rec_inv_sqrt);
		}
		if (!vars->count)
			vars->count = 1;
	} else if (vars->dropping) {
		vars->dropping = false;
	}

	if (next_due && vars->dropping) {
		/* Use ECN mark if possible, otherwise drop */
		drop = !(vars->ecn_marked = INET_ECN_set_ce(skb));

		vars->count++;
		if (!vars->count)
			vars->count--;
		cobalt_invsqrt(vars);
		vars->drop_next = cobalt_control(vars->drop_next,
						 p->interval,
						 vars->rec_inv_sqrt);
		schedule = ktime_sub(now, vars->drop_next);
	} else {
		while (next_due) {
			vars->count--;
			cobalt_invsqrt(vars);
			vars->drop_next = cobalt_control(vars->drop_next,
							 p->interval,
							 vars->rec_inv_sqrt);
			schedule = ktime_sub(now, vars->drop_next);
			next_due = vars->count && ktime_to_ns(schedule) >= 0;
		}
	}

	/* Simple BLUE implementation.  Lack of ECN is deliberate. */
	if (vars->p_drop)
		drop |= (prandom_u32() < vars->p_drop);

	/* Overload the drop_next field as an activity timeout */
	if (!vars->count)
		vars->drop_next = ktime_add_ns(now, p->interval);
	else if (ktime_to_ns(schedule) > 0 && !drop)
		vars->drop_next = now;

	return drop;
}

/* Cake has several subtle multiple bit settings. In these cases you
 *  would be matching triple isolate mode as well.
 */

static bool cake_dsrc(int flow_mode)
{
	return (flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC;
}

static bool cake_ddst(int flow_mode)
{
	return (flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST;
}

static u32 cake_hash(struct cake_tin_data *q, const struct sk_buff *skb,
		     int flow_mode)
{
	u32 flow_hash = 0, srchost_hash, dsthost_hash;
	u16 reduced_hash, srchost_idx, dsthost_idx;
	struct flow_keys keys, host_keys;

	if (unlikely(flow_mode == CAKE_FLOW_NONE))
		return 0;

	skb_flow_dissect_flow_keys(skb, &keys,
				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);

	/* flow_hash_from_keys() sorts the addresses by value, so we have
	 * to preserve their order in a separate data structure to treat
	 * src and dst host addresses as independently selectable.
	 */
	host_keys = keys;
	host_keys.ports.ports     = 0;
	host_keys.basic.ip_proto  = 0;
	host_keys.keyid.keyid     = 0;
	host_keys.tags.flow_label = 0;

	switch (host_keys.control.addr_type) {
	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
		host_keys.addrs.v4addrs.src = 0;
		dsthost_hash = flow_hash_from_keys(&host_keys);
		host_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src;
		host_keys.addrs.v4addrs.dst = 0;
		srchost_hash = flow_hash_from_keys(&host_keys);
		break;

	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
		memset(&host_keys.addrs.v6addrs.src, 0,
		       sizeof(host_keys.addrs.v6addrs.src));
		dsthost_hash = flow_hash_from_keys(&host_keys);
		host_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src;
		memset(&host_keys.addrs.v6addrs.dst, 0,
		       sizeof(host_keys.addrs.v6addrs.dst));
		srchost_hash = flow_hash_from_keys(&host_keys);
		break;

	default:
		dsthost_hash = 0;
		srchost_hash = 0;
	}

	/* This *must* be after the above switch, since as a
	 * side-effect it sorts the src and dst addresses.
	 */
	if (flow_mode & CAKE_FLOW_FLOWS)
		flow_hash = flow_hash_from_keys(&keys);

	if (!(flow_mode & CAKE_FLOW_FLOWS)) {
		if (flow_mode & CAKE_FLOW_SRC_IP)
			flow_hash ^= srchost_hash;

		if (flow_mode & CAKE_FLOW_DST_IP)
			flow_hash ^= dsthost_hash;
	}

	reduced_hash = flow_hash % CAKE_QUEUES;

	/* set-associative hashing */
	/* fast path if no hash collision (direct lookup succeeds) */
	if (likely(q->tags[reduced_hash] == flow_hash &&
		   q->flows[reduced_hash].set)) {
		q->way_directs++;
	} else {
		u32 inner_hash = reduced_hash % CAKE_SET_WAYS;
		u32 outer_hash = reduced_hash - inner_hash;
		bool allocate_src = false;
		bool allocate_dst = false;
		u32 i, k;

		/* check if any active queue in the set is reserved for
		 * this flow.
		 */
		for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
		     i++, k = (k + 1) % CAKE_SET_WAYS) {
			if (q->tags[outer_hash + k] == flow_hash) {
				if (i)
					q->way_hits++;

				if (!q->flows[outer_hash + k].set) {
					/* need to increment host refcnts */
					allocate_src = cake_dsrc(flow_mode);
					allocate_dst = cake_ddst(flow_mode);
				}

				goto found;
			}
		}

		/* no queue is reserved for this flow, look for an
		 * empty one.
		 */
		for (i = 0; i < CAKE_SET_WAYS;
			 i++, k = (k + 1) % CAKE_SET_WAYS) {
			if (!q->flows[outer_hash + k].set) {
				q->way_misses++;
				allocate_src = cake_dsrc(flow_mode);
				allocate_dst = cake_ddst(flow_mode);
				goto found;
			}
		}

		/* With no empty queues, default to the original
		 * queue, accept the collision, update the host tags.
		 */
		q->way_collisions++;
		q->hosts[q->flows[reduced_hash].srchost].srchost_refcnt--;
		q->hosts[q->flows[reduced_hash].dsthost].dsthost_refcnt--;
		allocate_src = cake_dsrc(flow_mode);
		allocate_dst = cake_ddst(flow_mode);
found:
		/* reserve queue for future packets in same flow */
		reduced_hash = outer_hash + k;
		q->tags[reduced_hash] = flow_hash;

		if (allocate_src) {
			srchost_idx = srchost_hash % CAKE_QUEUES;
			inner_hash = srchost_idx % CAKE_SET_WAYS;
			outer_hash = srchost_idx - inner_hash;
			for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
				i++, k = (k + 1) % CAKE_SET_WAYS) {
				if (q->hosts[outer_hash + k].srchost_tag ==
				    srchost_hash)
					goto found_src;
			}
			for (i = 0; i < CAKE_SET_WAYS;
				i++, k = (k + 1) % CAKE_SET_WAYS) {
				if (!q->hosts[outer_hash + k].srchost_refcnt)
					break;
			}
			q->hosts[outer_hash + k].srchost_tag = srchost_hash;
found_src:
			srchost_idx = outer_hash + k;
			q->hosts[srchost_idx].srchost_refcnt++;
			q->flows[reduced_hash].srchost = srchost_idx;
		}

		if (allocate_dst) {
			dsthost_idx = dsthost_hash % CAKE_QUEUES;
			inner_hash = dsthost_idx % CAKE_SET_WAYS;
			outer_hash = dsthost_idx - inner_hash;
			for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
			     i++, k = (k + 1) % CAKE_SET_WAYS) {
				if (q->hosts[outer_hash + k].dsthost_tag ==
				    dsthost_hash)
					goto found_dst;
			}
			for (i = 0; i < CAKE_SET_WAYS;
			     i++, k = (k + 1) % CAKE_SET_WAYS) {
				if (!q->hosts[outer_hash + k].dsthost_refcnt)
					break;
			}
			q->hosts[outer_hash + k].dsthost_tag = dsthost_hash;
found_dst:
			dsthost_idx = outer_hash + k;
			q->hosts[dsthost_idx].dsthost_refcnt++;
			q->flows[reduced_hash].dsthost = dsthost_idx;
		}
	}

	return reduced_hash;
}

/* helper functions : might be changed when/if skb use a standard list_head */
/* remove one skb from head of slot queue */

static struct sk_buff *dequeue_head(struct cake_flow *flow)
{
	struct sk_buff *skb = flow->head;

	if (skb) {
		flow->head = skb->next;
		skb->next = NULL;
	}

	return skb;
}

/* add skb to flow queue (tail add) */

static void flow_queue_add(struct cake_flow *flow, struct sk_buff *skb)
{
	if (!flow->head)
		flow->head = skb;
	else
		flow->tail->next = skb;
	flow->tail = skb;
	skb->next = NULL;
}

static u64 cake_ewma(u64 avg, u64 sample, u32 shift)
{
	avg -= avg >> shift;
	avg += sample >> shift;
	return avg;
}

static void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 j)
{
	struct cake_heap_entry ii = q->overflow_heap[i];
	struct cake_heap_entry jj = q->overflow_heap[j];

	q->overflow_heap[i] = jj;
	q->overflow_heap[j] = ii;

	q->tins[ii.t].overflow_idx[ii.b] = j;
	q->tins[jj.t].overflow_idx[jj.b] = i;
}

static u32 cake_heap_get_backlog(const struct cake_sched_data *q, u16 i)
{
	struct cake_heap_entry ii = q->overflow_heap[i];

	return q->tins[ii.t].backlogs[ii.b];
}

static void cake_heapify(struct cake_sched_data *q, u16 i)
{
	static const u32 a = CAKE_MAX_TINS * CAKE_QUEUES;
	u32 mb = cake_heap_get_backlog(q, i);
	u32 m = i;

	while (m < a) {
		u32 l = m + m + 1;
		u32 r = l + 1;

		if (l < a) {
			u32 lb = cake_heap_get_backlog(q, l);

			if (lb > mb) {
				m  = l;
				mb = lb;
			}
		}

		if (r < a) {
			u32 rb = cake_heap_get_backlog(q, r);

			if (rb > mb) {
				m  = r;
				mb = rb;
			}
		}

		if (m != i) {
			cake_heap_swap(q, i, m);
			i = m;
		} else {
			break;
		}
	}
}

static void cake_heapify_up(struct cake_sched_data *q, u16 i)
{
	while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) {
		u16 p = (i - 1) >> 1;
		u32 ib = cake_heap_get_backlog(q, i);
		u32 pb = cake_heap_get_backlog(q, p);

		if (ib > pb) {
			cake_heap_swap(q, i, p);
			i = p;
		} else {
			break;
		}
	}
}

static int cake_advance_shaper(struct cake_sched_data *q,
			       struct cake_tin_data *b,
			       struct sk_buff *skb,
			       ktime_t now, bool drop)
{
	u32 len = qdisc_pkt_len(skb);

	/* charge packet bandwidth to this tin
	 * and to the global shaper.
	 */
	if (q->rate_ns) {
		u64 tin_dur = (len * b->tin_rate_ns) >> b->tin_rate_shft;
		u64 global_dur = (len * q->rate_ns) >> q->rate_shft;
		u64 failsafe_dur = global_dur + (global_dur >> 1);

		if (ktime_before(b->time_next_packet, now))
			b->time_next_packet = ktime_add_ns(b->time_next_packet,
							   tin_dur);

		else if (ktime_before(b->time_next_packet,
				      ktime_add_ns(now, tin_dur)))
			b->time_next_packet = ktime_add_ns(now, tin_dur);

		q->time_next_packet = ktime_add_ns(q->time_next_packet,
						   global_dur);
		if (!drop)
			q->failsafe_next_packet = \
				ktime_add_ns(q->failsafe_next_packet,
					     failsafe_dur);
	}
	return len;
}

static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_free)
{
	struct cake_sched_data *q = qdisc_priv(sch);
	ktime_t now = ktime_get();
	u32 idx = 0, tin = 0, len;
	struct cake_heap_entry qq;
	struct cake_tin_data *b;
	struct cake_flow *flow;
	struct sk_buff *skb;

	if (!q->overflow_timeout) {
		int i;
		/* Build fresh max-heap */
		for (i = CAKE_MAX_TINS * CAKE_QUEUES / 2; i >= 0; i--)
			cake_heapify(q, i);
	}
	q->overflow_timeout = 65535;

	/* select longest queue for pruning */
	qq  = q->overflow_heap[0];
	tin = qq.t;
	idx = qq.b;

	b = &q->tins[tin];
	flow = &b->flows[idx];
	skb = dequeue_head(flow);
	if (unlikely(!skb)) {
		/* heap has gone wrong, rebuild it next time */
		q->overflow_timeout = 0;
		return idx + (tin << 16);
	}

	if (cobalt_queue_full(&flow->cvars, &b->cparams, now))
		b->unresponsive_flow_count++;

	len = qdisc_pkt_len(skb);
	q->buffer_used      -= skb->truesize;
	b->backlogs[idx]    -= len;
	b->tin_backlog      -= len;
	sch->qstats.backlog -= len;
	qdisc_tree_reduce_backlog(sch, 1, len);

	flow->dropped++;
	b->tin_dropped++;
	sch->qstats.drops++;

	if (q->rate_flags & CAKE_FLAG_INGRESS)
		cake_advance_shaper(q, b, skb, now, true);

	__qdisc_drop(skb, to_free);
	sch->q.qlen--;

	cake_heapify(q, 0);

	return idx + (tin << 16);
}

static u32 cake_classify(struct Qdisc *sch, struct cake_tin_data *t,
			 struct sk_buff *skb, int flow_mode, int *qerr)
{
	struct cake_sched_data *q = qdisc_priv(sch);
	struct tcf_proto *filter;
	struct tcf_result res;
	int result;

	filter = rcu_dereference_bh(q->filter_list);
	if (!filter)
		return cake_hash(t, skb, flow_mode) + 1;

	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
	result = tcf_classify(skb, filter, &res, false);
	if (result >= 0) {
#ifdef CONFIG_NET_CLS_ACT
		switch (result) {
		case TC_ACT_STOLEN:
		case TC_ACT_QUEUED:
		case TC_ACT_TRAP:
			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
			/* fall through */
		case TC_ACT_SHOT:
			return 0;
		}
#endif
		if (TC_H_MIN(res.classid) <= CAKE_QUEUES)
			return TC_H_MIN(res.classid);
	}
	return 0;
}

static void cake_reconfigure(struct Qdisc *sch);

static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch,
			struct sk_buff **to_free)
{
	struct cake_sched_data *q = qdisc_priv(sch);
	int len = qdisc_pkt_len(skb);
	int uninitialized_var(ret);
	ktime_t now = ktime_get();
	struct cake_tin_data *b;
	struct cake_flow *flow;
	u32 idx, tin;

	tin = 0;
	b = &q->tins[tin];

	/* choose flow to insert into */
	idx = cake_classify(sch, b, skb, q->flow_mode, &ret);
	if (idx == 0) {
		if (ret & __NET_XMIT_BYPASS)
			qdisc_qstats_drop(sch);
		__qdisc_drop(skb, to_free);
		return ret;
	}
	idx--;
	flow = &b->flows[idx];

	/* ensure shaper state isn't stale */
	if (!b->tin_backlog) {
		if (ktime_before(b->time_next_packet, now))
			b->time_next_packet = now;

		if (!sch->q.qlen) {
			if (ktime_before(q->time_next_packet, now)) {
				q->failsafe_next_packet = now;
				q->time_next_packet = now;
			} else if (ktime_after(q->time_next_packet, now) &&
				   ktime_after(q->failsafe_next_packet, now)) {
				u64 next = \
					min(ktime_to_ns(q->time_next_packet),
					    ktime_to_ns(
						   q->failsafe_next_packet));
				sch->qstats.overlimits++;
				qdisc_watchdog_schedule_ns(&q->watchdog, next);
			}
		}
	}

	if (unlikely(len > b->max_skblen))
		b->max_skblen = len;

	cobalt_set_enqueue_time(skb, now);
	flow_queue_add(flow, skb);

	sch->q.qlen++;
	q->buffer_used      += skb->truesize;

	/* stats */
	b->packets++;
	b->bytes	    += len;
	b->backlogs[idx]    += len;
	b->tin_backlog      += len;
	sch->qstats.backlog += len;
	q->avg_window_bytes += len;

	if (q->overflow_timeout)
		cake_heapify_up(q, b->overflow_idx[idx]);

	/* incoming bandwidth capacity estimate */
	if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) {
		u64 packet_interval = \
			ktime_to_ns(ktime_sub(now, q->last_packet_time));

		if (packet_interval > NSEC_PER_SEC)
			packet_interval = NSEC_PER_SEC;

		/* filter out short-term bursts, eg. wifi aggregation */
		q->avg_packet_interval = \
			cake_ewma(q->avg_packet_interval,
				  packet_interval,
				  (packet_interval > q->avg_packet_interval ?
					  2 : 8));

		q->last_packet_time = now;

		if (packet_interval > q->avg_packet_interval) {
			u64 window_interval = \
				ktime_to_ns(ktime_sub(now,
						      q->avg_window_begin));
			u64 b = q->avg_window_bytes * (u64)NSEC_PER_SEC;

			do_div(b, window_interval);
			q->avg_peak_bandwidth =
				cake_ewma(q->avg_peak_bandwidth, b,
					  b > q->avg_peak_bandwidth ? 2 : 8);
			q->avg_window_bytes = 0;
			q->avg_window_begin = now;

			if (ktime_after(now,
					ktime_add_ms(q->last_reconfig_time,
						     250))) {
				q->rate_bps = (q->avg_peak_bandwidth * 15) >> 4;
				cake_reconfigure(sch);
			}
		}
	} else {
		q->avg_window_bytes = 0;
		q->last_packet_time = now;
	}

	/* flowchain */
	if (!flow->set || flow->set == CAKE_SET_DECAYING) {
		struct cake_host *srchost = &b->hosts[flow->srchost];
		struct cake_host *dsthost = &b->hosts[flow->dsthost];
		u16 host_load = 1;

		if (!flow->set) {
			list_add_tail(&flow->flowchain, &b->new_flows);
		} else {
			b->decaying_flow_count--;
			list_move_tail(&flow->flowchain, &b->new_flows);
		}
		flow->set = CAKE_SET_SPARSE;
		b->sparse_flow_count++;

		if (cake_dsrc(q->flow_mode))
			host_load = max(host_load, srchost->srchost_refcnt);

		if (cake_ddst(q->flow_mode))
			host_load = max(host_load, dsthost->dsthost_refcnt);

		flow->deficit = (b->flow_quantum *
				 quantum_div[host_load]) >> 16;
	} else if (flow->set == CAKE_SET_SPARSE_WAIT) {
		/* this flow was empty, accounted as a sparse flow, but actually
		 * in the bulk rotation.
		 */
		flow->set = CAKE_SET_BULK;
		b->sparse_flow_count--;
		b->bulk_flow_count++;
	}

	if (q->buffer_used > q->buffer_max_used)
		q->buffer_max_used = q->buffer_used;

	if (q->buffer_used > q->buffer_limit) {
		u32 dropped = 0;

		while (q->buffer_used > q->buffer_limit) {
			dropped++;
			cake_drop(sch, to_free);
		}
		b->drop_overlimit += dropped;
	}
	return NET_XMIT_SUCCESS;
}

static struct sk_buff *cake_dequeue_one(struct Qdisc *sch)
{
	struct cake_sched_data *q = qdisc_priv(sch);
	struct cake_tin_data *b = &q->tins[q->cur_tin];
	struct cake_flow *flow = &b->flows[q->cur_flow];
	struct sk_buff *skb = NULL;
	u32 len;

	if (flow->head) {
		skb = dequeue_head(flow);
		len = qdisc_pkt_len(skb);
		b->backlogs[q->cur_flow] -= len;
		b->tin_backlog		 -= len;
		sch->qstats.backlog      -= len;
		q->buffer_used		 -= skb->truesize;
		sch->q.qlen--;

		if (q->overflow_timeout)
			cake_heapify(q, b->overflow_idx[q->cur_flow]);
	}
	return skb;
}

/* Discard leftover packets from a tin no longer in use. */
static void cake_clear_tin(struct Qdisc *sch, u16 tin)
{
	struct cake_sched_data *q = qdisc_priv(sch);
	struct sk_buff *skb;

	q->cur_tin = tin;
	for (q->cur_flow = 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++)
		while (!!(skb = cake_dequeue_one(sch)))
			kfree_skb(skb);
}

static struct sk_buff *cake_dequeue(struct Qdisc *sch)
{
	struct cake_sched_data *q = qdisc_priv(sch);
	struct cake_tin_data *b = &q->tins[q->cur_tin];
	struct cake_host *srchost, *dsthost;
	ktime_t now = ktime_get();
	struct cake_flow *flow;
	struct list_head *head;
	bool first_flow = true;
	struct sk_buff *skb;
	u16 host_load;
	u64 delay;
	u32 len;

begin:
	if (!sch->q.qlen)
		return NULL;

	/* global hard shaper */
	if (ktime_after(q->time_next_packet, now) &&
	    ktime_after(q->failsafe_next_packet, now)) {
		u64 next = min(ktime_to_ns(q->time_next_packet),
			       ktime_to_ns(q->failsafe_next_packet));

		sch->qstats.overlimits++;
		qdisc_watchdog_schedule_ns(&q->watchdog, next);
		return NULL;
	}

	/* Choose a class to work on. */
	if (!q->rate_ns) {
		/* In unlimited mode, can't rely on shaper timings, just balance
		 * with DRR
		 */
		bool wrapped = false, empty = true;

		while (b->tin_deficit < 0 ||
		       !(b->sparse_flow_count + b->bulk_flow_count)) {
			if (b->tin_deficit <= 0)
				b->tin_deficit += b->tin_quantum_band;
			if (b->sparse_flow_count + b->bulk_flow_count)
				empty = false;

			q->cur_tin++;
			b++;
			if (q->cur_tin >= q->tin_cnt) {
				q->cur_tin = 0;
				b = q->tins;

				if (wrapped) {
					/* It's possible for q->qlen to be
					 * nonzero when we actually have no
					 * packets anywhere.
					 */
					if (empty)
						return NULL;
				} else {
					wrapped = true;
				}
			}
		}
	} else {
		/* In shaped mode, choose:
		 * - Highest-priority tin with queue and meeting schedule, or
		 * - The earliest-scheduled tin with queue.
		 */
		ktime_t best_time = KTIME_MAX;
		int tin, best_tin = 0;

		for (tin = 0; tin < q->tin_cnt; tin++) {
			b = q->tins + tin;
			if ((b->sparse_flow_count + b->bulk_flow_count) > 0) {
				ktime_t time_to_pkt = \
					ktime_sub(b->time_next_packet, now);

				if (ktime_to_ns(time_to_pkt) <= 0 ||
				    ktime_compare(time_to_pkt,
						  best_time) <= 0) {
					best_time = time_to_pkt;
					best_tin = tin;
				}
			}
		}

		q->cur_tin = best_tin;
		b = q->tins + best_tin;

		/* No point in going further if no packets to deliver. */
		if (unlikely(!(b->sparse_flow_count + b->bulk_flow_count)))
			return NULL;
	}

retry:
	/* service this class */
	head = &b->decaying_flows;
	if (!first_flow || list_empty(head)) {
		head = &b->new_flows;
		if (list_empty(head)) {
			head = &b->old_flows;
			if (unlikely(list_empty(head))) {
				head = &b->decaying_flows;
				if (unlikely(list_empty(head)))
					goto begin;
			}
		}
	}
	flow = list_first_entry(head, struct cake_flow, flowchain);
	q->cur_flow = flow - b->flows;
	first_flow = false;

	/* triple isolation (modified DRR++) */
	srchost = &b->hosts[flow->srchost];
	dsthost = &b->hosts[flow->dsthost];
	host_load = 1;

	if (cake_dsrc(q->flow_mode))
		host_load = max(host_load, srchost->srchost_refcnt);

	if (cake_ddst(q->flow_mode))
		host_load = max(host_load, dsthost->dsthost_refcnt);

	WARN_ON(host_load > CAKE_QUEUES);

	/* flow isolation (DRR++) */
	if (flow->deficit <= 0) {
		/* The shifted prandom_u32() is a way to apply dithering to
		 * avoid accumulating roundoff errors
		 */
		flow->deficit += (b->flow_quantum * quantum_div[host_load] +
				  (prandom_u32() >> 16)) >> 16;
		list_move_tail(&flow->flowchain, &b->old_flows);

		/* Keep all flows with deficits out of the sparse and decaying
		 * rotations.  No non-empty flow can go into the decaying
		 * rotation, so they can't get deficits
		 */
		if (flow->set == CAKE_SET_SPARSE) {
			if (flow->head) {
				b->sparse_flow_count--;
				b->bulk_flow_count++;
				flow->set = CAKE_SET_BULK;
			} else {
				/* we've moved it to the bulk rotation for
				 * correct deficit accounting but we still want
				 * to count it as a sparse flow, not a bulk one.
				 */
				flow->set = CAKE_SET_SPARSE_WAIT;
			}
		}
		goto retry;
	}

	/* Retrieve a packet via the AQM */
	while (1) {
		skb = cake_dequeue_one(sch);
		if (!skb) {
			/* this queue was actually empty */
			if (cobalt_queue_empty(&flow->cvars, &b->cparams, now))
				b->unresponsive_flow_count--;

			if (flow->cvars.p_drop || flow->cvars.count ||
			    ktime_before(now, flow->cvars.drop_next)) {
				/* keep in the flowchain until the state has
				 * decayed to rest
				 */
				list_move_tail(&flow->flowchain,
					       &b->decaying_flows);
				if (flow->set == CAKE_SET_BULK) {
					b->bulk_flow_count--;
					b->decaying_flow_count++;
				} else if (flow->set == CAKE_SET_SPARSE ||
					   flow->set == CAKE_SET_SPARSE_WAIT) {
					b->sparse_flow_count--;
					b->decaying_flow_count++;
				}
				flow->set = CAKE_SET_DECAYING;
			} else {
				/* remove empty queue from the flowchain */
				list_del_init(&flow->flowchain);
				if (flow->set == CAKE_SET_SPARSE ||
				    flow->set == CAKE_SET_SPARSE_WAIT)
					b->sparse_flow_count--;
				else if (flow->set == CAKE_SET_BULK)
					b->bulk_flow_count--;
				else
					b->decaying_flow_count--;

				flow->set = CAKE_SET_NONE;
				srchost->srchost_refcnt--;
				dsthost->dsthost_refcnt--;
			}
			goto begin;
		}

		/* Last packet in queue may be marked, shouldn't be dropped */
		if (!cobalt_should_drop(&flow->cvars, &b->cparams, now, skb,
					(b->bulk_flow_count *
					 !!(q->rate_flags &
					    CAKE_FLAG_INGRESS))) ||
		    !flow->head)
			break;

		/* drop this packet, get another one */
		if (q->rate_flags & CAKE_FLAG_INGRESS) {
			len = cake_advance_shaper(q, b, skb,
						  now, true);
			flow->deficit -= len;
			b->tin_deficit -= len;
		}
		flow->dropped++;
		b->tin_dropped++;
		qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb));
		qdisc_qstats_drop(sch);
		kfree_skb(skb);
		if (q->rate_flags & CAKE_FLAG_INGRESS)
			goto retry;
	}

	b->tin_ecn_mark += !!flow->cvars.ecn_marked;
	qdisc_bstats_update(sch, skb);

	/* collect delay stats */
	delay = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
	b->avge_delay = cake_ewma(b->avge_delay, delay, 8);
	b->peak_delay = cake_ewma(b->peak_delay, delay,
				  delay > b->peak_delay ? 2 : 8);
	b->base_delay = cake_ewma(b->base_delay, delay,
				  delay < b->base_delay ? 2 : 8);

	len = cake_advance_shaper(q, b, skb, now, false);
	flow->deficit -= len;
	b->tin_deficit -= len;

	if (ktime_after(q->time_next_packet, now) && sch->q.qlen) {
		u64 next = min(ktime_to_ns(q->time_next_packet),
			       ktime_to_ns(q->failsafe_next_packet));

		qdisc_watchdog_schedule_ns(&q->watchdog, next);
	} else if (!sch->q.qlen) {
		int i;

		for (i = 0; i < q->tin_cnt; i++) {
			if (q->tins[i].decaying_flow_count) {
				ktime_t next = \
					ktime_add_ns(now,
						     q->tins[i].cparams.target);

				qdisc_watchdog_schedule_ns(&q->watchdog,
							   ktime_to_ns(next));
				break;
			}
		}
	}

	if (q->overflow_timeout)
		q->overflow_timeout--;

	return skb;
}

static void cake_reset(struct Qdisc *sch)
{
	u32 c;

	for (c = 0; c < CAKE_MAX_TINS; c++)
		cake_clear_tin(sch, c);
}

static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] = {
	[TCA_CAKE_BASE_RATE64]   = { .type = NLA_U64 },
	[TCA_CAKE_DIFFSERV_MODE] = { .type = NLA_U32 },
	[TCA_CAKE_ATM]		 = { .type = NLA_U32 },
	[TCA_CAKE_FLOW_MODE]     = { .type = NLA_U32 },
	[TCA_CAKE_OVERHEAD]      = { .type = NLA_S32 },
	[TCA_CAKE_RTT]		 = { .type = NLA_U32 },
	[TCA_CAKE_TARGET]	 = { .type = NLA_U32 },
	[TCA_CAKE_AUTORATE]      = { .type = NLA_U32 },
	[TCA_CAKE_MEMORY]	 = { .type = NLA_U32 },
	[TCA_CAKE_NAT]		 = { .type = NLA_U32 },
	[TCA_CAKE_RAW]		 = { .type = NLA_U32 },
	[TCA_CAKE_WASH]		 = { .type = NLA_U32 },
	[TCA_CAKE_MPU]		 = { .type = NLA_U32 },
	[TCA_CAKE_INGRESS]	 = { .type = NLA_U32 },
	[TCA_CAKE_ACK_FILTER]	 = { .type = NLA_U32 },
};

static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu,
			  u64 target_ns, u64 rtt_est_ns)
{
	/* convert byte-rate into time-per-byte
	 * so it will always unwedge in reasonable time.
	 */
	static const u64 MIN_RATE = 64;
	u32 byte_target = mtu;
	u64 byte_target_ns;
	u8  rate_shft = 0;
	u64 rate_ns = 0;

	b->flow_quantum = 1514;
	if (rate) {
		b->flow_quantum = max(min(rate >> 12, 1514ULL), 300ULL);
		rate_shft = 34;
		rate_ns = ((u64)NSEC_PER_SEC) << rate_shft;
		rate_ns = div64_u64(rate_ns, max(MIN_RATE, rate));
		while (!!(rate_ns >> 34)) {
			rate_ns >>= 1;
			rate_shft--;
		}
	} /* else unlimited, ie. zero delay */

	b->tin_rate_bps  = rate;
	b->tin_rate_ns   = rate_ns;
	b->tin_rate_shft = rate_shft;

	byte_target_ns = (byte_target * rate_ns) >> rate_shft;

	b->cparams.target = max((byte_target_ns * 3) / 2, target_ns);
	b->cparams.interval = max(rtt_est_ns +
				     b->cparams.target - target_ns,
				     b->cparams.target * 2);
	b->cparams.mtu_time = byte_target_ns;
	b->cparams.p_inc = 1 << 24; /* 1/256 */
	b->cparams.p_dec = 1 << 20; /* 1/4096 */
}

static void cake_reconfigure(struct Qdisc *sch)
{
	struct cake_sched_data *q = qdisc_priv(sch);
	struct cake_tin_data *b = &q->tins[0];
	int c, ft = 0;

	q->tin_cnt = 1;
	cake_set_rate(b, q->rate_bps, psched_mtu(qdisc_dev(sch)),
		      us_to_ns(q->target), us_to_ns(q->interval));
	b->tin_quantum_band = 65535;
	b->tin_quantum_prio = 65535;

	for (c = q->tin_cnt; c < CAKE_MAX_TINS; c++) {
		cake_clear_tin(sch, c);
		q->tins[c].cparams.mtu_time = q->tins[ft].cparams.mtu_time;
	}

	q->rate_ns   = q->tins[ft].tin_rate_ns;
	q->rate_shft = q->tins[ft].tin_rate_shft;

	if (q->buffer_config_limit) {
		q->buffer_limit = q->buffer_config_limit;
	} else if (q->rate_bps) {
		u64 t = q->rate_bps * q->interval;

		do_div(t, USEC_PER_SEC / 4);
		q->buffer_limit = max_t(u32, t, 4U << 20);
	} else {
		q->buffer_limit = ~0;
	}

	sch->flags &= ~TCQ_F_CAN_BYPASS;

	q->buffer_limit = min(q->buffer_limit,
			      max(sch->limit * psched_mtu(qdisc_dev(sch)),
				  q->buffer_config_limit));
}

static int cake_change(struct Qdisc *sch, struct nlattr *opt,
		       struct netlink_ext_ack *extack)
{
	struct cake_sched_data *q = qdisc_priv(sch);
	struct nlattr *tb[TCA_CAKE_MAX + 1];
	int err;

	if (!opt)
		return -EINVAL;

	err = nla_parse_nested(tb, TCA_CAKE_MAX, opt, cake_policy, extack);
	if (err < 0)
		return err;

	if (tb[TCA_CAKE_BASE_RATE64])
		q->rate_bps = nla_get_u64(tb[TCA_CAKE_BASE_RATE64]);

	if (tb[TCA_CAKE_FLOW_MODE])
		q->flow_mode = (nla_get_u32(tb[TCA_CAKE_FLOW_MODE]) &
				CAKE_FLOW_MASK);

	if (tb[TCA_CAKE_RTT]) {
		q->interval = nla_get_u32(tb[TCA_CAKE_RTT]);

		if (!q->interval)
			q->interval = 1;
	}

	if (tb[TCA_CAKE_TARGET]) {
		q->target = nla_get_u32(tb[TCA_CAKE_TARGET]);

		if (!q->target)
			q->target = 1;
	}

	if (tb[TCA_CAKE_AUTORATE]) {
		if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE]))
			q->rate_flags |= CAKE_FLAG_AUTORATE_INGRESS;
		else
			q->rate_flags &= ~CAKE_FLAG_AUTORATE_INGRESS;
	}

	if (tb[TCA_CAKE_INGRESS]) {
		if (!!nla_get_u32(tb[TCA_CAKE_INGRESS]))
			q->rate_flags |= CAKE_FLAG_INGRESS;
		else
			q->rate_flags &= ~CAKE_FLAG_INGRESS;
	}

	if (tb[TCA_CAKE_MEMORY])
		q->buffer_config_limit = nla_get_u32(tb[TCA_CAKE_MEMORY]);

	if (q->tins) {
		sch_tree_lock(sch);
		cake_reconfigure(sch);
		sch_tree_unlock(sch);
	}

	return 0;
}

static void cake_destroy(struct Qdisc *sch)
{
	struct cake_sched_data *q = qdisc_priv(sch);

	qdisc_watchdog_cancel(&q->watchdog);
	tcf_block_put(q->block);
	kvfree(q->tins);
}

static int cake_init(struct Qdisc *sch, struct nlattr *opt,
		     struct netlink_ext_ack *extack)
{
	struct cake_sched_data *q = qdisc_priv(sch);
	int i, j, err;

	sch->limit = 10240;
	q->tin_mode = CAKE_DIFFSERV_BESTEFFORT;
	q->flow_mode  = CAKE_FLOW_TRIPLE;

	q->rate_bps = 0; /* unlimited by default */

	q->interval = 100000; /* 100ms default */
	q->target   =   5000; /* 5ms: codel RFC argues
			       * for 5 to 10% of interval
			       */

	q->cur_tin = 0;
	q->cur_flow  = 0;

	qdisc_watchdog_init(&q->watchdog, sch);

	if (opt) {
		int err = cake_change(sch, opt, extack);

		if (err)
			return err;
	}

	err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
	if (err)
		return err;

	quantum_div[0] = ~0;
	for (i = 1; i <= CAKE_QUEUES; i++)
		quantum_div[i] = 65535 / i;

	q->tins = kvzalloc(CAKE_MAX_TINS * sizeof(struct cake_tin_data),
			   GFP_KERNEL);
	if (!q->tins)
		goto nomem;

	for (i = 0; i < CAKE_MAX_TINS; i++) {
		struct cake_tin_data *b = q->tins + i;

		INIT_LIST_HEAD(&b->new_flows);
		INIT_LIST_HEAD(&b->old_flows);
		INIT_LIST_HEAD(&b->decaying_flows);
		b->sparse_flow_count = 0;
		b->bulk_flow_count = 0;
		b->decaying_flow_count = 0;

		for (j = 0; j < CAKE_QUEUES; j++) {
			struct cake_flow *flow = b->flows + j;
			u32 k = j * CAKE_MAX_TINS + i;

			INIT_LIST_HEAD(&flow->flowchain);
			cobalt_vars_init(&flow->cvars);

			q->overflow_heap[k].t = i;
			q->overflow_heap[k].b = j;
			b->overflow_idx[j] = k;
		}
	}

	cake_reconfigure(sch);
	q->avg_peak_bandwidth = q->rate_bps;
	q->min_netlen = ~0;
	q->min_adjlen = ~0;
	return 0;

nomem:
	cake_destroy(sch);
	return -ENOMEM;
}

static int cake_dump(struct Qdisc *sch, struct sk_buff *skb)
{
	struct cake_sched_data *q = qdisc_priv(sch);
	struct nlattr *opts;

	opts = nla_nest_start(skb, TCA_OPTIONS);
	if (!opts)
		goto nla_put_failure;

	if (nla_put_u64_64bit(skb, TCA_CAKE_BASE_RATE64, q->rate_bps,
			      TCA_CAKE_PAD))
		goto nla_put_failure;

	if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE,
			q->flow_mode & CAKE_FLOW_MASK))
		goto nla_put_failure;

	if (nla_put_u32(skb, TCA_CAKE_RTT, q->interval))
		goto nla_put_failure;

	if (nla_put_u32(skb, TCA_CAKE_TARGET, q->target))
		goto nla_put_failure;

	if (nla_put_u32(skb, TCA_CAKE_MEMORY, q->buffer_config_limit))
		goto nla_put_failure;

	if (nla_put_u32(skb, TCA_CAKE_AUTORATE,
			!!(q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS)))
		goto nla_put_failure;

	if (nla_put_u32(skb, TCA_CAKE_INGRESS,
			!!(q->rate_flags & CAKE_FLAG_INGRESS)))
		goto nla_put_failure;

	return nla_nest_end(skb, opts);

nla_put_failure:
	return -1;
}

static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
{
	struct nlattr *stats = nla_nest_start(d->skb, TCA_STATS_APP);
	struct cake_sched_data *q = qdisc_priv(sch);
	struct nlattr *tstats, *ts;
	int i;

	if (!stats)
		return -1;

#define PUT_STAT_U32(attr, data) do {				       \
		if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
			goto nla_put_failure;			       \
	} while (0)
#define PUT_STAT_U64(attr, data) do {				       \
		if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \
					data, TCA_CAKE_STATS_PAD)) \
			goto nla_put_failure;			       \
	} while (0)

	PUT_STAT_U64(CAPACITY_ESTIMATE64, q->avg_peak_bandwidth);
	PUT_STAT_U32(MEMORY_LIMIT, q->buffer_limit);
	PUT_STAT_U32(MEMORY_USED, q->buffer_max_used);
	PUT_STAT_U32(AVG_NETOFF, ((q->avg_netoff + 0x8000) >> 16));
	PUT_STAT_U32(MAX_NETLEN, q->max_netlen);
	PUT_STAT_U32(MAX_ADJLEN, q->max_adjlen);
	PUT_STAT_U32(MIN_NETLEN, q->min_netlen);
	PUT_STAT_U32(MIN_ADJLEN, q->min_adjlen);

#undef PUT_STAT_U32
#undef PUT_STAT_U64

	tstats = nla_nest_start(d->skb, TCA_CAKE_STATS_TIN_STATS);
	if (!tstats)
		goto nla_put_failure;

#define PUT_TSTAT_U32(attr, data) do {					\
		if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \
			goto nla_put_failure;				\
	} while (0)
#define PUT_TSTAT_U64(attr, data) do {					\
		if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \
					data, TCA_CAKE_TIN_STATS_PAD))	\
			goto nla_put_failure;				\
	} while (0)

	for (i = 0; i < q->tin_cnt; i++) {
		struct cake_tin_data *b = &q->tins[i];

		ts = nla_nest_start(d->skb, i + 1);
		if (!ts)
			goto nla_put_failure;

		PUT_TSTAT_U64(THRESHOLD_RATE64, b->tin_rate_bps);
		PUT_TSTAT_U64(SENT_BYTES64, b->bytes);
		PUT_TSTAT_U32(BACKLOG_BYTES, b->tin_backlog);

		PUT_TSTAT_U32(TARGET_US,
			      ktime_to_us(ns_to_ktime(b->cparams.target)));
		PUT_TSTAT_U32(INTERVAL_US,
			      ktime_to_us(ns_to_ktime(b->cparams.interval)));

		PUT_TSTAT_U32(SENT_PACKETS, b->packets);
		PUT_TSTAT_U32(DROPPED_PACKETS, b->tin_dropped);
		PUT_TSTAT_U32(ECN_MARKED_PACKETS, b->tin_ecn_mark);
		PUT_TSTAT_U32(ACKS_DROPPED_PACKETS, b->ack_drops);

		PUT_TSTAT_U32(PEAK_DELAY_US,
			      ktime_to_us(ns_to_ktime(b->peak_delay)));
		PUT_TSTAT_U32(AVG_DELAY_US,
			      ktime_to_us(ns_to_ktime(b->avge_delay)));
		PUT_TSTAT_U32(BASE_DELAY_US,
			      ktime_to_us(ns_to_ktime(b->base_delay)));

		PUT_TSTAT_U32(WAY_INDIRECT_HITS, b->way_hits);
		PUT_TSTAT_U32(WAY_MISSES, b->way_misses);
		PUT_TSTAT_U32(WAY_COLLISIONS, b->way_collisions);

		PUT_TSTAT_U32(SPARSE_FLOWS, b->sparse_flow_count +
					    b->decaying_flow_count);
		PUT_TSTAT_U32(BULK_FLOWS, b->bulk_flow_count);
		PUT_TSTAT_U32(UNRESPONSIVE_FLOWS, b->unresponsive_flow_count);
		PUT_TSTAT_U32(MAX_SKBLEN, b->max_skblen);

		PUT_TSTAT_U32(FLOW_QUANTUM, b->flow_quantum);
		nla_nest_end(d->skb, ts);
	}

#undef PUT_TSTAT_U32
#undef PUT_TSTAT_U64

	nla_nest_end(d->skb, tstats);
	return nla_nest_end(d->skb, stats);

nla_put_failure:
	nla_nest_cancel(d->skb, stats);
	return -1;
}

static struct Qdisc *cake_leaf(struct Qdisc *sch, unsigned long arg)
{
	return NULL;
}

static unsigned long cake_find(struct Qdisc *sch, u32 classid)
{
	return 0;
}

static unsigned long cake_bind(struct Qdisc *sch, unsigned long parent,
			       u32 classid)
{
	return 0;
}

static void cake_unbind(struct Qdisc *q, unsigned long cl)
{
}

static struct tcf_block *cake_tcf_block(struct Qdisc *sch, unsigned long cl,
					struct netlink_ext_ack *extack)
{
	struct cake_sched_data *q = qdisc_priv(sch);

	if (cl)
		return NULL;
	return q->block;
}

static int cake_dump_class(struct Qdisc *sch, unsigned long cl,
			   struct sk_buff *skb, struct tcmsg *tcm)
{
	tcm->tcm_handle |= TC_H_MIN(cl);
	return 0;
}

static int cake_dump_class_stats(struct Qdisc *sch, unsigned long cl,
				 struct gnet_dump *d)
{
	struct cake_sched_data *q = qdisc_priv(sch);
	const struct cake_flow *flow = NULL;
	struct gnet_stats_queue qs = { 0 };
	struct nlattr *stats;
	u32 idx = cl - 1;

	if (idx < CAKE_QUEUES * q->tin_cnt) {
		const struct cake_tin_data *b = &q->tins[idx / CAKE_QUEUES];
		const struct sk_buff *skb;

		flow = &b->flows[idx % CAKE_QUEUES];

		if (flow->head) {
			sch_tree_lock(sch);
			skb = flow->head;
			while (skb) {
				qs.qlen++;
				skb = skb->next;
			}
			sch_tree_unlock(sch);
		}
		qs.backlog = b->backlogs[idx % CAKE_QUEUES];
		qs.drops = flow->dropped;
	}
	if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
		return -1;
	if (flow) {
		ktime_t now = ktime_get();

		stats = nla_nest_start(d->skb, TCA_STATS_APP);
		if (!stats)
			return -1;

#define PUT_STAT_U32(attr, data) do {				       \
		if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
			goto nla_put_failure;			       \
	} while (0)
#define PUT_STAT_S32(attr, data) do {				       \
		if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
			goto nla_put_failure;			       \
	} while (0)

		PUT_STAT_S32(DEFICIT, flow->deficit);
		PUT_STAT_U32(DROPPING, flow->cvars.dropping);
		PUT_STAT_U32(COBALT_COUNT, flow->cvars.count);
		PUT_STAT_U32(P_DROP, flow->cvars.p_drop);
		if (flow->cvars.p_drop) {
			PUT_STAT_S32(BLUE_TIMER_US,
				     ktime_to_us(
					     ktime_sub(now,
						     flow->cvars.blue_timer)));
		}
		if (flow->cvars.dropping) {
			PUT_STAT_S32(DROP_NEXT_US,
				     ktime_to_us(
					     ktime_sub(now,
						       flow->cvars.drop_next)));
		}

		if (nla_nest_end(d->skb, stats) < 0)
			return -1;
	}

	return 0;

nla_put_failure:
	nla_nest_cancel(d->skb, stats);
	return -1;
}

static void cake_walk(struct Qdisc *sch, struct qdisc_walker *arg)
{
	struct cake_sched_data *q = qdisc_priv(sch);
	unsigned int i, j;

	if (arg->stop)
		return;

	for (i = 0; i < q->tin_cnt; i++) {
		struct cake_tin_data *b = &q->tins[i];

		for (j = 0; j < CAKE_QUEUES; j++) {
			if (list_empty(&b->flows[j].flowchain) ||
			    arg->count < arg->skip) {
				arg->count++;
				continue;
			}
			if (arg->fn(sch, i * CAKE_QUEUES + j + 1, arg) < 0) {
				arg->stop = 1;
				break;
			}
			arg->count++;
		}
	}
}

static const struct Qdisc_class_ops cake_class_ops = {
	.leaf		=	cake_leaf,
	.find		=	cake_find,
	.tcf_block	=	cake_tcf_block,
	.bind_tcf	=	cake_bind,
	.unbind_tcf	=	cake_unbind,
	.dump		=	cake_dump_class,
	.dump_stats	=	cake_dump_class_stats,
	.walk		=	cake_walk,
};

static struct Qdisc_ops cake_qdisc_ops __read_mostly = {
	.cl_ops		=	&cake_class_ops,
	.id		=	"cake",
	.priv_size	=	sizeof(struct cake_sched_data),
	.enqueue	=	cake_enqueue,
	.dequeue	=	cake_dequeue,
	.peek		=	qdisc_peek_dequeued,
	.init		=	cake_init,
	.reset		=	cake_reset,
	.destroy	=	cake_destroy,
	.change		=	cake_change,
	.dump		=	cake_dump,
	.dump_stats	=	cake_dump_stats,
	.owner		=	THIS_MODULE,
};

static int __init cake_module_init(void)
{
	return register_qdisc(&cake_qdisc_ops);
}

static void __exit cake_module_exit(void)
{
	unregister_qdisc(&cake_qdisc_ops);
}

module_init(cake_module_init)
module_exit(cake_module_exit)
MODULE_AUTHOR("Jonathan Morton");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_DESCRIPTION("The CAKE shaper.");