// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015, Sony Mobile Communications Inc.
* Copyright (c) 2013, The Linux Foundation. All rights reserved.
*/
#include <linux/module.h>
#include <linux/netlink.h>
#include <linux/qrtr.h>
#include <linux/termios.h> /* For TIOCINQ/OUTQ */
#include <linux/spinlock.h>
#include <linux/wait.h>
#include <net/sock.h>
#include "qrtr.h"
#define QRTR_PROTO_VER_1 1
#define QRTR_PROTO_VER_2 3
/* auto-bind range */
#define QRTR_MIN_EPH_SOCKET 0x4000
#define QRTR_MAX_EPH_SOCKET 0x7fff
/**
* struct qrtr_hdr_v1 - (I|R)PCrouter packet header version 1
* @version: protocol version
* @type: packet type; one of QRTR_TYPE_*
* @src_node_id: source node
* @src_port_id: source port
* @confirm_rx: boolean; whether a resume-tx packet should be send in reply
* @size: length of packet, excluding this header
* @dst_node_id: destination node
* @dst_port_id: destination port
*/
struct qrtr_hdr_v1 {
__le32 version;
__le32 type;
__le32 src_node_id;
__le32 src_port_id;
__le32 confirm_rx;
__le32 size;
__le32 dst_node_id;
__le32 dst_port_id;
} __packed;
/**
* struct qrtr_hdr_v2 - (I|R)PCrouter packet header later versions
* @version: protocol version
* @type: packet type; one of QRTR_TYPE_*
* @flags: bitmask of QRTR_FLAGS_*
* @optlen: length of optional header data
* @size: length of packet, excluding this header and optlen
* @src_node_id: source node
* @src_port_id: source port
* @dst_node_id: destination node
* @dst_port_id: destination port
*/
struct qrtr_hdr_v2 {
u8 version;
u8 type;
u8 flags;
u8 optlen;
__le32 size;
__le16 src_node_id;
__le16 src_port_id;
__le16 dst_node_id;
__le16 dst_port_id;
};
#define QRTR_FLAGS_CONFIRM_RX BIT(0)
struct qrtr_cb {
u32 src_node;
u32 src_port;
u32 dst_node;
u32 dst_port;
u8 type;
u8 confirm_rx;
};
#define QRTR_HDR_MAX_SIZE max_t(size_t, sizeof(struct qrtr_hdr_v1), \
sizeof(struct qrtr_hdr_v2))
struct qrtr_sock {
/* WARNING: sk must be the first member */
struct sock sk;
struct sockaddr_qrtr us;
struct sockaddr_qrtr peer;
};
static inline struct qrtr_sock *qrtr_sk(struct sock *sk)
{
BUILD_BUG_ON(offsetof(struct qrtr_sock, sk) != 0);
return container_of(sk, struct qrtr_sock, sk);
}
static unsigned int qrtr_local_nid = 1;
/* for node ids */
static RADIX_TREE(qrtr_nodes, GFP_ATOMIC);
static DEFINE_SPINLOCK(qrtr_nodes_lock);
/* broadcast list */
static LIST_HEAD(qrtr_all_nodes);
/* lock for qrtr_all_nodes and node reference */
static DEFINE_MUTEX(qrtr_node_lock);
/* local port allocation management */
static DEFINE_IDR(qrtr_ports);
static DEFINE_MUTEX(qrtr_port_lock);
/**
* struct qrtr_node - endpoint node
* @ep_lock: lock for endpoint management and callbacks
* @ep: endpoint
* @ref: reference count for node
* @nid: node id
* @qrtr_tx_flow: tree of qrtr_tx_flow, keyed by node << 32 | port
* @qrtr_tx_lock: lock for qrtr_tx_flow inserts
* @rx_queue: receive queue
* @item: list item for broadcast list
*/
struct qrtr_node {
struct mutex ep_lock;
struct qrtr_endpoint *ep;
struct kref ref;
unsigned int nid;
struct radix_tree_root qrtr_tx_flow;
struct mutex qrtr_tx_lock; /* for qrtr_tx_flow */
struct sk_buff_head rx_queue;
struct list_head item;
};
/**
* struct qrtr_tx_flow - tx flow control
* @resume_tx: waiters for a resume tx from the remote
* @pending: number of waiting senders
* @tx_failed: indicates that a message with confirm_rx flag was lost
*/
struct qrtr_tx_flow {
struct wait_queue_head resume_tx;
int pending;
int tx_failed;
};
#define QRTR_TX_FLOW_HIGH 10
#define QRTR_TX_FLOW_LOW 5
static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb,
int type, struct sockaddr_qrtr *from,
struct sockaddr_qrtr *to);
static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb,
int type, struct sockaddr_qrtr *from,
struct sockaddr_qrtr *to);
static struct qrtr_sock *qrtr_port_lookup(int port);
static void qrtr_port_put(struct qrtr_sock *ipc);
/* Release node resources and free the node.
*
* Do not call directly, use qrtr_node_release. To be used with
* kref_put_mutex. As such, the node mutex is expected to be locked on call.
*/
static void __qrtr_node_release(struct kref *kref)
{
struct qrtr_node *node = container_of(kref, struct qrtr_node, ref);
struct radix_tree_iter iter;
struct qrtr_tx_flow *flow;
unsigned long flags;
void __rcu **slot;
spin_lock_irqsave(&qrtr_nodes_lock, flags);
if (node->nid != QRTR_EP_NID_AUTO)
radix_tree_delete(&qrtr_nodes, node->nid);
spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
list_del(&node->item);
mutex_unlock(&qrtr_node_lock);
skb_queue_purge(&node->rx_queue);
/* Free tx flow counters */
radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) {
flow = *slot;
radix_tree_iter_delete(&node->qrtr_tx_flow, &iter, slot);
kfree(flow);
}
kfree(node);
}
/* Increment reference to node. */
static struct qrtr_node *qrtr_node_acquire(struct qrtr_node *node)
{
if (node)
kref_get(&node->ref);
return node;
}
/* Decrement reference to node and release as necessary. */
static void qrtr_node_release(struct qrtr_node *node)
{
if (!node)
return;
kref_put_mutex(&node->ref, __qrtr_node_release, &qrtr_node_lock);
}
/**
* qrtr_tx_resume() - reset flow control counter
* @node: qrtr_node that the QRTR_TYPE_RESUME_TX packet arrived on
* @skb: resume_tx packet
*/
static void qrtr_tx_resume(struct qrtr_node *node, struct sk_buff *skb)
{
struct qrtr_ctrl_pkt *pkt = (struct qrtr_ctrl_pkt *)skb->data;
u64 remote_node = le32_to_cpu(pkt->client.node);
u32 remote_port = le32_to_cpu(pkt->client.port);
struct qrtr_tx_flow *flow;
unsigned long key;
key = remote_node << 32 | remote_port;
rcu_read_lock();
flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
rcu_read_unlock();
if (flow) {
spin_lock(&flow->resume_tx.lock);
flow->pending = 0;
spin_unlock(&flow->resume_tx.lock);
wake_up_interruptible_all(&flow->resume_tx);
}
consume_skb(skb);
}
/**
* qrtr_tx_wait() - flow control for outgoing packets
* @node: qrtr_node that the packet is to be send to
* @dest_node: node id of the destination
* @dest_port: port number of the destination
* @type: type of message
*
* The flow control scheme is based around the low and high "watermarks". When
* the low watermark is passed the confirm_rx flag is set on the outgoing
* message, which will trigger the remote to send a control message of the type
* QRTR_TYPE_RESUME_TX to reset the counter. If the high watermark is hit
* further transmision should be paused.
*
* Return: 1 if confirm_rx should be set, 0 otherwise or errno failure
*/
static int qrtr_tx_wait(struct qrtr_node *node, int dest_node, int dest_port,
int type)
{
unsigned long key = (u64)dest_node << 32 | dest_port;
struct qrtr_tx_flow *flow;
int confirm_rx = 0;
int ret;
/* Never set confirm_rx on non-data packets */
if (type != QRTR_TYPE_DATA)
return 0;
mutex_lock(&node->qrtr_tx_lock);
flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
if (!flow) {
flow = kzalloc(sizeof(*flow), GFP_KERNEL);
if (flow) {
init_waitqueue_head(&flow->resume_tx);
radix_tree_insert(&node->qrtr_tx_flow, key, flow);
}
}
mutex_unlock(&node->qrtr_tx_lock);
/* Set confirm_rx if we where unable to find and allocate a flow */
if (!flow)
return 1;
spin_lock_irq(&flow->resume_tx.lock);
ret = wait_event_interruptible_locked_irq(flow->resume_tx,
flow->pending < QRTR_TX_FLOW_HIGH ||
flow->tx_failed ||
!node->ep);
if (ret < 0) {
confirm_rx = ret;
} else if (!node->ep) {
confirm_rx = -EPIPE;
} else if (flow->tx_failed) {
flow->tx_failed = 0;
confirm_rx = 1;
} else {
flow->pending++;
confirm_rx = flow->pending == QRTR_TX_FLOW_LOW;
}
spin_unlock_irq(&flow->resume_tx.lock);
return confirm_rx;
}
/**
* qrtr_tx_flow_failed() - flag that tx of confirm_rx flagged messages failed
* @node: qrtr_node that the packet is to be send to
* @dest_node: node id of the destination
* @dest_port: port number of the destination
*
* Signal that the transmission of a message with confirm_rx flag failed. The
* flow's "pending" counter will keep incrementing towards QRTR_TX_FLOW_HIGH,
* at which point transmission would stall forever waiting for the resume TX
* message associated with the dropped confirm_rx message.
* Work around this by marking the flow as having a failed transmission and
* cause the next transmission attempt to be sent with the confirm_rx.
*/
static void qrtr_tx_flow_failed(struct qrtr_node *node, int dest_node,
int dest_port)
{
unsigned long key = (u64)dest_node << 32 | dest_port;
struct qrtr_tx_flow *flow;
rcu_read_lock();
flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
rcu_read_unlock();
if (flow) {
spin_lock_irq(&flow->resume_tx.lock);
flow->tx_failed = 1;
spin_unlock_irq(&flow->resume_tx.lock);
}
}
/* Pass an outgoing packet socket buffer to the endpoint driver. */
static int qrtr_node_enqueue(struct qrtr_node *node, struct sk_buff *skb,
int type, struct sockaddr_qrtr *from,
struct sockaddr_qrtr *to)
{
struct qrtr_hdr_v1 *hdr;
size_t len = skb->len;
int rc, confirm_rx;
confirm_rx = qrtr_tx_wait(node, to->sq_node, to->sq_port, type);
if (confirm_rx < 0) {
kfree_skb(skb);
return confirm_rx;
}
hdr = skb_push(skb, sizeof(*hdr));
hdr->version = cpu_to_le32(QRTR_PROTO_VER_1);
hdr->type = cpu_to_le32(type);
hdr->src_node_id = cpu_to_le32(from->sq_node);
hdr->src_port_id = cpu_to_le32(from->sq_port);
if (to->sq_port == QRTR_PORT_CTRL) {
hdr->dst_node_id = cpu_to_le32(node->nid);
hdr->dst_port_id = cpu_to_le32(QRTR_NODE_BCAST);
} else {
hdr->dst_node_id = cpu_to_le32(to->sq_node);
hdr->dst_port_id = cpu_to_le32(to->sq_port);
}
hdr->size = cpu_to_le32(len);
hdr->confirm_rx = !!confirm_rx;
rc = skb_put_padto(skb, ALIGN(len, 4) + sizeof(*hdr));
if (!rc) {
mutex_lock(&node->ep_lock);
rc = -ENODEV;
if (node->ep)
rc = node->ep->xmit(node->ep, skb);
else
kfree_skb(skb);
mutex_unlock(&node->ep_lock);
}
/* Need to ensure that a subsequent message carries the otherwise lost
* confirm_rx flag if we dropped this one */
if (rc && confirm_rx)
qrtr_tx_flow_failed(node, to->sq_node, to->sq_port);
return rc;
}
/* Lookup node by id.
*
* callers must release with qrtr_node_release()
*/
static struct qrtr_node *qrtr_node_lookup(unsigned int nid)
{
struct qrtr_node *node;
unsigned long flags;
spin_lock_irqsave(&qrtr_nodes_lock, flags);
node = radix_tree_lookup(&qrtr_nodes, nid);
node = qrtr_node_acquire(node);
spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
return node;
}
/* Assign node id to node.
*
* This is mostly useful for automatic node id assignment, based on
* the source id in the incoming packet.
*/
static void qrtr_node_assign(struct qrtr_node *node, unsigned int nid)
{
unsigned long flags;
if (node->nid != QRTR_EP_NID_AUTO || nid == QRTR_EP_NID_AUTO)
return;
spin_lock_irqsave(&qrtr_nodes_lock, flags);
radix_tree_insert(&qrtr_nodes, nid, node);
node->nid = nid;
spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
}
/**
* qrtr_endpoint_post() - post incoming data
* @ep: endpoint handle
* @data: data pointer
* @len: size of data in bytes
*
* Return: 0 on success; negative error code on failure
*/
int qrtr_endpoint_post(struct qrtr_endpoint *ep, const void *data, size_t len)
{
struct qrtr_node *node = ep->node;
const struct qrtr_hdr_v1 *v1;
const struct qrtr_hdr_v2 *v2;
struct qrtr_sock *ipc;
struct sk_buff *skb;
struct qrtr_cb *cb;
unsigned int size;
unsigned int ver;
size_t hdrlen;
if (len == 0 || len & 3)
return -EINVAL;
skb = netdev_alloc_skb(NULL, len);
if (!skb)
return -ENOMEM;
cb = (struct qrtr_cb *)skb->cb;
/* Version field in v1 is little endian, so this works for both cases */
ver = *(u8*)data;
switch (ver) {
case QRTR_PROTO_VER_1:
if (len < sizeof(*v1))
goto err;
v1 = data;
hdrlen = sizeof(*v1);
cb->type = le32_to_cpu(v1->type);
cb->src_node = le32_to_cpu(v1->src_node_id);
cb->src_port = le32_to_cpu(v1->src_port_id);
cb->confirm_rx = !!v1->confirm_rx;
cb->dst_node = le32_to_cpu(v1->dst_node_id);
cb->dst_port = le32_to_cpu(v1->dst_port_id);
size = le32_to_cpu(v1->size);
break;
case QRTR_PROTO_VER_2:
if (len < sizeof(*v2))
goto err;
v2 = data;
hdrlen = sizeof(*v2) + v2->optlen;
cb->type = v2->type;
cb->confirm_rx = !!(v2->flags & QRTR_FLAGS_CONFIRM_RX);
cb->src_node = le16_to_cpu(v2->src_node_id);
cb->src_port = le16_to_cpu(v2->src_port_id);
cb->dst_node = le16_to_cpu(v2->dst_node_id);
cb->dst_port = le16_to_cpu(v2->dst_port_id);
if (cb->src_port == (u16)QRTR_PORT_CTRL)
cb->src_port = QRTR_PORT_CTRL;
if (cb->dst_port == (u16)QRTR_PORT_CTRL)
cb->dst_port = QRTR_PORT_CTRL;
size = le32_to_cpu(v2->size);
break;
default:
pr_err("qrtr: Invalid version %d\n", ver);
goto err;
}
if (len != ALIGN(size, 4) + hdrlen)
goto err;
if (cb->dst_port != QRTR_PORT_CTRL && cb->type != QRTR_TYPE_DATA &&
cb->type != QRTR_TYPE_RESUME_TX)
goto err;
skb_put_data(skb, data + hdrlen, size);
qrtr_node_assign(node, cb->src_node);
if (cb->type == QRTR_TYPE_RESUME_TX) {
qrtr_tx_resume(node, skb);
} else {
ipc = qrtr_port_lookup(cb->dst_port);
if (!ipc)
goto err;
if (sock_queue_rcv_skb(&ipc->sk, skb))
goto err;
qrtr_port_put(ipc);
}
return 0;
err:
kfree_skb(skb);
return -EINVAL;
}
EXPORT_SYMBOL_GPL(qrtr_endpoint_post);
/**
* qrtr_alloc_ctrl_packet() - allocate control packet skb
* @pkt: reference to qrtr_ctrl_pkt pointer
*
* Returns newly allocated sk_buff, or NULL on failure
*
* This function allocates a sk_buff large enough to carry a qrtr_ctrl_pkt and
* on success returns a reference to the control packet in @pkt.
*/
static struct sk_buff *qrtr_alloc_ctrl_packet(struct qrtr_ctrl_pkt **pkt)
{
const int pkt_len = sizeof(struct qrtr_ctrl_pkt);
struct sk_buff *skb;
skb = alloc_skb(QRTR_HDR_MAX_SIZE + pkt_len, GFP_KERNEL);
if (!skb)
return NULL;
skb_reserve(skb, QRTR_HDR_MAX_SIZE);
*pkt = skb_put_zero(skb, pkt_len);
return skb;
}
/**
* qrtr_endpoint_register() - register a new endpoint
* @ep: endpoint to register
* @nid: desired node id; may be QRTR_EP_NID_AUTO for auto-assignment
* Return: 0 on success; negative error code on failure
*
* The specified endpoint must have the xmit function pointer set on call.
*/
int qrtr_endpoint_register(struct qrtr_endpoint *ep, unsigned int nid)
{
struct qrtr_node *node;
if (!ep || !ep->xmit)
return -EINVAL;
node = kzalloc(sizeof(*node), GFP_KERNEL);
if (!node)
return -ENOMEM;
kref_init(&node->ref);
mutex_init(&node->ep_lock);
skb_queue_head_init(&node->rx_queue);
node->nid = QRTR_EP_NID_AUTO;
node->ep = ep;
INIT_RADIX_TREE(&node->qrtr_tx_flow, GFP_KERNEL);
mutex_init(&node->qrtr_tx_lock);
qrtr_node_assign(node, nid);
mutex_lock(&qrtr_node_lock);
list_add(&node->item, &qrtr_all_nodes);
mutex_unlock(&qrtr_node_lock);
ep->node = node;
return 0;
}
EXPORT_SYMBOL_GPL(qrtr_endpoint_register);
/**
* qrtr_endpoint_unregister - unregister endpoint
* @ep: endpoint to unregister
*/
void qrtr_endpoint_unregister(struct qrtr_endpoint *ep)
{
struct qrtr_node *node = ep->node;
struct sockaddr_qrtr src = {AF_QIPCRTR, node->nid, QRTR_PORT_CTRL};
struct sockaddr_qrtr dst = {AF_QIPCRTR, qrtr_local_nid, QRTR_PORT_CTRL};
struct radix_tree_iter iter;
struct qrtr_ctrl_pkt *pkt;
struct qrtr_tx_flow *flow;
struct sk_buff *skb;
void __rcu **slot;
mutex_lock(&node->ep_lock);
node->ep = NULL;
mutex_unlock(&node->ep_lock);
/* Notify the local controller about the event */
skb = qrtr_alloc_ctrl_packet(&pkt);
if (skb) {
pkt->cmd = cpu_to_le32(QRTR_TYPE_BYE);
qrtr_local_enqueue(NULL, skb, QRTR_TYPE_BYE, &src, &dst);
}
/* Wake up any transmitters waiting for resume-tx from the node */
mutex_lock(&node->qrtr_tx_lock);
radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) {
flow = *slot;
wake_up_interruptible_all(&flow->resume_tx);
}
mutex_unlock(&node->qrtr_tx_lock);
qrtr_node_release(node);
ep->node = NULL;
}
EXPORT_SYMBOL_GPL(qrtr_endpoint_unregister);
/* Lookup socket by port.
*
* Callers must release with qrtr_port_put()
*/
static struct qrtr_sock *qrtr_port_lookup(int port)
{
struct qrtr_sock *ipc;
if (port == QRTR_PORT_CTRL)
port = 0;
rcu_read_lock();
ipc = idr_find(&qrtr_ports, port);
if (ipc)
sock_hold(&ipc->sk);
rcu_read_unlock();
return ipc;
}
/* Release acquired socket. */
static void qrtr_port_put(struct qrtr_sock *ipc)
{
sock_put(&ipc->sk);
}
/* Remove port assignment. */
static void qrtr_port_remove(struct qrtr_sock *ipc)
{
struct qrtr_ctrl_pkt *pkt;
struct sk_buff *skb;
int port = ipc->us.sq_port;
struct sockaddr_qrtr to;
to.sq_family = AF_QIPCRTR;
to.sq_node = QRTR_NODE_BCAST;
to.sq_port = QRTR_PORT_CTRL;
skb = qrtr_alloc_ctrl_packet(&pkt);
if (skb) {
pkt->cmd = cpu_to_le32(QRTR_TYPE_DEL_CLIENT);
pkt->client.node = cpu_to_le32(ipc->us.sq_node);
pkt->client.port = cpu_to_le32(ipc->us.sq_port);
skb_set_owner_w(skb, &ipc->sk);
qrtr_bcast_enqueue(NULL, skb, QRTR_TYPE_DEL_CLIENT, &ipc->us,
&to);
}
if (port == QRTR_PORT_CTRL)
port = 0;
__sock_put(&ipc->sk);
mutex_lock(&qrtr_port_lock);
idr_remove(&qrtr_ports, port);
mutex_unlock(&qrtr_port_lock);
/* Ensure that if qrtr_port_lookup() did enter the RCU read section we
* wait for it to up increment the refcount */
synchronize_rcu();
}
/* Assign port number to socket.
*
* Specify port in the integer pointed to by port, and it will be adjusted
* on return as necesssary.
*
* Port may be:
* 0: Assign ephemeral port in [QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET]
* <QRTR_MIN_EPH_SOCKET: Specified; requires CAP_NET_ADMIN
* >QRTR_MIN_EPH_SOCKET: Specified; available to all
*/
static int qrtr_port_assign(struct qrtr_sock *ipc, int *port)
{
u32 min_port;
int rc;
mutex_lock(&qrtr_port_lock);
if (!*port) {
min_port = QRTR_MIN_EPH_SOCKET;
rc = idr_alloc_u32(&qrtr_ports, ipc, &min_port, QRTR_MAX_EPH_SOCKET, GFP_ATOMIC);
if (!rc)
*port = min_port;
} else if (*port < QRTR_MIN_EPH_SOCKET && !capable(CAP_NET_ADMIN)) {
rc = -EACCES;
} else if (*port == QRTR_PORT_CTRL) {
min_port = 0;
rc = idr_alloc_u32(&qrtr_ports, ipc, &min_port, 0, GFP_ATOMIC);
} else {
min_port = *port;
rc = idr_alloc_u32(&qrtr_ports, ipc, &min_port, *port, GFP_ATOMIC);
if (!rc)
*port = min_port;
}
mutex_unlock(&qrtr_port_lock);
if (rc == -ENOSPC)
return -EADDRINUSE;
else if (rc < 0)
return rc;
sock_hold(&ipc->sk);
return 0;
}
/* Reset all non-control ports */
static void qrtr_reset_ports(void)
{
struct qrtr_sock *ipc;
int id;
mutex_lock(&qrtr_port_lock);
idr_for_each_entry(&qrtr_ports, ipc, id) {
/* Don't reset control port */
if (id == 0)
continue;
sock_hold(&ipc->sk);
ipc->sk.sk_err = ENETRESET;
ipc->sk.sk_error_report(&ipc->sk);
sock_put(&ipc->sk);
}
mutex_unlock(&qrtr_port_lock);
}
/* Bind socket to address.
*
* Socket should be locked upon call.
*/
static int __qrtr_bind(struct socket *sock,
const struct sockaddr_qrtr *addr, int zapped)
{
struct qrtr_sock *ipc = qrtr_sk(sock->sk);
struct sock *sk = sock->sk;
int port;
int rc;
/* rebinding ok */
if (!zapped && addr->sq_port == ipc->us.sq_port)
return 0;
port = addr->sq_port;
rc = qrtr_port_assign(ipc, &port);
if (rc)
return rc;
/* unbind previous, if any */
if (!zapped)
qrtr_port_remove(ipc);
ipc->us.sq_port = port;
sock_reset_flag(sk, SOCK_ZAPPED);
/* Notify all open ports about the new controller */
if (port == QRTR_PORT_CTRL)
qrtr_reset_ports();
return 0;
}
/* Auto bind to an ephemeral port. */
static int qrtr_autobind(struct socket *sock)
{
struct sock *sk = sock->sk;
struct sockaddr_qrtr addr;
if (!sock_flag(sk, SOCK_ZAPPED))
return 0;
addr.sq_family = AF_QIPCRTR;
addr.sq_node = qrtr_local_nid;
addr.sq_port = 0;
return __qrtr_bind(sock, &addr, 1);
}
/* Bind socket to specified sockaddr. */
static int qrtr_bind(struct socket *sock, struct sockaddr *saddr, int len)
{
DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr);
struct qrtr_sock *ipc = qrtr_sk(sock->sk);
struct sock *sk = sock->sk;
int rc;
if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR)
return -EINVAL;
if (addr->sq_node != ipc->us.sq_node)
return -EINVAL;
lock_sock(sk);
rc = __qrtr_bind(sock, addr, sock_flag(sk, SOCK_ZAPPED));
release_sock(sk);
return rc;
}
/* Queue packet to local peer socket. */
static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb,
int type, struct sockaddr_qrtr *from,
struct sockaddr_qrtr *to)
{
struct qrtr_sock *ipc;
struct qrtr_cb *cb;
ipc = qrtr_port_lookup(to->sq_port);
if (!ipc || &ipc->sk == skb->sk) { /* do not send to self */
kfree_skb(skb);
return -ENODEV;
}
cb = (struct qrtr_cb *)skb->cb;
cb->src_node = from->sq_node;
cb->src_port = from->sq_port;
if (sock_queue_rcv_skb(&ipc->sk, skb)) {
qrtr_port_put(ipc);
kfree_skb(skb);
return -ENOSPC;
}
qrtr_port_put(ipc);
return 0;
}
/* Queue packet for broadcast. */
static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb,
int type, struct sockaddr_qrtr *from,
struct sockaddr_qrtr *to)
{
struct sk_buff *skbn;
mutex_lock(&qrtr_node_lock);
list_for_each_entry(node, &qrtr_all_nodes, item) {
skbn = skb_clone(skb, GFP_KERNEL);
if (!skbn)
break;
skb_set_owner_w(skbn, skb->sk);
qrtr_node_enqueue(node, skbn, type, from, to);
}
mutex_unlock(&qrtr_node_lock);
qrtr_local_enqueue(NULL, skb, type, from, to);
return 0;
}
static int qrtr_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
{
DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name);
int (*enqueue_fn)(struct qrtr_node *, struct sk_buff *, int,
struct sockaddr_qrtr *, struct sockaddr_qrtr *);
__le32 qrtr_type = cpu_to_le32(QRTR_TYPE_DATA);
struct qrtr_sock *ipc = qrtr_sk(sock->sk);
struct sock *sk = sock->sk;
struct qrtr_node *node;
struct sk_buff *skb;
size_t plen;
u32 type;
int rc;
if (msg->msg_flags & ~(MSG_DONTWAIT))
return -EINVAL;
if (len > 65535)
return -EMSGSIZE;
lock_sock(sk);
if (addr) {
if (msg->msg_namelen < sizeof(*addr)) {
release_sock(sk);
return -EINVAL;
}
if (addr->sq_family != AF_QIPCRTR) {
release_sock(sk);
return -EINVAL;
}
rc = qrtr_autobind(sock);
if (rc) {
release_sock(sk);
return rc;
}
} else if (sk->sk_state == TCP_ESTABLISHED) {
addr = &ipc->peer;
} else {
release_sock(sk);
return -ENOTCONN;
}
node = NULL;
if (addr->sq_node == QRTR_NODE_BCAST) {
if (addr->sq_port != QRTR_PORT_CTRL &&
qrtr_local_nid != QRTR_NODE_BCAST) {
release_sock(sk);
return -ENOTCONN;
}
enqueue_fn = qrtr_bcast_enqueue;
} else if (addr->sq_node == ipc->us.sq_node) {
enqueue_fn = qrtr_local_enqueue;
} else {
node = qrtr_node_lookup(addr->sq_node);
if (!node) {
release_sock(sk);
return -ECONNRESET;
}
enqueue_fn = qrtr_node_enqueue;
}
plen = (len + 3) & ~3;
skb = sock_alloc_send_skb(sk, plen + QRTR_HDR_MAX_SIZE,
msg->msg_flags & MSG_DONTWAIT, &rc);
if (!skb)
goto out_node;
skb_reserve(skb, QRTR_HDR_MAX_SIZE);
rc = memcpy_from_msg(skb_put(skb, len), msg, len);
if (rc) {
kfree_skb(skb);
goto out_node;
}
if (ipc->us.sq_port == QRTR_PORT_CTRL) {
if (len < 4) {
rc = -EINVAL;
kfree_skb(skb);
goto out_node;
}
/* control messages already require the type as 'command' */
skb_copy_bits(skb, 0, &qrtr_type, 4);
}
type = le32_to_cpu(qrtr_type);
rc = enqueue_fn(node, skb, type, &ipc->us, addr);
if (rc >= 0)
rc = len;
out_node:
qrtr_node_release(node);
release_sock(sk);
return rc;
}
static int qrtr_send_resume_tx(struct qrtr_cb *cb)
{
struct sockaddr_qrtr remote = { AF_QIPCRTR, cb->src_node, cb->src_port };
struct sockaddr_qrtr local = { AF_QIPCRTR, cb->dst_node, cb->dst_port };
struct qrtr_ctrl_pkt *pkt;
struct qrtr_node *node;
struct sk_buff *skb;
int ret;
node = qrtr_node_lookup(remote.sq_node);
if (!node)
return -EINVAL;
skb = qrtr_alloc_ctrl_packet(&pkt);
if (!skb)
return -ENOMEM;
pkt->cmd = cpu_to_le32(QRTR_TYPE_RESUME_TX);
pkt->client.node = cpu_to_le32(cb->dst_node);
pkt->client.port = cpu_to_le32(cb->dst_port);
ret = qrtr_node_enqueue(node, skb, QRTR_TYPE_RESUME_TX, &local, &remote);
qrtr_node_release(node);
return ret;
}
static int qrtr_recvmsg(struct socket *sock, struct msghdr *msg,
size_t size, int flags)
{
DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name);
struct sock *sk = sock->sk;
struct sk_buff *skb;
struct qrtr_cb *cb;
int copied, rc;
lock_sock(sk);
if (sock_flag(sk, SOCK_ZAPPED)) {
release_sock(sk);
return -EADDRNOTAVAIL;
}
skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT,
flags & MSG_DONTWAIT, &rc);
if (!skb) {
release_sock(sk);
return rc;
}
cb = (struct qrtr_cb *)skb->cb;
copied = skb->len;
if (copied > size) {
copied = size;
msg->msg_flags |= MSG_TRUNC;
}
rc = skb_copy_datagram_msg(skb, 0, msg, copied);
if (rc < 0)
goto out;
rc = copied;
if (addr) {
addr->sq_family = AF_QIPCRTR;
addr->sq_node = cb->src_node;
addr->sq_port = cb->src_port;
msg->msg_namelen = sizeof(*addr);
}
out:
if (cb->confirm_rx)
qrtr_send_resume_tx(cb);
skb_free_datagram(sk, skb);
release_sock(sk);
return rc;
}
static int qrtr_connect(struct socket *sock, struct sockaddr *saddr,
int len, int flags)
{
DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr);
struct qrtr_sock *ipc = qrtr_sk(sock->sk);
struct sock *sk = sock->sk;
int rc;
if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR)
return -EINVAL;
lock_sock(sk);
sk->sk_state = TCP_CLOSE;
sock->state = SS_UNCONNECTED;
rc = qrtr_autobind(sock);
if (rc) {
release_sock(sk);
return rc;
}
ipc->peer = *addr;
sock->state = SS_CONNECTED;
sk->sk_state = TCP_ESTABLISHED;
release_sock(sk);
return 0;
}
static int qrtr_getname(struct socket *sock, struct sockaddr *saddr,
int peer)
{
struct qrtr_sock *ipc = qrtr_sk(sock->sk);
struct sockaddr_qrtr qaddr;
struct sock *sk = sock->sk;
lock_sock(sk);
if (peer) {
if (sk->sk_state != TCP_ESTABLISHED) {
release_sock(sk);
return -ENOTCONN;
}
qaddr = ipc->peer;
} else {
qaddr = ipc->us;
}
release_sock(sk);
qaddr.sq_family = AF_QIPCRTR;
memcpy(saddr, &qaddr, sizeof(qaddr));
return sizeof(qaddr);
}
static int qrtr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
{
void __user *argp = (void __user *)arg;
struct qrtr_sock *ipc = qrtr_sk(sock->sk);
struct sock *sk = sock->sk;
struct sockaddr_qrtr *sq;
struct sk_buff *skb;
struct ifreq ifr;
long len = 0;
int rc = 0;
lock_sock(sk);
switch (cmd) {
case TIOCOUTQ:
len = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
if (len < 0)
len = 0;
rc = put_user(len, (int __user *)argp);
break;
case TIOCINQ:
skb = skb_peek(&sk->sk_receive_queue);
if (skb)
len = skb->len;
rc = put_user(len, (int __user *)argp);
break;
case SIOCGIFADDR:
if (copy_from_user(&ifr, argp, sizeof(ifr))) {
rc = -EFAULT;
break;
}
sq = (struct sockaddr_qrtr *)&ifr.ifr_addr;
*sq = ipc->us;
if (copy_to_user(argp, &ifr, sizeof(ifr))) {
rc = -EFAULT;
break;
}
break;
case SIOCADDRT:
case SIOCDELRT:
case SIOCSIFADDR:
case SIOCGIFDSTADDR:
case SIOCSIFDSTADDR:
case SIOCGIFBRDADDR:
case SIOCSIFBRDADDR:
case SIOCGIFNETMASK:
case SIOCSIFNETMASK:
rc = -EINVAL;
break;
default:
rc = -ENOIOCTLCMD;
break;
}
release_sock(sk);
return rc;
}
static int qrtr_release(struct socket *sock)
{
struct sock *sk = sock->sk;
struct qrtr_sock *ipc;
if (!sk)
return 0;
lock_sock(sk);
ipc = qrtr_sk(sk);
sk->sk_shutdown = SHUTDOWN_MASK;
if (!sock_flag(sk, SOCK_DEAD))
sk->sk_state_change(sk);
sock_set_flag(sk, SOCK_DEAD);
sock_orphan(sk);
sock->sk = NULL;
if (!sock_flag(sk, SOCK_ZAPPED))
qrtr_port_remove(ipc);
skb_queue_purge(&sk->sk_receive_queue);
release_sock(sk);
sock_put(sk);
return 0;
}
static const struct proto_ops qrtr_proto_ops = {
.owner = THIS_MODULE,
.family = AF_QIPCRTR,
.bind = qrtr_bind,
.connect = qrtr_connect,
.socketpair = sock_no_socketpair,
.accept = sock_no_accept,
.listen = sock_no_listen,
.sendmsg = qrtr_sendmsg,
.recvmsg = qrtr_recvmsg,
.getname = qrtr_getname,
.ioctl = qrtr_ioctl,
.gettstamp = sock_gettstamp,
.poll = datagram_poll,
.shutdown = sock_no_shutdown,
.release = qrtr_release,
.mmap = sock_no_mmap,
.sendpage = sock_no_sendpage,
};
static struct proto qrtr_proto = {
.name = "QIPCRTR",
.owner = THIS_MODULE,
.obj_size = sizeof(struct qrtr_sock),
};
static int qrtr_create(struct net *net, struct socket *sock,
int protocol, int kern)
{
struct qrtr_sock *ipc;
struct sock *sk;
if (sock->type != SOCK_DGRAM)
return -EPROTOTYPE;
sk = sk_alloc(net, AF_QIPCRTR, GFP_KERNEL, &qrtr_proto, kern);
if (!sk)
return -ENOMEM;
sock_set_flag(sk, SOCK_ZAPPED);
sock_init_data(sock, sk);
sock->ops = &qrtr_proto_ops;
ipc = qrtr_sk(sk);
ipc->us.sq_family = AF_QIPCRTR;
ipc->us.sq_node = qrtr_local_nid;
ipc->us.sq_port = 0;
return 0;
}
static const struct net_proto_family qrtr_family = {
.owner = THIS_MODULE,
.family = AF_QIPCRTR,
.create = qrtr_create,
};
static int __init qrtr_proto_init(void)
{
int rc;
rc = proto_register(&qrtr_proto, 1);
if (rc)
return rc;
rc = sock_register(&qrtr_family);
if (rc) {
proto_unregister(&qrtr_proto);
return rc;
}
qrtr_ns_init();
return rc;
}
postcore_initcall(qrtr_proto_init);
static void __exit qrtr_proto_fini(void)
{
qrtr_ns_remove();
sock_unregister(qrtr_family.family);
proto_unregister(&qrtr_proto);
}
module_exit(qrtr_proto_fini);
MODULE_DESCRIPTION("Qualcomm IPC-router driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS_NETPROTO(PF_QIPCRTR);