summaryrefslogblamecommitdiff
path: root/net/openvswitch/flow_netlink.c
blob: 32a725cfeb0e83d06b812a13ae3f827a0d65b36c (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624

















                                                                      

                                           

































































































                                                                                 
                                                       







































                                                                                       

                                                                                         
                                                                              

                                                                                    





























                                                                                       

                                                                                         
                                                                              

                                                                                    




















                                                                                                           
                                                                                                 





                                                                                                          
                                                                                                  

















                                                                           
                                                  



















































































































































































































































                                                                                       

                                                                       
























































































































































                                                                                                                 












                                                                                



















































































































































                                                                                                     
                                                               







































                                                                                                                        
                                                                       
























































































                                                                               

                                                           






































































                                                                             

                                                                        















                                                                                   


                                                                             


                                                                          


                                                                             






















                                                                                     

                                                                         
                                                                          

                                                                         
































                                                                                         

                                                                                     






























                                                            



                                                                   
                                






































































































































































































































































































































































































































































































                                                                                          
/*
 * Copyright (c) 2007-2013 Nicira, Inc.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 * 02110-1301, USA
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include "flow.h"
#include "datapath.h"
#include <linux/uaccess.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <net/llc_pdu.h>
#include <linux/kernel.h>
#include <linux/jhash.h>
#include <linux/jiffies.h>
#include <linux/llc.h>
#include <linux/module.h>
#include <linux/in.h>
#include <linux/rcupdate.h>
#include <linux/if_arp.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/sctp.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/icmp.h>
#include <linux/icmpv6.h>
#include <linux/rculist.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/ndisc.h>

#include "flow_netlink.h"

static void update_range__(struct sw_flow_match *match,
			   size_t offset, size_t size, bool is_mask)
{
	struct sw_flow_key_range *range = NULL;
	size_t start = rounddown(offset, sizeof(long));
	size_t end = roundup(offset + size, sizeof(long));

	if (!is_mask)
		range = &match->range;
	else if (match->mask)
		range = &match->mask->range;

	if (!range)
		return;

	if (range->start == range->end) {
		range->start = start;
		range->end = end;
		return;
	}

	if (range->start > start)
		range->start = start;

	if (range->end < end)
		range->end = end;
}

#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
	do { \
		update_range__(match, offsetof(struct sw_flow_key, field),  \
				     sizeof((match)->key->field), is_mask); \
		if (is_mask) {						    \
			if ((match)->mask)				    \
				(match)->mask->key.field = value;	    \
		} else {                                                    \
			(match)->key->field = value;		            \
		}                                                           \
	} while (0)

#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
	do { \
		update_range__(match, offsetof(struct sw_flow_key, field),  \
				len, is_mask);                              \
		if (is_mask) {						    \
			if ((match)->mask)				    \
				memcpy(&(match)->mask->key.field, value_p, len);\
		} else {                                                    \
			memcpy(&(match)->key->field, value_p, len);         \
		}                                                           \
	} while (0)

static u16 range_n_bytes(const struct sw_flow_key_range *range)
{
	return range->end - range->start;
}

static bool match_validate(const struct sw_flow_match *match,
			   u64 key_attrs, u64 mask_attrs)
{
	u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */

	/* The following mask attributes allowed only if they
	 * pass the validation tests. */
	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
			| (1 << OVS_KEY_ATTR_IPV6)
			| (1 << OVS_KEY_ATTR_TCP)
			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
			| (1 << OVS_KEY_ATTR_UDP)
			| (1 << OVS_KEY_ATTR_SCTP)
			| (1 << OVS_KEY_ATTR_ICMP)
			| (1 << OVS_KEY_ATTR_ICMPV6)
			| (1 << OVS_KEY_ATTR_ARP)
			| (1 << OVS_KEY_ATTR_ND));

	/* Always allowed mask fields. */
	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
		       | (1 << OVS_KEY_ATTR_IN_PORT)
		       | (1 << OVS_KEY_ATTR_ETHERTYPE));

	/* Check key attributes. */
	if (match->key->eth.type == htons(ETH_P_ARP)
			|| match->key->eth.type == htons(ETH_P_RARP)) {
		key_expected |= 1 << OVS_KEY_ATTR_ARP;
		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
	}

	if (match->key->eth.type == htons(ETH_P_IP)) {
		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;

		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
			if (match->key->ip.proto == IPPROTO_UDP) {
				key_expected |= 1 << OVS_KEY_ATTR_UDP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
			}

			if (match->key->ip.proto == IPPROTO_SCTP) {
				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
			}

			if (match->key->ip.proto == IPPROTO_TCP) {
				key_expected |= 1 << OVS_KEY_ATTR_TCP;
				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
				}
			}

			if (match->key->ip.proto == IPPROTO_ICMP) {
				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
			}
		}
	}

	if (match->key->eth.type == htons(ETH_P_IPV6)) {
		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;

		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
			if (match->key->ip.proto == IPPROTO_UDP) {
				key_expected |= 1 << OVS_KEY_ATTR_UDP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
			}

			if (match->key->ip.proto == IPPROTO_SCTP) {
				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
			}

			if (match->key->ip.proto == IPPROTO_TCP) {
				key_expected |= 1 << OVS_KEY_ATTR_TCP;
				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
				}
			}

			if (match->key->ip.proto == IPPROTO_ICMPV6) {
				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;

				if (match->key->ipv6.tp.src ==
						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
				    match->key->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
					key_expected |= 1 << OVS_KEY_ATTR_ND;
					if (match->mask && (match->mask->key.ipv6.tp.src == htons(0xffff)))
						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
				}
			}
		}
	}

	if ((key_attrs & key_expected) != key_expected) {
		/* Key attributes check failed. */
		OVS_NLERR("Missing expected key attributes (key_attrs=%llx, expected=%llx).\n",
				(unsigned long long)key_attrs, (unsigned long long)key_expected);
		return false;
	}

	if ((mask_attrs & mask_allowed) != mask_attrs) {
		/* Mask attributes check failed. */
		OVS_NLERR("Contain more than allowed mask fields (mask_attrs=%llx, mask_allowed=%llx).\n",
				(unsigned long long)mask_attrs, (unsigned long long)mask_allowed);
		return false;
	}

	return true;
}

/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
static const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
	[OVS_KEY_ATTR_ENCAP] = -1,
	[OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
	[OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
	[OVS_KEY_ATTR_SKB_MARK] = sizeof(u32),
	[OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
	[OVS_KEY_ATTR_VLAN] = sizeof(__be16),
	[OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
	[OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
	[OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
	[OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
	[OVS_KEY_ATTR_TCP_FLAGS] = sizeof(__be16),
	[OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
	[OVS_KEY_ATTR_SCTP] = sizeof(struct ovs_key_sctp),
	[OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
	[OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
	[OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
	[OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
	[OVS_KEY_ATTR_TUNNEL] = -1,
};

static bool is_all_zero(const u8 *fp, size_t size)
{
	int i;

	if (!fp)
		return false;

	for (i = 0; i < size; i++)
		if (fp[i])
			return false;

	return true;
}

static int __parse_flow_nlattrs(const struct nlattr *attr,
				const struct nlattr *a[],
				u64 *attrsp, bool nz)
{
	const struct nlattr *nla;
	u64 attrs;
	int rem;

	attrs = *attrsp;
	nla_for_each_nested(nla, attr, rem) {
		u16 type = nla_type(nla);
		int expected_len;

		if (type > OVS_KEY_ATTR_MAX) {
			OVS_NLERR("Unknown key attribute (type=%d, max=%d).\n",
				  type, OVS_KEY_ATTR_MAX);
			return -EINVAL;
		}

		if (attrs & (1 << type)) {
			OVS_NLERR("Duplicate key attribute (type %d).\n", type);
			return -EINVAL;
		}

		expected_len = ovs_key_lens[type];
		if (nla_len(nla) != expected_len && expected_len != -1) {
			OVS_NLERR("Key attribute has unexpected length (type=%d"
				  ", length=%d, expected=%d).\n", type,
				  nla_len(nla), expected_len);
			return -EINVAL;
		}

		if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
			attrs |= 1 << type;
			a[type] = nla;
		}
	}
	if (rem) {
		OVS_NLERR("Message has %d unknown bytes.\n", rem);
		return -EINVAL;
	}

	*attrsp = attrs;
	return 0;
}

static int parse_flow_mask_nlattrs(const struct nlattr *attr,
				   const struct nlattr *a[], u64 *attrsp)
{
	return __parse_flow_nlattrs(attr, a, attrsp, true);
}

static int parse_flow_nlattrs(const struct nlattr *attr,
			      const struct nlattr *a[], u64 *attrsp)
{
	return __parse_flow_nlattrs(attr, a, attrsp, false);
}

static int ipv4_tun_from_nlattr(const struct nlattr *attr,
				struct sw_flow_match *match, bool is_mask)
{
	struct nlattr *a;
	int rem;
	bool ttl = false;
	__be16 tun_flags = 0;

	nla_for_each_nested(a, attr, rem) {
		int type = nla_type(a);
		static const u32 ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
			[OVS_TUNNEL_KEY_ATTR_ID] = sizeof(u64),
			[OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = sizeof(u32),
			[OVS_TUNNEL_KEY_ATTR_IPV4_DST] = sizeof(u32),
			[OVS_TUNNEL_KEY_ATTR_TOS] = 1,
			[OVS_TUNNEL_KEY_ATTR_TTL] = 1,
			[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = 0,
			[OVS_TUNNEL_KEY_ATTR_CSUM] = 0,
		};

		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
			OVS_NLERR("Unknown IPv4 tunnel attribute (type=%d, max=%d).\n",
			type, OVS_TUNNEL_KEY_ATTR_MAX);
			return -EINVAL;
		}

		if (ovs_tunnel_key_lens[type] != nla_len(a)) {
			OVS_NLERR("IPv4 tunnel attribute type has unexpected "
				  " length (type=%d, length=%d, expected=%d).\n",
				  type, nla_len(a), ovs_tunnel_key_lens[type]);
			return -EINVAL;
		}

		switch (type) {
		case OVS_TUNNEL_KEY_ATTR_ID:
			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
					nla_get_be64(a), is_mask);
			tun_flags |= TUNNEL_KEY;
			break;
		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
			SW_FLOW_KEY_PUT(match, tun_key.ipv4_src,
					nla_get_be32(a), is_mask);
			break;
		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
			SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst,
					nla_get_be32(a), is_mask);
			break;
		case OVS_TUNNEL_KEY_ATTR_TOS:
			SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos,
					nla_get_u8(a), is_mask);
			break;
		case OVS_TUNNEL_KEY_ATTR_TTL:
			SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl,
					nla_get_u8(a), is_mask);
			ttl = true;
			break;
		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
			tun_flags |= TUNNEL_DONT_FRAGMENT;
			break;
		case OVS_TUNNEL_KEY_ATTR_CSUM:
			tun_flags |= TUNNEL_CSUM;
			break;
		default:
			return -EINVAL;
		}
	}

	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);

	if (rem > 0) {
		OVS_NLERR("IPv4 tunnel attribute has %d unknown bytes.\n", rem);
		return -EINVAL;
	}

	if (!is_mask) {
		if (!match->key->tun_key.ipv4_dst) {
			OVS_NLERR("IPv4 tunnel destination address is zero.\n");
			return -EINVAL;
		}

		if (!ttl) {
			OVS_NLERR("IPv4 tunnel TTL not specified.\n");
			return -EINVAL;
		}
	}

	return 0;
}

static int ipv4_tun_to_nlattr(struct sk_buff *skb,
			      const struct ovs_key_ipv4_tunnel *tun_key,
			      const struct ovs_key_ipv4_tunnel *output)
{
	struct nlattr *nla;

	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
	if (!nla)
		return -EMSGSIZE;

	if (output->tun_flags & TUNNEL_KEY &&
	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
		return -EMSGSIZE;
	if (output->ipv4_src &&
		nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->ipv4_src))
		return -EMSGSIZE;
	if (output->ipv4_dst &&
		nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->ipv4_dst))
		return -EMSGSIZE;
	if (output->ipv4_tos &&
		nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos))
		return -EMSGSIZE;
	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl))
		return -EMSGSIZE;
	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
		nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
		return -EMSGSIZE;
	if ((output->tun_flags & TUNNEL_CSUM) &&
		nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
		return -EMSGSIZE;

	nla_nest_end(skb, nla);
	return 0;
}


static int metadata_from_nlattrs(struct sw_flow_match *match,  u64 *attrs,
				 const struct nlattr **a, bool is_mask)
{
	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
		SW_FLOW_KEY_PUT(match, phy.priority,
			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
	}

	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);

		if (is_mask)
			in_port = 0xffffffff; /* Always exact match in_port. */
		else if (in_port >= DP_MAX_PORTS)
			return -EINVAL;

		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
	} else if (!is_mask) {
		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
	}

	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);

		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
	}
	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
		if (ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
					 is_mask))
			return -EINVAL;
		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
	}
	return 0;
}

static int ovs_key_from_nlattrs(struct sw_flow_match *match, u64 attrs,
				const struct nlattr **a, bool is_mask)
{
	int err;
	u64 orig_attrs = attrs;

	err = metadata_from_nlattrs(match, &attrs, a, is_mask);
	if (err)
		return err;

	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
		const struct ovs_key_ethernet *eth_key;

		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
		SW_FLOW_KEY_MEMCPY(match, eth.src,
				eth_key->eth_src, ETH_ALEN, is_mask);
		SW_FLOW_KEY_MEMCPY(match, eth.dst,
				eth_key->eth_dst, ETH_ALEN, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
	}

	if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
		__be16 tci;

		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
		if (!(tci & htons(VLAN_TAG_PRESENT))) {
			if (is_mask)
				OVS_NLERR("VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.\n");
			else
				OVS_NLERR("VLAN TCI does not have VLAN_TAG_PRESENT bit set.\n");

			return -EINVAL;
		}

		SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
	} else if (!is_mask)
		SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);

	if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
		__be16 eth_type;

		eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
		if (is_mask) {
			/* Always exact match EtherType. */
			eth_type = htons(0xffff);
		} else if (ntohs(eth_type) < ETH_P_802_3_MIN) {
			OVS_NLERR("EtherType is less than minimum (type=%x, min=%x).\n",
					ntohs(eth_type), ETH_P_802_3_MIN);
			return -EINVAL;
		}

		SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
	} else if (!is_mask) {
		SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
	}

	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
		const struct ovs_key_ipv4 *ipv4_key;

		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
			OVS_NLERR("Unknown IPv4 fragment type (value=%d, max=%d).\n",
				ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
			return -EINVAL;
		}
		SW_FLOW_KEY_PUT(match, ip.proto,
				ipv4_key->ipv4_proto, is_mask);
		SW_FLOW_KEY_PUT(match, ip.tos,
				ipv4_key->ipv4_tos, is_mask);
		SW_FLOW_KEY_PUT(match, ip.ttl,
				ipv4_key->ipv4_ttl, is_mask);
		SW_FLOW_KEY_PUT(match, ip.frag,
				ipv4_key->ipv4_frag, is_mask);
		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
				ipv4_key->ipv4_src, is_mask);
		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
				ipv4_key->ipv4_dst, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
	}

	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
		const struct ovs_key_ipv6 *ipv6_key;

		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
			OVS_NLERR("Unknown IPv6 fragment type (value=%d, max=%d).\n",
				ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
			return -EINVAL;
		}
		SW_FLOW_KEY_PUT(match, ipv6.label,
				ipv6_key->ipv6_label, is_mask);
		SW_FLOW_KEY_PUT(match, ip.proto,
				ipv6_key->ipv6_proto, is_mask);
		SW_FLOW_KEY_PUT(match, ip.tos,
				ipv6_key->ipv6_tclass, is_mask);
		SW_FLOW_KEY_PUT(match, ip.ttl,
				ipv6_key->ipv6_hlimit, is_mask);
		SW_FLOW_KEY_PUT(match, ip.frag,
				ipv6_key->ipv6_frag, is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
				ipv6_key->ipv6_src,
				sizeof(match->key->ipv6.addr.src),
				is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
				ipv6_key->ipv6_dst,
				sizeof(match->key->ipv6.addr.dst),
				is_mask);

		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
	}

	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
		const struct ovs_key_arp *arp_key;

		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
			OVS_NLERR("Unknown ARP opcode (opcode=%d).\n",
				  arp_key->arp_op);
			return -EINVAL;
		}

		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
				arp_key->arp_sip, is_mask);
		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
			arp_key->arp_tip, is_mask);
		SW_FLOW_KEY_PUT(match, ip.proto,
				ntohs(arp_key->arp_op), is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
				arp_key->arp_sha, ETH_ALEN, is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
				arp_key->arp_tha, ETH_ALEN, is_mask);

		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
	}

	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
		const struct ovs_key_tcp *tcp_key;

		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
		if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
			SW_FLOW_KEY_PUT(match, ipv4.tp.src,
					tcp_key->tcp_src, is_mask);
			SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
					tcp_key->tcp_dst, is_mask);
		} else {
			SW_FLOW_KEY_PUT(match, ipv6.tp.src,
					tcp_key->tcp_src, is_mask);
			SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
					tcp_key->tcp_dst, is_mask);
		}
		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
	}

	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
		if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
			SW_FLOW_KEY_PUT(match, ipv4.tp.flags,
					nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
					is_mask);
		} else {
			SW_FLOW_KEY_PUT(match, ipv6.tp.flags,
					nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
					is_mask);
		}
		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
	}

	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
		const struct ovs_key_udp *udp_key;

		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
		if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
			SW_FLOW_KEY_PUT(match, ipv4.tp.src,
					udp_key->udp_src, is_mask);
			SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
					udp_key->udp_dst, is_mask);
		} else {
			SW_FLOW_KEY_PUT(match, ipv6.tp.src,
					udp_key->udp_src, is_mask);
			SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
					udp_key->udp_dst, is_mask);
		}
		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
	}

	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
		const struct ovs_key_sctp *sctp_key;

		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
		if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
			SW_FLOW_KEY_PUT(match, ipv4.tp.src,
					sctp_key->sctp_src, is_mask);
			SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
					sctp_key->sctp_dst, is_mask);
		} else {
			SW_FLOW_KEY_PUT(match, ipv6.tp.src,
					sctp_key->sctp_src, is_mask);
			SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
					sctp_key->sctp_dst, is_mask);
		}
		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
	}

	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
		const struct ovs_key_icmp *icmp_key;

		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
		SW_FLOW_KEY_PUT(match, ipv4.tp.src,
				htons(icmp_key->icmp_type), is_mask);
		SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
				htons(icmp_key->icmp_code), is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
	}

	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
		const struct ovs_key_icmpv6 *icmpv6_key;

		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
		SW_FLOW_KEY_PUT(match, ipv6.tp.src,
				htons(icmpv6_key->icmpv6_type), is_mask);
		SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
				htons(icmpv6_key->icmpv6_code), is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
	}

	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
		const struct ovs_key_nd *nd_key;

		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
			nd_key->nd_target,
			sizeof(match->key->ipv6.nd.target),
			is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
			nd_key->nd_sll, ETH_ALEN, is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
				nd_key->nd_tll, ETH_ALEN, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ND);
	}

	if (attrs != 0)
		return -EINVAL;

	return 0;
}

static void sw_flow_mask_set(struct sw_flow_mask *mask,
			     struct sw_flow_key_range *range, u8 val)
{
	u8 *m = (u8 *)&mask->key + range->start;

	mask->range = *range;
	memset(m, val, range_n_bytes(range));
}

/**
 * ovs_nla_get_match - parses Netlink attributes into a flow key and
 * mask. In case the 'mask' is NULL, the flow is treated as exact match
 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
 * does not include any don't care bit.
 * @match: receives the extracted flow match information.
 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
 * sequence. The fields should of the packet that triggered the creation
 * of this flow.
 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
 * attribute specifies the mask field of the wildcarded flow.
 */
int ovs_nla_get_match(struct sw_flow_match *match,
		      const struct nlattr *key,
		      const struct nlattr *mask)
{
	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
	const struct nlattr *encap;
	u64 key_attrs = 0;
	u64 mask_attrs = 0;
	bool encap_valid = false;
	int err;

	err = parse_flow_nlattrs(key, a, &key_attrs);
	if (err)
		return err;

	if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
	    (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
	    (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
		__be16 tci;

		if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
		      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
			OVS_NLERR("Invalid Vlan frame.\n");
			return -EINVAL;
		}

		key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
		encap = a[OVS_KEY_ATTR_ENCAP];
		key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
		encap_valid = true;

		if (tci & htons(VLAN_TAG_PRESENT)) {
			err = parse_flow_nlattrs(encap, a, &key_attrs);
			if (err)
				return err;
		} else if (!tci) {
			/* Corner case for truncated 802.1Q header. */
			if (nla_len(encap)) {
				OVS_NLERR("Truncated 802.1Q header has non-zero encap attribute.\n");
				return -EINVAL;
			}
		} else {
			OVS_NLERR("Encap attribute is set for a non-VLAN frame.\n");
			return  -EINVAL;
		}
	}

	err = ovs_key_from_nlattrs(match, key_attrs, a, false);
	if (err)
		return err;

	if (mask) {
		err = parse_flow_mask_nlattrs(mask, a, &mask_attrs);
		if (err)
			return err;

		if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP)  {
			__be16 eth_type = 0;
			__be16 tci = 0;

			if (!encap_valid) {
				OVS_NLERR("Encap mask attribute is set for non-VLAN frame.\n");
				return  -EINVAL;
			}

			mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
			if (a[OVS_KEY_ATTR_ETHERTYPE])
				eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);

			if (eth_type == htons(0xffff)) {
				mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
				encap = a[OVS_KEY_ATTR_ENCAP];
				err = parse_flow_mask_nlattrs(encap, a, &mask_attrs);
			} else {
				OVS_NLERR("VLAN frames must have an exact match on the TPID (mask=%x).\n",
						ntohs(eth_type));
				return -EINVAL;
			}

			if (a[OVS_KEY_ATTR_VLAN])
				tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);

			if (!(tci & htons(VLAN_TAG_PRESENT))) {
				OVS_NLERR("VLAN tag present bit must have an exact match (tci_mask=%x).\n", ntohs(tci));
				return -EINVAL;
			}
		}

		err = ovs_key_from_nlattrs(match, mask_attrs, a, true);
		if (err)
			return err;
	} else {
		/* Populate exact match flow's key mask. */
		if (match->mask)
			sw_flow_mask_set(match->mask, &match->range, 0xff);
	}

	if (!match_validate(match, key_attrs, mask_attrs))
		return -EINVAL;

	return 0;
}

/**
 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
 * @flow: Receives extracted in_port, priority, tun_key and skb_mark.
 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
 * sequence.
 *
 * This parses a series of Netlink attributes that form a flow key, which must
 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
 * get the metadata, that is, the parts of the flow key that cannot be
 * extracted from the packet itself.
 */

int ovs_nla_get_flow_metadata(struct sw_flow *flow,
			      const struct nlattr *attr)
{
	struct ovs_key_ipv4_tunnel *tun_key = &flow->key.tun_key;
	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
	u64 attrs = 0;
	int err;
	struct sw_flow_match match;

	flow->key.phy.in_port = DP_MAX_PORTS;
	flow->key.phy.priority = 0;
	flow->key.phy.skb_mark = 0;
	memset(tun_key, 0, sizeof(flow->key.tun_key));

	err = parse_flow_nlattrs(attr, a, &attrs);
	if (err)
		return -EINVAL;

	memset(&match, 0, sizeof(match));
	match.key = &flow->key;

	err = metadata_from_nlattrs(&match, &attrs, a, false);
	if (err)
		return err;

	return 0;
}

int ovs_nla_put_flow(const struct sw_flow_key *swkey,
		     const struct sw_flow_key *output, struct sk_buff *skb)
{
	struct ovs_key_ethernet *eth_key;
	struct nlattr *nla, *encap;
	bool is_mask = (swkey != output);

	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
		goto nla_put_failure;

	if ((swkey->tun_key.ipv4_dst || is_mask) &&
	    ipv4_tun_to_nlattr(skb, &swkey->tun_key, &output->tun_key))
		goto nla_put_failure;

	if (swkey->phy.in_port == DP_MAX_PORTS) {
		if (is_mask && (output->phy.in_port == 0xffff))
			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
				goto nla_put_failure;
	} else {
		u16 upper_u16;
		upper_u16 = !is_mask ? 0 : 0xffff;

		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
				(upper_u16 << 16) | output->phy.in_port))
			goto nla_put_failure;
	}

	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
		goto nla_put_failure;

	nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
	if (!nla)
		goto nla_put_failure;

	eth_key = nla_data(nla);
	ether_addr_copy(eth_key->eth_src, output->eth.src);
	ether_addr_copy(eth_key->eth_dst, output->eth.dst);

	if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
		__be16 eth_type;
		eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
		if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
		    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
			goto nla_put_failure;
		encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
		if (!swkey->eth.tci)
			goto unencap;
	} else
		encap = NULL;

	if (swkey->eth.type == htons(ETH_P_802_2)) {
		/*
		 * Ethertype 802.2 is represented in the netlink with omitted
		 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
		 * 0xffff in the mask attribute.  Ethertype can also
		 * be wildcarded.
		 */
		if (is_mask && output->eth.type)
			if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
						output->eth.type))
				goto nla_put_failure;
		goto unencap;
	}

	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
		goto nla_put_failure;

	if (swkey->eth.type == htons(ETH_P_IP)) {
		struct ovs_key_ipv4 *ipv4_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
		if (!nla)
			goto nla_put_failure;
		ipv4_key = nla_data(nla);
		ipv4_key->ipv4_src = output->ipv4.addr.src;
		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
		ipv4_key->ipv4_proto = output->ip.proto;
		ipv4_key->ipv4_tos = output->ip.tos;
		ipv4_key->ipv4_ttl = output->ip.ttl;
		ipv4_key->ipv4_frag = output->ip.frag;
	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
		struct ovs_key_ipv6 *ipv6_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
		if (!nla)
			goto nla_put_failure;
		ipv6_key = nla_data(nla);
		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
				sizeof(ipv6_key->ipv6_src));
		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
				sizeof(ipv6_key->ipv6_dst));
		ipv6_key->ipv6_label = output->ipv6.label;
		ipv6_key->ipv6_proto = output->ip.proto;
		ipv6_key->ipv6_tclass = output->ip.tos;
		ipv6_key->ipv6_hlimit = output->ip.ttl;
		ipv6_key->ipv6_frag = output->ip.frag;
	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
		   swkey->eth.type == htons(ETH_P_RARP)) {
		struct ovs_key_arp *arp_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
		if (!nla)
			goto nla_put_failure;
		arp_key = nla_data(nla);
		memset(arp_key, 0, sizeof(struct ovs_key_arp));
		arp_key->arp_sip = output->ipv4.addr.src;
		arp_key->arp_tip = output->ipv4.addr.dst;
		arp_key->arp_op = htons(output->ip.proto);
		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
	}

	if ((swkey->eth.type == htons(ETH_P_IP) ||
	     swkey->eth.type == htons(ETH_P_IPV6)) &&
	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {

		if (swkey->ip.proto == IPPROTO_TCP) {
			struct ovs_key_tcp *tcp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
			if (!nla)
				goto nla_put_failure;
			tcp_key = nla_data(nla);
			if (swkey->eth.type == htons(ETH_P_IP)) {
				tcp_key->tcp_src = output->ipv4.tp.src;
				tcp_key->tcp_dst = output->ipv4.tp.dst;
				if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
						 output->ipv4.tp.flags))
					goto nla_put_failure;
			} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
				tcp_key->tcp_src = output->ipv6.tp.src;
				tcp_key->tcp_dst = output->ipv6.tp.dst;
				if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
						 output->ipv6.tp.flags))
					goto nla_put_failure;
			}
		} else if (swkey->ip.proto == IPPROTO_UDP) {
			struct ovs_key_udp *udp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
			if (!nla)
				goto nla_put_failure;
			udp_key = nla_data(nla);
			if (swkey->eth.type == htons(ETH_P_IP)) {
				udp_key->udp_src = output->ipv4.tp.src;
				udp_key->udp_dst = output->ipv4.tp.dst;
			} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
				udp_key->udp_src = output->ipv6.tp.src;
				udp_key->udp_dst = output->ipv6.tp.dst;
			}
		} else if (swkey->ip.proto == IPPROTO_SCTP) {
			struct ovs_key_sctp *sctp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
			if (!nla)
				goto nla_put_failure;
			sctp_key = nla_data(nla);
			if (swkey->eth.type == htons(ETH_P_IP)) {
				sctp_key->sctp_src = output->ipv4.tp.src;
				sctp_key->sctp_dst = output->ipv4.tp.dst;
			} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
				sctp_key->sctp_src = output->ipv6.tp.src;
				sctp_key->sctp_dst = output->ipv6.tp.dst;
			}
		} else if (swkey->eth.type == htons(ETH_P_IP) &&
			   swkey->ip.proto == IPPROTO_ICMP) {
			struct ovs_key_icmp *icmp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
			if (!nla)
				goto nla_put_failure;
			icmp_key = nla_data(nla);
			icmp_key->icmp_type = ntohs(output->ipv4.tp.src);
			icmp_key->icmp_code = ntohs(output->ipv4.tp.dst);
		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
			   swkey->ip.proto == IPPROTO_ICMPV6) {
			struct ovs_key_icmpv6 *icmpv6_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
						sizeof(*icmpv6_key));
			if (!nla)
				goto nla_put_failure;
			icmpv6_key = nla_data(nla);
			icmpv6_key->icmpv6_type = ntohs(output->ipv6.tp.src);
			icmpv6_key->icmpv6_code = ntohs(output->ipv6.tp.dst);

			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
				struct ovs_key_nd *nd_key;

				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
				if (!nla)
					goto nla_put_failure;
				nd_key = nla_data(nla);
				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
							sizeof(nd_key->nd_target));
				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
			}
		}
	}

unencap:
	if (encap)
		nla_nest_end(skb, encap);

	return 0;

nla_put_failure:
	return -EMSGSIZE;
}

#define MAX_ACTIONS_BUFSIZE	(32 * 1024)

struct sw_flow_actions *ovs_nla_alloc_flow_actions(int size)
{
	struct sw_flow_actions *sfa;

	if (size > MAX_ACTIONS_BUFSIZE)
		return ERR_PTR(-EINVAL);

	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
	if (!sfa)
		return ERR_PTR(-ENOMEM);

	sfa->actions_len = 0;
	return sfa;
}

/* Schedules 'sf_acts' to be freed after the next RCU grace period.
 * The caller must hold rcu_read_lock for this to be sensible. */
void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
{
	kfree_rcu(sf_acts, rcu);
}

static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
				       int attr_len)
{

	struct sw_flow_actions *acts;
	int new_acts_size;
	int req_size = NLA_ALIGN(attr_len);
	int next_offset = offsetof(struct sw_flow_actions, actions) +
					(*sfa)->actions_len;

	if (req_size <= (ksize(*sfa) - next_offset))
		goto out;

	new_acts_size = ksize(*sfa) * 2;

	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
			return ERR_PTR(-EMSGSIZE);
		new_acts_size = MAX_ACTIONS_BUFSIZE;
	}

	acts = ovs_nla_alloc_flow_actions(new_acts_size);
	if (IS_ERR(acts))
		return (void *)acts;

	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
	acts->actions_len = (*sfa)->actions_len;
	kfree(*sfa);
	*sfa = acts;

out:
	(*sfa)->actions_len += req_size;
	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
}

static int add_action(struct sw_flow_actions **sfa, int attrtype, void *data, int len)
{
	struct nlattr *a;

	a = reserve_sfa_size(sfa, nla_attr_size(len));
	if (IS_ERR(a))
		return PTR_ERR(a);

	a->nla_type = attrtype;
	a->nla_len = nla_attr_size(len);

	if (data)
		memcpy(nla_data(a), data, len);
	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));

	return 0;
}

static inline int add_nested_action_start(struct sw_flow_actions **sfa,
					  int attrtype)
{
	int used = (*sfa)->actions_len;
	int err;

	err = add_action(sfa, attrtype, NULL, 0);
	if (err)
		return err;

	return used;
}

static inline void add_nested_action_end(struct sw_flow_actions *sfa,
					 int st_offset)
{
	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
							       st_offset);

	a->nla_len = sfa->actions_len - st_offset;
}

static int validate_and_copy_sample(const struct nlattr *attr,
				    const struct sw_flow_key *key, int depth,
				    struct sw_flow_actions **sfa)
{
	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
	const struct nlattr *probability, *actions;
	const struct nlattr *a;
	int rem, start, err, st_acts;

	memset(attrs, 0, sizeof(attrs));
	nla_for_each_nested(a, attr, rem) {
		int type = nla_type(a);
		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
			return -EINVAL;
		attrs[type] = a;
	}
	if (rem)
		return -EINVAL;

	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
	if (!probability || nla_len(probability) != sizeof(u32))
		return -EINVAL;

	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
		return -EINVAL;

	/* validation done, copy sample action. */
	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE);
	if (start < 0)
		return start;
	err = add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
			 nla_data(probability), sizeof(u32));
	if (err)
		return err;
	st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS);
	if (st_acts < 0)
		return st_acts;

	err = ovs_nla_copy_actions(actions, key, depth + 1, sfa);
	if (err)
		return err;

	add_nested_action_end(*sfa, st_acts);
	add_nested_action_end(*sfa, start);

	return 0;
}

static int validate_tp_port(const struct sw_flow_key *flow_key)
{
	if (flow_key->eth.type == htons(ETH_P_IP)) {
		if (flow_key->ipv4.tp.src || flow_key->ipv4.tp.dst)
			return 0;
	} else if (flow_key->eth.type == htons(ETH_P_IPV6)) {
		if (flow_key->ipv6.tp.src || flow_key->ipv6.tp.dst)
			return 0;
	}

	return -EINVAL;
}

void ovs_match_init(struct sw_flow_match *match,
		    struct sw_flow_key *key,
		    struct sw_flow_mask *mask)
{
	memset(match, 0, sizeof(*match));
	match->key = key;
	match->mask = mask;

	memset(key, 0, sizeof(*key));

	if (mask) {
		memset(&mask->key, 0, sizeof(mask->key));
		mask->range.start = mask->range.end = 0;
	}
}

static int validate_and_copy_set_tun(const struct nlattr *attr,
				     struct sw_flow_actions **sfa)
{
	struct sw_flow_match match;
	struct sw_flow_key key;
	int err, start;

	ovs_match_init(&match, &key, NULL);
	err = ipv4_tun_from_nlattr(nla_data(attr), &match, false);
	if (err)
		return err;

	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET);
	if (start < 0)
		return start;

	err = add_action(sfa, OVS_KEY_ATTR_IPV4_TUNNEL, &match.key->tun_key,
			sizeof(match.key->tun_key));
	add_nested_action_end(*sfa, start);

	return err;
}

static int validate_set(const struct nlattr *a,
			const struct sw_flow_key *flow_key,
			struct sw_flow_actions **sfa,
			bool *set_tun)
{
	const struct nlattr *ovs_key = nla_data(a);
	int key_type = nla_type(ovs_key);

	/* There can be only one key in a action */
	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
		return -EINVAL;

	if (key_type > OVS_KEY_ATTR_MAX ||
	    (ovs_key_lens[key_type] != nla_len(ovs_key) &&
	     ovs_key_lens[key_type] != -1))
		return -EINVAL;

	switch (key_type) {
	const struct ovs_key_ipv4 *ipv4_key;
	const struct ovs_key_ipv6 *ipv6_key;
	int err;

	case OVS_KEY_ATTR_PRIORITY:
	case OVS_KEY_ATTR_SKB_MARK:
	case OVS_KEY_ATTR_ETHERNET:
		break;

	case OVS_KEY_ATTR_TUNNEL:
		*set_tun = true;
		err = validate_and_copy_set_tun(a, sfa);
		if (err)
			return err;
		break;

	case OVS_KEY_ATTR_IPV4:
		if (flow_key->eth.type != htons(ETH_P_IP))
			return -EINVAL;

		if (!flow_key->ip.proto)
			return -EINVAL;

		ipv4_key = nla_data(ovs_key);
		if (ipv4_key->ipv4_proto != flow_key->ip.proto)
			return -EINVAL;

		if (ipv4_key->ipv4_frag != flow_key->ip.frag)
			return -EINVAL;

		break;

	case OVS_KEY_ATTR_IPV6:
		if (flow_key->eth.type != htons(ETH_P_IPV6))
			return -EINVAL;

		if (!flow_key->ip.proto)
			return -EINVAL;

		ipv6_key = nla_data(ovs_key);
		if (ipv6_key->ipv6_proto != flow_key->ip.proto)
			return -EINVAL;

		if (ipv6_key->ipv6_frag != flow_key->ip.frag)
			return -EINVAL;

		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
			return -EINVAL;

		break;

	case OVS_KEY_ATTR_TCP:
		if (flow_key->ip.proto != IPPROTO_TCP)
			return -EINVAL;

		return validate_tp_port(flow_key);

	case OVS_KEY_ATTR_UDP:
		if (flow_key->ip.proto != IPPROTO_UDP)
			return -EINVAL;

		return validate_tp_port(flow_key);

	case OVS_KEY_ATTR_SCTP:
		if (flow_key->ip.proto != IPPROTO_SCTP)
			return -EINVAL;

		return validate_tp_port(flow_key);

	default:
		return -EINVAL;
	}

	return 0;
}

static int validate_userspace(const struct nlattr *attr)
{
	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
	};
	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
	int error;

	error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
				 attr, userspace_policy);
	if (error)
		return error;

	if (!a[OVS_USERSPACE_ATTR_PID] ||
	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
		return -EINVAL;

	return 0;
}

static int copy_action(const struct nlattr *from,
		       struct sw_flow_actions **sfa)
{
	int totlen = NLA_ALIGN(from->nla_len);
	struct nlattr *to;

	to = reserve_sfa_size(sfa, from->nla_len);
	if (IS_ERR(to))
		return PTR_ERR(to);

	memcpy(to, from, totlen);
	return 0;
}

int ovs_nla_copy_actions(const struct nlattr *attr,
			 const struct sw_flow_key *key,
			 int depth,
			 struct sw_flow_actions **sfa)
{
	const struct nlattr *a;
	int rem, err;

	if (depth >= SAMPLE_ACTION_DEPTH)
		return -EOVERFLOW;

	nla_for_each_nested(a, attr, rem) {
		/* Expected argument lengths, (u32)-1 for variable length. */
		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
			[OVS_ACTION_ATTR_POP_VLAN] = 0,
			[OVS_ACTION_ATTR_SET] = (u32)-1,
			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1
		};
		const struct ovs_action_push_vlan *vlan;
		int type = nla_type(a);
		bool skip_copy;

		if (type > OVS_ACTION_ATTR_MAX ||
		    (action_lens[type] != nla_len(a) &&
		     action_lens[type] != (u32)-1))
			return -EINVAL;

		skip_copy = false;
		switch (type) {
		case OVS_ACTION_ATTR_UNSPEC:
			return -EINVAL;

		case OVS_ACTION_ATTR_USERSPACE:
			err = validate_userspace(a);
			if (err)
				return err;
			break;

		case OVS_ACTION_ATTR_OUTPUT:
			if (nla_get_u32(a) >= DP_MAX_PORTS)
				return -EINVAL;
			break;


		case OVS_ACTION_ATTR_POP_VLAN:
			break;

		case OVS_ACTION_ATTR_PUSH_VLAN:
			vlan = nla_data(a);
			if (vlan->vlan_tpid != htons(ETH_P_8021Q))
				return -EINVAL;
			if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
				return -EINVAL;
			break;

		case OVS_ACTION_ATTR_SET:
			err = validate_set(a, key, sfa, &skip_copy);
			if (err)
				return err;
			break;

		case OVS_ACTION_ATTR_SAMPLE:
			err = validate_and_copy_sample(a, key, depth, sfa);
			if (err)
				return err;
			skip_copy = true;
			break;

		default:
			return -EINVAL;
		}
		if (!skip_copy) {
			err = copy_action(a, sfa);
			if (err)
				return err;
		}
	}

	if (rem > 0)
		return -EINVAL;

	return 0;
}

static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
{
	const struct nlattr *a;
	struct nlattr *start;
	int err = 0, rem;

	start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
	if (!start)
		return -EMSGSIZE;

	nla_for_each_nested(a, attr, rem) {
		int type = nla_type(a);
		struct nlattr *st_sample;

		switch (type) {
		case OVS_SAMPLE_ATTR_PROBABILITY:
			if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
				    sizeof(u32), nla_data(a)))
				return -EMSGSIZE;
			break;
		case OVS_SAMPLE_ATTR_ACTIONS:
			st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
			if (!st_sample)
				return -EMSGSIZE;
			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
			if (err)
				return err;
			nla_nest_end(skb, st_sample);
			break;
		}
	}

	nla_nest_end(skb, start);
	return err;
}

static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
{
	const struct nlattr *ovs_key = nla_data(a);
	int key_type = nla_type(ovs_key);
	struct nlattr *start;
	int err;

	switch (key_type) {
	case OVS_KEY_ATTR_IPV4_TUNNEL:
		start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
		if (!start)
			return -EMSGSIZE;

		err = ipv4_tun_to_nlattr(skb, nla_data(ovs_key),
					     nla_data(ovs_key));
		if (err)
			return err;
		nla_nest_end(skb, start);
		break;
	default:
		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
			return -EMSGSIZE;
		break;
	}

	return 0;
}

int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
{
	const struct nlattr *a;
	int rem, err;

	nla_for_each_attr(a, attr, len, rem) {
		int type = nla_type(a);

		switch (type) {
		case OVS_ACTION_ATTR_SET:
			err = set_action_to_attr(a, skb);
			if (err)
				return err;
			break;

		case OVS_ACTION_ATTR_SAMPLE:
			err = sample_action_to_attr(a, skb);
			if (err)
				return err;
			break;
		default:
			if (nla_put(skb, type, nla_len(a), nla_data(a)))
				return -EMSGSIZE;
			break;
		}
	}

	return 0;
}