/*
* Copyright 2002-2005, Instant802 Networks, Inc.
* Copyright 2005-2006, Devicescape Software, Inc.
* Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
* Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/rcupdate.h>
#include <net/mac80211.h>
#include <net/ieee80211_radiotap.h>
#include "ieee80211_i.h"
#include "ieee80211_led.h"
#include "ieee80211_common.h"
#include "wep.h"
#include "wpa.h"
#include "tkip.h"
#include "wme.h"
/* pre-rx handlers
*
* these don't have dev/sdata fields in the rx data
* The sta value should also not be used because it may
* be NULL even though a STA (in IBSS mode) will be added.
*/
static ieee80211_txrx_result
ieee80211_rx_h_parse_qos(struct ieee80211_txrx_data *rx)
{
u8 *data = rx->skb->data;
int tid;
/* does the frame have a qos control field? */
if (WLAN_FC_IS_QOS_DATA(rx->fc)) {
u8 *qc = data + ieee80211_get_hdrlen(rx->fc) - QOS_CONTROL_LEN;
/* frame has qos control */
tid = qc[0] & QOS_CONTROL_TID_MASK;
} else {
if (unlikely((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)) {
/* Separate TID for management frames */
tid = NUM_RX_DATA_QUEUES - 1;
} else {
/* no qos control present */
tid = 0; /* 802.1d - Best Effort */
}
}
I802_DEBUG_INC(rx->local->wme_rx_queue[tid]);
/* only a debug counter, sta might not be assigned properly yet */
if (rx->sta)
I802_DEBUG_INC(rx->sta->wme_rx_queue[tid]);
rx->u.rx.queue = tid;
/* Set skb->priority to 1d tag if highest order bit of TID is not set.
* For now, set skb->priority to 0 for other cases. */
rx->skb->priority = (tid > 7) ? 0 : tid;
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_rx_h_load_stats(struct ieee80211_txrx_data *rx)
{
struct ieee80211_local *local = rx->local;
struct sk_buff *skb = rx->skb;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
u32 load = 0, hdrtime;
struct ieee80211_rate *rate;
struct ieee80211_hw_mode *mode = local->hw.conf.mode;
int i;
/* Estimate total channel use caused by this frame */
if (unlikely(mode->num_rates < 0))
return TXRX_CONTINUE;
rate = &mode->rates[0];
for (i = 0; i < mode->num_rates; i++) {
if (mode->rates[i].val == rx->u.rx.status->rate) {
rate = &mode->rates[i];
break;
}
}
/* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values,
* 1 usec = 1/8 * (1080 / 10) = 13.5 */
if (mode->mode == MODE_IEEE80211A ||
(mode->mode == MODE_IEEE80211G &&
rate->flags & IEEE80211_RATE_ERP))
hdrtime = CHAN_UTIL_HDR_SHORT;
else
hdrtime = CHAN_UTIL_HDR_LONG;
load = hdrtime;
if (!is_multicast_ether_addr(hdr->addr1))
load += hdrtime;
load += skb->len * rate->rate_inv;
/* Divide channel_use by 8 to avoid wrapping around the counter */
load >>= CHAN_UTIL_SHIFT;
local->channel_use_raw += load;
rx->u.rx.load = load;
return TXRX_CONTINUE;
}
ieee80211_rx_handler ieee80211_rx_pre_handlers[] =
{
ieee80211_rx_h_parse_qos,
ieee80211_rx_h_load_stats,
NULL
};
/* rx handlers */
static ieee80211_txrx_result
ieee80211_rx_h_if_stats(struct ieee80211_txrx_data *rx)
{
if (rx->sta)
rx->sta->channel_use_raw += rx->u.rx.load;
rx->sdata->channel_use_raw += rx->u.rx.load;
return TXRX_CONTINUE;
}
static void
ieee80211_rx_monitor(struct net_device *dev, struct sk_buff *skb,
struct ieee80211_rx_status *status)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_rate *rate;
struct ieee80211_rtap_hdr {
struct ieee80211_radiotap_header hdr;
u8 flags;
u8 rate;
__le16 chan_freq;
__le16 chan_flags;
u8 antsignal;
u8 padding_for_rxflags;
__le16 rx_flags;
} __attribute__ ((packed)) *rthdr;
skb->dev = dev;
if (status->flag & RX_FLAG_RADIOTAP)
goto out;
if (skb_headroom(skb) < sizeof(*rthdr)) {
I802_DEBUG_INC(local->rx_expand_skb_head);
if (pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC)) {
dev_kfree_skb(skb);
return;
}
}
rthdr = (struct ieee80211_rtap_hdr *) skb_push(skb, sizeof(*rthdr));
memset(rthdr, 0, sizeof(*rthdr));
rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
rthdr->hdr.it_present =
cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
(1 << IEEE80211_RADIOTAP_RATE) |
(1 << IEEE80211_RADIOTAP_CHANNEL) |
(1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL) |
(1 << IEEE80211_RADIOTAP_RX_FLAGS));
rthdr->flags = local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS ?
IEEE80211_RADIOTAP_F_FCS : 0;
/* FIXME: when radiotap gets a 'bad PLCP' flag use it here */
rthdr->rx_flags = 0;
if (status->flag &
(RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
rthdr->rx_flags |= cpu_to_le16(IEEE80211_RADIOTAP_F_RX_BADFCS);
rate = ieee80211_get_rate(local, status->phymode, status->rate);
if (rate)
rthdr->rate = rate->rate / 5;
rthdr->chan_freq = cpu_to_le16(status->freq);
rthdr->chan_flags =
status->phymode == MODE_IEEE80211A ?
cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ) :
cpu_to_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ);
rthdr->antsignal = status->ssi;
out:
dev->stats.rx_packets++;
dev->stats.rx_bytes += skb->len;
skb_set_mac_header(skb, 0);
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = htons(ETH_P_802_2);
memset(skb->cb, 0, sizeof(skb->cb));
netif_rx(skb);
}
static ieee80211_txrx_result
ieee80211_rx_h_monitor(struct ieee80211_txrx_data *rx)
{
if (rx->sdata->type == IEEE80211_IF_TYPE_MNTR) {
ieee80211_rx_monitor(rx->dev, rx->skb, rx->u.rx.status);
return TXRX_QUEUED;
}
/*
* Drop frames with failed FCS/PLCP checksums here, they are only
* relevant for monitor mode, the rest of the stack should never
* see them.
*/
if (rx->u.rx.status->flag &
(RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
return TXRX_DROP;
if (rx->u.rx.status->flag & RX_FLAG_RADIOTAP)
skb_pull(rx->skb, ieee80211_get_radiotap_len(rx->skb->data));
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_rx_h_passive_scan(struct ieee80211_txrx_data *rx)
{
struct ieee80211_local *local = rx->local;
struct sk_buff *skb = rx->skb;
if (unlikely(local->sta_scanning != 0)) {
ieee80211_sta_rx_scan(rx->dev, skb, rx->u.rx.status);
return TXRX_QUEUED;
}
if (unlikely(rx->flags & IEEE80211_TXRXD_RXIN_SCAN)) {
/* scanning finished during invoking of handlers */
I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
return TXRX_DROP;
}
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_rx_h_check(struct ieee80211_txrx_data *rx)
{
struct ieee80211_hdr *hdr;
hdr = (struct ieee80211_hdr *) rx->skb->data;
/* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
if (unlikely(rx->fc & IEEE80211_FCTL_RETRY &&
rx->sta->last_seq_ctrl[rx->u.rx.queue] ==
hdr->seq_ctrl)) {
if (rx->flags & IEEE80211_TXRXD_RXRA_MATCH) {
rx->local->dot11FrameDuplicateCount++;
rx->sta->num_duplicates++;
}
return TXRX_DROP;
} else
rx->sta->last_seq_ctrl[rx->u.rx.queue] = hdr->seq_ctrl;
}
if ((rx->local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) &&
rx->skb->len > FCS_LEN)
skb_trim(rx->skb, rx->skb->len - FCS_LEN);
if (unlikely(rx->skb->len < 16)) {
I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
return TXRX_DROP;
}
if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
rx->skb->pkt_type = PACKET_OTHERHOST;
else if (compare_ether_addr(rx->dev->dev_addr, hdr->addr1) == 0)
rx->skb->pkt_type = PACKET_HOST;
else if (is_multicast_ether_addr(hdr->addr1)) {
if (is_broadcast_ether_addr(hdr->addr1))
rx->skb->pkt_type = PACKET_BROADCAST;
else
rx->skb->pkt_type = PACKET_MULTICAST;
} else
rx->skb->pkt_type = PACKET_OTHERHOST;
/* Drop disallowed frame classes based on STA auth/assoc state;
* IEEE 802.11, Chap 5.5.
*
* 80211.o does filtering only based on association state, i.e., it
* drops Class 3 frames from not associated stations. hostapd sends
* deauth/disassoc frames when needed. In addition, hostapd is
* responsible for filtering on both auth and assoc states.
*/
if (unlikely(((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA ||
((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL &&
(rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PSPOLL)) &&
rx->sdata->type != IEEE80211_IF_TYPE_IBSS &&
(!rx->sta || !(rx->sta->flags & WLAN_STA_ASSOC)))) {
if ((!(rx->fc & IEEE80211_FCTL_FROMDS) &&
!(rx->fc & IEEE80211_FCTL_TODS) &&
(rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
|| !(rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) {
/* Drop IBSS frames and frames for other hosts
* silently. */
return TXRX_DROP;
}
if (!rx->local->apdev)
return TXRX_DROP;
ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status,
ieee80211_msg_sta_not_assoc);
return TXRX_QUEUED;
}
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_rx_h_load_key(struct ieee80211_txrx_data *rx)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
int keyidx;
int hdrlen;
struct ieee80211_key *stakey = NULL;
/*
* Key selection 101
*
* There are three types of keys:
* - GTK (group keys)
* - PTK (pairwise keys)
* - STK (station-to-station pairwise keys)
*
* When selecting a key, we have to distinguish between multicast
* (including broadcast) and unicast frames, the latter can only
* use PTKs and STKs while the former always use GTKs. Unless, of
* course, actual WEP keys ("pre-RSNA") are used, then unicast
* frames can also use key indizes like GTKs. Hence, if we don't
* have a PTK/STK we check the key index for a WEP key.
*
* Note that in a regular BSS, multicast frames are sent by the
* AP only, associated stations unicast the frame to the AP first
* which then multicasts it on their behalf.
*
* There is also a slight problem in IBSS mode: GTKs are negotiated
* with each station, that is something we don't currently handle.
* The spec seems to expect that one negotiates the same key with
* every station but there's no such requirement; VLANs could be
* possible.
*/
if (!(rx->fc & IEEE80211_FCTL_PROTECTED))
return TXRX_CONTINUE;
/*
* No point in finding a key if the frame is neither
* addressed to us nor a multicast frame.
*/
if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
return TXRX_CONTINUE;
if (rx->sta)
stakey = rcu_dereference(rx->sta->key);
if (!is_multicast_ether_addr(hdr->addr1) && stakey) {
rx->key = stakey;
} else {
/*
* The device doesn't give us the IV so we won't be
* able to look up the key. That's ok though, we
* don't need to decrypt the frame, we just won't
* be able to keep statistics accurate.
* Except for key threshold notifications, should
* we somehow allow the driver to tell us which key
* the hardware used if this flag is set?
*/
if ((rx->u.rx.status->flag & RX_FLAG_DECRYPTED) &&
(rx->u.rx.status->flag & RX_FLAG_IV_STRIPPED))
return TXRX_CONTINUE;
hdrlen = ieee80211_get_hdrlen(rx->fc);
if (rx->skb->len < 8 + hdrlen)
return TXRX_DROP; /* TODO: count this? */
/*
* no need to call ieee80211_wep_get_keyidx,
* it verifies a bunch of things we've done already
*/
keyidx = rx->skb->data[hdrlen + 3] >> 6;
rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
/*
* RSNA-protected unicast frames should always be sent with
* pairwise or station-to-station keys, but for WEP we allow
* using a key index as well.
*/
if (rx->key && rx->key->conf.alg != ALG_WEP &&
!is_multicast_ether_addr(hdr->addr1))
rx->key = NULL;
}
if (rx->key) {
rx->key->tx_rx_count++;
/* TODO: add threshold stuff again */
}
return TXRX_CONTINUE;
}
static void ap_sta_ps_start(struct net_device *dev, struct sta_info *sta)
{
struct ieee80211_sub_if_data *sdata;
DECLARE_MAC_BUF(mac);
sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev);
if (sdata->bss)
atomic_inc(&sdata->bss->num_sta_ps);
sta->flags |= WLAN_STA_PS;
sta->pspoll = 0;
#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
printk(KERN_DEBUG "%s: STA %s aid %d enters power save mode\n",
dev->name, print_mac(mac, sta->addr), sta->aid);
#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
}
static int ap_sta_ps_end(struct net_device *dev, struct sta_info *sta)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sk_buff *skb;
int sent = 0;
struct ieee80211_sub_if_data *sdata;
struct ieee80211_tx_packet_data *pkt_data;
DECLARE_MAC_BUF(mac);
sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev);
if (sdata->bss)
atomic_dec(&sdata->bss->num_sta_ps);
sta->flags &= ~(WLAN_STA_PS | WLAN_STA_TIM);
sta->pspoll = 0;
if (!skb_queue_empty(&sta->ps_tx_buf)) {
if (local->ops->set_tim)
local->ops->set_tim(local_to_hw(local), sta->aid, 0);
if (sdata->bss)
bss_tim_clear(local, sdata->bss, sta->aid);
}
#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
printk(KERN_DEBUG "%s: STA %s aid %d exits power save mode\n",
dev->name, print_mac(mac, sta->addr), sta->aid);
#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
/* Send all buffered frames to the station */
while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) {
pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
sent++;
pkt_data->flags |= IEEE80211_TXPD_REQUEUE;
dev_queue_xmit(skb);
}
while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) {
pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
local->total_ps_buffered--;
sent++;
#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
printk(KERN_DEBUG "%s: STA %s aid %d send PS frame "
"since STA not sleeping anymore\n", dev->name,
print_mac(mac, sta->addr), sta->aid);
#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
pkt_data->flags |= IEEE80211_TXPD_REQUEUE;
dev_queue_xmit(skb);
}
return sent;
}
static ieee80211_txrx_result
ieee80211_rx_h_sta_process(struct ieee80211_txrx_data *rx)
{
struct sta_info *sta = rx->sta;
struct net_device *dev = rx->dev;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
if (!sta)
return TXRX_CONTINUE;
/* Update last_rx only for IBSS packets which are for the current
* BSSID to avoid keeping the current IBSS network alive in cases where
* other STAs are using different BSSID. */
if (rx->sdata->type == IEEE80211_IF_TYPE_IBSS) {
u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len);
if (compare_ether_addr(bssid, rx->sdata->u.sta.bssid) == 0)
sta->last_rx = jiffies;
} else
if (!is_multicast_ether_addr(hdr->addr1) ||
rx->sdata->type == IEEE80211_IF_TYPE_STA) {
/* Update last_rx only for unicast frames in order to prevent
* the Probe Request frames (the only broadcast frames from a
* STA in infrastructure mode) from keeping a connection alive.
*/
sta->last_rx = jiffies;
}
if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
return TXRX_CONTINUE;
sta->rx_fragments++;
sta->rx_bytes += rx->skb->len;
sta->last_rssi = rx->u.rx.status->ssi;
sta->last_signal = rx->u.rx.status->signal;
sta->last_noise = rx->u.rx.status->noise;
if (!(rx->fc & IEEE80211_FCTL_MOREFRAGS)) {
/* Change STA power saving mode only in the end of a frame
* exchange sequence */
if ((sta->flags & WLAN_STA_PS) && !(rx->fc & IEEE80211_FCTL_PM))
rx->u.rx.sent_ps_buffered += ap_sta_ps_end(dev, sta);
else if (!(sta->flags & WLAN_STA_PS) &&
(rx->fc & IEEE80211_FCTL_PM))
ap_sta_ps_start(dev, sta);
}
/* Drop data::nullfunc frames silently, since they are used only to
* control station power saving mode. */
if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
(rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_NULLFUNC) {
I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
/* Update counter and free packet here to avoid counting this
* as a dropped packed. */
sta->rx_packets++;
dev_kfree_skb(rx->skb);
return TXRX_QUEUED;
}
return TXRX_CONTINUE;
} /* ieee80211_rx_h_sta_process */
static ieee80211_txrx_result
ieee80211_rx_h_wep_weak_iv_detection(struct ieee80211_txrx_data *rx)
{
if (!rx->sta || !(rx->fc & IEEE80211_FCTL_PROTECTED) ||
(rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA ||
!rx->key || rx->key->conf.alg != ALG_WEP ||
!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
return TXRX_CONTINUE;
/* Check for weak IVs, if hwaccel did not remove IV from the frame */
if (!(rx->u.rx.status->flag & RX_FLAG_IV_STRIPPED) ||
!(rx->u.rx.status->flag & RX_FLAG_DECRYPTED))
if (ieee80211_wep_is_weak_iv(rx->skb, rx->key))
rx->sta->wep_weak_iv_count++;
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_rx_h_wep_decrypt(struct ieee80211_txrx_data *rx)
{
if ((rx->key && rx->key->conf.alg != ALG_WEP) ||
!(rx->fc & IEEE80211_FCTL_PROTECTED) ||
((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA &&
((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
(rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH)))
return TXRX_CONTINUE;
if (!rx->key) {
if (net_ratelimit())
printk(KERN_DEBUG "%s: RX WEP frame, but no key set\n",
rx->dev->name);
return TXRX_DROP;
}
if (!(rx->u.rx.status->flag & RX_FLAG_DECRYPTED)) {
if (ieee80211_wep_decrypt(rx->local, rx->skb, rx->key)) {
if (net_ratelimit())
printk(KERN_DEBUG "%s: RX WEP frame, decrypt "
"failed\n", rx->dev->name);
return TXRX_DROP;
}
} else if (!(rx->u.rx.status->flag & RX_FLAG_IV_STRIPPED)) {
ieee80211_wep_remove_iv(rx->local, rx->skb, rx->key);
/* remove ICV */
skb_trim(rx->skb, rx->skb->len - 4);
}
return TXRX_CONTINUE;
}
static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
unsigned int frag, unsigned int seq, int rx_queue,
struct sk_buff **skb)
{
struct ieee80211_fragment_entry *entry;
int idx;
idx = sdata->fragment_next;
entry = &sdata->fragments[sdata->fragment_next++];
if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
sdata->fragment_next = 0;
if (!skb_queue_empty(&entry->skb_list)) {
#ifdef CONFIG_MAC80211_DEBUG
struct ieee80211_hdr *hdr =
(struct ieee80211_hdr *) entry->skb_list.next->data;
DECLARE_MAC_BUF(mac);
DECLARE_MAC_BUF(mac2);
printk(KERN_DEBUG "%s: RX reassembly removed oldest "
"fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
"addr1=%s addr2=%s\n",
sdata->dev->name, idx,
jiffies - entry->first_frag_time, entry->seq,
entry->last_frag, print_mac(mac, hdr->addr1),
print_mac(mac2, hdr->addr2));
#endif /* CONFIG_MAC80211_DEBUG */
__skb_queue_purge(&entry->skb_list);
}
__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
*skb = NULL;
entry->first_frag_time = jiffies;
entry->seq = seq;
entry->rx_queue = rx_queue;
entry->last_frag = frag;
entry->ccmp = 0;
entry->extra_len = 0;
return entry;
}
static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
u16 fc, unsigned int frag, unsigned int seq,
int rx_queue, struct ieee80211_hdr *hdr)
{
struct ieee80211_fragment_entry *entry;
int i, idx;
idx = sdata->fragment_next;
for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
struct ieee80211_hdr *f_hdr;
u16 f_fc;
idx--;
if (idx < 0)
idx = IEEE80211_FRAGMENT_MAX - 1;
entry = &sdata->fragments[idx];
if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
entry->rx_queue != rx_queue ||
entry->last_frag + 1 != frag)
continue;
f_hdr = (struct ieee80211_hdr *) entry->skb_list.next->data;
f_fc = le16_to_cpu(f_hdr->frame_control);
if ((fc & IEEE80211_FCTL_FTYPE) != (f_fc & IEEE80211_FCTL_FTYPE) ||
compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
continue;
if (entry->first_frag_time + 2 * HZ < jiffies) {
__skb_queue_purge(&entry->skb_list);
continue;
}
return entry;
}
return NULL;
}
static ieee80211_txrx_result
ieee80211_rx_h_defragment(struct ieee80211_txrx_data *rx)
{
struct ieee80211_hdr *hdr;
u16 sc;
unsigned int frag, seq;
struct ieee80211_fragment_entry *entry;
struct sk_buff *skb;
DECLARE_MAC_BUF(mac);
hdr = (struct ieee80211_hdr *) rx->skb->data;
sc = le16_to_cpu(hdr->seq_ctrl);
frag = sc & IEEE80211_SCTL_FRAG;
if (likely((!(rx->fc & IEEE80211_FCTL_MOREFRAGS) && frag == 0) ||
(rx->skb)->len < 24 ||
is_multicast_ether_addr(hdr->addr1))) {
/* not fragmented */
goto out;
}
I802_DEBUG_INC(rx->local->rx_handlers_fragments);
seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
if (frag == 0) {
/* This is the first fragment of a new frame. */
entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
rx->u.rx.queue, &(rx->skb));
if (rx->key && rx->key->conf.alg == ALG_CCMP &&
(rx->fc & IEEE80211_FCTL_PROTECTED)) {
/* Store CCMP PN so that we can verify that the next
* fragment has a sequential PN value. */
entry->ccmp = 1;
memcpy(entry->last_pn,
rx->key->u.ccmp.rx_pn[rx->u.rx.queue],
CCMP_PN_LEN);
}
return TXRX_QUEUED;
}
/* This is a fragment for a frame that should already be pending in
* fragment cache. Add this fragment to the end of the pending entry.
*/
entry = ieee80211_reassemble_find(rx->sdata, rx->fc, frag, seq,
rx->u.rx.queue, hdr);
if (!entry) {
I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
return TXRX_DROP;
}
/* Verify that MPDUs within one MSDU have sequential PN values.
* (IEEE 802.11i, 8.3.3.4.5) */
if (entry->ccmp) {
int i;
u8 pn[CCMP_PN_LEN], *rpn;
if (!rx->key || rx->key->conf.alg != ALG_CCMP)
return TXRX_DROP;
memcpy(pn, entry->last_pn, CCMP_PN_LEN);
for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
pn[i]++;
if (pn[i])
break;
}
rpn = rx->key->u.ccmp.rx_pn[rx->u.rx.queue];
if (memcmp(pn, rpn, CCMP_PN_LEN) != 0) {
if (net_ratelimit())
printk(KERN_DEBUG "%s: defrag: CCMP PN not "
"sequential A2=%s"
" PN=%02x%02x%02x%02x%02x%02x "
"(expected %02x%02x%02x%02x%02x%02x)\n",
rx->dev->name, print_mac(mac, hdr->addr2),
rpn[0], rpn[1], rpn[2], rpn[3], rpn[4],
rpn[5], pn[0], pn[1], pn[2], pn[3],
pn[4], pn[5]);
return TXRX_DROP;
}
memcpy(entry->last_pn, pn, CCMP_PN_LEN);
}
skb_pull(rx->skb, ieee80211_get_hdrlen(rx->fc));
__skb_queue_tail(&entry->skb_list, rx->skb);
entry->last_frag = frag;
entry->extra_len += rx->skb->len;
if (rx->fc & IEEE80211_FCTL_MOREFRAGS) {
rx->skb = NULL;
return TXRX_QUEUED;
}
rx->skb = __skb_dequeue(&entry->skb_list);
if (skb_tailroom(rx->skb) < entry->extra_len) {
I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
GFP_ATOMIC))) {
I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
__skb_queue_purge(&entry->skb_list);
return TXRX_DROP;
}
}
while ((skb = __skb_dequeue(&entry->skb_list))) {
memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
dev_kfree_skb(skb);
}
/* Complete frame has been reassembled - process it now */
rx->flags |= IEEE80211_TXRXD_FRAGMENTED;
out:
if (rx->sta)
rx->sta->rx_packets++;
if (is_multicast_ether_addr(hdr->addr1))
rx->local->dot11MulticastReceivedFrameCount++;
else
ieee80211_led_rx(rx->local);
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_rx_h_ps_poll(struct ieee80211_txrx_data *rx)
{
struct sk_buff *skb;
int no_pending_pkts;
DECLARE_MAC_BUF(mac);
if (likely(!rx->sta ||
(rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL ||
(rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PSPOLL ||
!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH)))
return TXRX_CONTINUE;
skb = skb_dequeue(&rx->sta->tx_filtered);
if (!skb) {
skb = skb_dequeue(&rx->sta->ps_tx_buf);
if (skb)
rx->local->total_ps_buffered--;
}
no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) &&
skb_queue_empty(&rx->sta->ps_tx_buf);
if (skb) {
struct ieee80211_hdr *hdr =
(struct ieee80211_hdr *) skb->data;
/* tell TX path to send one frame even though the STA may
* still remain is PS mode after this frame exchange */
rx->sta->pspoll = 1;
#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
printk(KERN_DEBUG "STA %s aid %d: PS Poll (entries after %d)\n",
print_mac(mac, rx->sta->addr), rx->sta->aid,
skb_queue_len(&rx->sta->ps_tx_buf));
#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
/* Use MoreData flag to indicate whether there are more
* buffered frames for this STA */
if (no_pending_pkts) {
hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
rx->sta->flags &= ~WLAN_STA_TIM;
} else
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA);
dev_queue_xmit(skb);
if (no_pending_pkts) {
if (rx->local->ops->set_tim)
rx->local->ops->set_tim(local_to_hw(rx->local),
rx->sta->aid, 0);
if (rx->sdata->bss)
bss_tim_clear(rx->local, rx->sdata->bss, rx->sta->aid);
}
#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
} else if (!rx->u.rx.sent_ps_buffered) {
printk(KERN_DEBUG "%s: STA %s sent PS Poll even "
"though there is no buffered frames for it\n",
rx->dev->name, print_mac(mac, rx->sta->addr));
#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
}
/* Free PS Poll skb here instead of returning TXRX_DROP that would
* count as an dropped frame. */
dev_kfree_skb(rx->skb);
return TXRX_QUEUED;
}
static ieee80211_txrx_result
ieee80211_rx_h_remove_qos_control(struct ieee80211_txrx_data *rx)
{
u16 fc = rx->fc;
u8 *data = rx->skb->data;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) data;
if (!WLAN_FC_IS_QOS_DATA(fc))
return TXRX_CONTINUE;
/* remove the qos control field, update frame type and meta-data */
memmove(data + 2, data, ieee80211_get_hdrlen(fc) - 2);
hdr = (struct ieee80211_hdr *) skb_pull(rx->skb, 2);
/* change frame type to non QOS */
rx->fc = fc &= ~IEEE80211_STYPE_QOS_DATA;
hdr->frame_control = cpu_to_le16(fc);
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_rx_h_802_1x_pae(struct ieee80211_txrx_data *rx)
{
if (rx->sdata->eapol && ieee80211_is_eapol(rx->skb) &&
rx->sdata->type != IEEE80211_IF_TYPE_STA &&
(rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) {
/* Pass both encrypted and unencrypted EAPOL frames to user
* space for processing. */
if (!rx->local->apdev)
return TXRX_DROP;
ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status,
ieee80211_msg_normal);
return TXRX_QUEUED;
}
if (unlikely(rx->sdata->ieee802_1x &&
(rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
(rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC &&
(!rx->sta || !(rx->sta->flags & WLAN_STA_AUTHORIZED)) &&
!ieee80211_is_eapol(rx->skb))) {
#ifdef CONFIG_MAC80211_DEBUG
struct ieee80211_hdr *hdr =
(struct ieee80211_hdr *) rx->skb->data;
DECLARE_MAC_BUF(mac);
printk(KERN_DEBUG "%s: dropped frame from %s"
" (unauthorized port)\n", rx->dev->name,
print_mac(mac, hdr->addr2));
#endif /* CONFIG_MAC80211_DEBUG */
return TXRX_DROP;
}
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_rx_h_drop_unencrypted(struct ieee80211_txrx_data *rx)
{
/*
* Pass through unencrypted frames if the hardware has
* decrypted them already.
*/
if (rx->u.rx.status->flag & RX_FLAG_DECRYPTED)
return TXRX_CONTINUE;
/* Drop unencrypted frames if key is set. */
if (unlikely(!(rx->fc & IEEE80211_FCTL_PROTECTED) &&
(rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
(rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC &&
(rx->key || rx->sdata->drop_unencrypted) &&
(rx->sdata->eapol == 0 ||
!ieee80211_is_eapol(rx->skb)))) {
if (net_ratelimit())
printk(KERN_DEBUG "%s: RX non-WEP frame, but expected "
"encryption\n", rx->dev->name);
return TXRX_DROP;
}
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_rx_h_data(struct ieee80211_txrx_data *rx)
{
struct net_device *dev = rx->dev;
struct ieee80211_local *local = rx->local;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
u16 fc, hdrlen, ethertype;
u8 *payload;
u8 dst[ETH_ALEN];
u8 src[ETH_ALEN];
struct sk_buff *skb = rx->skb, *skb2;
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
DECLARE_MAC_BUF(mac);
DECLARE_MAC_BUF(mac2);
DECLARE_MAC_BUF(mac3);
DECLARE_MAC_BUF(mac4);
fc = rx->fc;
if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
return TXRX_CONTINUE;
if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
return TXRX_DROP;
hdrlen = ieee80211_get_hdrlen(fc);
/* convert IEEE 802.11 header + possible LLC headers into Ethernet
* header
* IEEE 802.11 address fields:
* ToDS FromDS Addr1 Addr2 Addr3 Addr4
* 0 0 DA SA BSSID n/a
* 0 1 DA BSSID SA n/a
* 1 0 BSSID SA DA n/a
* 1 1 RA TA DA SA
*/
switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
case IEEE80211_FCTL_TODS:
/* BSSID SA DA */
memcpy(dst, hdr->addr3, ETH_ALEN);
memcpy(src, hdr->addr2, ETH_ALEN);
if (unlikely(sdata->type != IEEE80211_IF_TYPE_AP &&
sdata->type != IEEE80211_IF_TYPE_VLAN)) {
if (net_ratelimit())
printk(KERN_DEBUG "%s: dropped ToDS frame "
"(BSSID=%s SA=%s DA=%s)\n",
dev->name,
print_mac(mac, hdr->addr1),
print_mac(mac2, hdr->addr2),
print_mac(mac3, hdr->addr3));
return TXRX_DROP;
}
break;
case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
/* RA TA DA SA */
memcpy(dst, hdr->addr3, ETH_ALEN);
memcpy(src, hdr->addr4, ETH_ALEN);
if (unlikely(sdata->type != IEEE80211_IF_TYPE_WDS)) {
if (net_ratelimit())
printk(KERN_DEBUG "%s: dropped FromDS&ToDS "
"frame (RA=%s TA=%s DA=%s SA=%s)\n",
rx->dev->name,
print_mac(mac, hdr->addr1),
print_mac(mac2, hdr->addr2),
print_mac(mac3, hdr->addr3),
print_mac(mac4, hdr->addr4));
return TXRX_DROP;
}
break;
case IEEE80211_FCTL_FROMDS:
/* DA BSSID SA */
memcpy(dst, hdr->addr1, ETH_ALEN);
memcpy(src, hdr->addr3, ETH_ALEN);
if (sdata->type != IEEE80211_IF_TYPE_STA ||
(is_multicast_ether_addr(dst) &&
!compare_ether_addr(src, dev->dev_addr)))
return TXRX_DROP;
break;
case 0:
/* DA SA BSSID */
memcpy(dst, hdr->addr1, ETH_ALEN);
memcpy(src, hdr->addr2, ETH_ALEN);
if (sdata->type != IEEE80211_IF_TYPE_IBSS) {
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: dropped IBSS frame "
"(DA=%s SA=%s BSSID=%s)\n",
dev->name,
print_mac(mac, hdr->addr1),
print_mac(mac2, hdr->addr2),
print_mac(mac3, hdr->addr3));
}
return TXRX_DROP;
}
break;
}
payload = skb->data + hdrlen;
if (unlikely(skb->len - hdrlen < 8)) {
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: RX too short data frame "
"payload\n", dev->name);
}
return TXRX_DROP;
}
ethertype = (payload[6] << 8) | payload[7];
if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
/* remove RFC1042 or Bridge-Tunnel encapsulation and
* replace EtherType */
skb_pull(skb, hdrlen + 6);
memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
} else {
struct ethhdr *ehdr;
__be16 len;
skb_pull(skb, hdrlen);
len = htons(skb->len);
ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
memcpy(ehdr->h_dest, dst, ETH_ALEN);
memcpy(ehdr->h_source, src, ETH_ALEN);
ehdr->h_proto = len;
}
skb->dev = dev;
skb2 = NULL;
dev->stats.rx_packets++;
dev->stats.rx_bytes += skb->len;
if (local->bridge_packets && (sdata->type == IEEE80211_IF_TYPE_AP
|| sdata->type == IEEE80211_IF_TYPE_VLAN) &&
(rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) {
if (is_multicast_ether_addr(skb->data)) {
/* send multicast frames both to higher layers in
* local net stack and back to the wireless media */
skb2 = skb_copy(skb, GFP_ATOMIC);
if (!skb2 && net_ratelimit())
printk(KERN_DEBUG "%s: failed to clone "
"multicast frame\n", dev->name);
} else {
struct sta_info *dsta;
dsta = sta_info_get(local, skb->data);
if (dsta && !dsta->dev) {
if (net_ratelimit())
printk(KERN_DEBUG "Station with null "
"dev structure!\n");
} else if (dsta && dsta->dev == dev) {
/* Destination station is associated to this
* AP, so send the frame directly to it and
* do not pass the frame to local net stack.
*/
skb2 = skb;
skb = NULL;
}
if (dsta)
sta_info_put(dsta);
}
}
if (skb) {
/* deliver to local stack */
skb->protocol = eth_type_trans(skb, dev);
memset(skb->cb, 0, sizeof(skb->cb));
netif_rx(skb);
}
if (skb2) {
/* send to wireless media */
skb2->protocol = __constant_htons(ETH_P_802_3);
skb_set_network_header(skb2, 0);
skb_set_mac_header(skb2, 0);
dev_queue_xmit(skb2);
}
return TXRX_QUEUED;
}
static ieee80211_txrx_result
ieee80211_rx_h_mgmt(struct ieee80211_txrx_data *rx)
{
struct ieee80211_sub_if_data *sdata;
if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
return TXRX_DROP;
sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
if ((sdata->type == IEEE80211_IF_TYPE_STA ||
sdata->type == IEEE80211_IF_TYPE_IBSS) &&
!rx->local->user_space_mlme) {
ieee80211_sta_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status);
} else {
/* Management frames are sent to hostapd for processing */
if (!rx->local->apdev)
return TXRX_DROP;
ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status,
ieee80211_msg_normal);
}
return TXRX_QUEUED;
}
static inline ieee80211_txrx_result __ieee80211_invoke_rx_handlers(
struct ieee80211_local *local,
ieee80211_rx_handler *handlers,
struct ieee80211_txrx_data *rx,
struct sta_info *sta)
{
ieee80211_rx_handler *handler;
ieee80211_txrx_result res = TXRX_DROP;
for (handler = handlers; *handler != NULL; handler++) {
res = (*handler)(rx);
switch (res) {
case TXRX_CONTINUE:
continue;
case TXRX_DROP:
I802_DEBUG_INC(local->rx_handlers_drop);
if (sta)
sta->rx_dropped++;
break;
case TXRX_QUEUED:
I802_DEBUG_INC(local->rx_handlers_queued);
break;
}
break;
}
if (res == TXRX_DROP)
dev_kfree_skb(rx->skb);
return res;
}
static inline void ieee80211_invoke_rx_handlers(struct ieee80211_local *local,
ieee80211_rx_handler *handlers,
struct ieee80211_txrx_data *rx,
struct sta_info *sta)
{
if (__ieee80211_invoke_rx_handlers(local, handlers, rx, sta) ==
TXRX_CONTINUE)
dev_kfree_skb(rx->skb);
}
static void ieee80211_rx_michael_mic_report(struct net_device *dev,
struct ieee80211_hdr *hdr,
struct sta_info *sta,
struct ieee80211_txrx_data *rx)
{
int keyidx, hdrlen;
DECLARE_MAC_BUF(mac);
DECLARE_MAC_BUF(mac2);
hdrlen = ieee80211_get_hdrlen_from_skb(rx->skb);
if (rx->skb->len >= hdrlen + 4)
keyidx = rx->skb->data[hdrlen + 3] >> 6;
else
keyidx = -1;
if (net_ratelimit())
printk(KERN_DEBUG "%s: TKIP hwaccel reported Michael MIC "
"failure from %s to %s keyidx=%d\n",
dev->name, print_mac(mac, hdr->addr2),
print_mac(mac2, hdr->addr1), keyidx);
if (!sta) {
/*
* Some hardware seem to generate incorrect Michael MIC
* reports; ignore them to avoid triggering countermeasures.
*/
if (net_ratelimit())
printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
"error for unknown address %s\n",
dev->name, print_mac(mac, hdr->addr2));
goto ignore;
}
if (!(rx->fc & IEEE80211_FCTL_PROTECTED)) {
if (net_ratelimit())
printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
"error for a frame with no PROTECTED flag (src "
"%s)\n", dev->name, print_mac(mac, hdr->addr2));
goto ignore;
}
if (rx->sdata->type == IEEE80211_IF_TYPE_AP && keyidx) {
/*
* APs with pairwise keys should never receive Michael MIC
* errors for non-zero keyidx because these are reserved for
* group keys and only the AP is sending real multicast
* frames in the BSS.
*/
if (net_ratelimit())
printk(KERN_DEBUG "%s: ignored Michael MIC error for "
"a frame with non-zero keyidx (%d)"
" (src %s)\n", dev->name, keyidx,
print_mac(mac, hdr->addr2));
goto ignore;
}
if ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA &&
((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
(rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH)) {
if (net_ratelimit())
printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
"error for a frame that cannot be encrypted "
"(fc=0x%04x) (src %s)\n",
dev->name, rx->fc, print_mac(mac, hdr->addr2));
goto ignore;
}
mac80211_ev_michael_mic_failure(rx->dev, keyidx, hdr);
ignore:
dev_kfree_skb(rx->skb);
rx->skb = NULL;
}
ieee80211_rx_handler ieee80211_rx_handlers[] =
{
ieee80211_rx_h_if_stats,
ieee80211_rx_h_monitor,
ieee80211_rx_h_passive_scan,
ieee80211_rx_h_check,
ieee80211_rx_h_load_key,
ieee80211_rx_h_sta_process,
ieee80211_rx_h_ccmp_decrypt,
ieee80211_rx_h_tkip_decrypt,
ieee80211_rx_h_wep_weak_iv_detection,
ieee80211_rx_h_wep_decrypt,
ieee80211_rx_h_defragment,
ieee80211_rx_h_ps_poll,
ieee80211_rx_h_michael_mic_verify,
/* this must be after decryption - so header is counted in MPDU mic
* must be before pae and data, so QOS_DATA format frames
* are not passed to user space by these functions
*/
ieee80211_rx_h_remove_qos_control,
ieee80211_rx_h_802_1x_pae,
ieee80211_rx_h_drop_unencrypted,
ieee80211_rx_h_data,
ieee80211_rx_h_mgmt,
NULL
};
/* main receive path */
static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata,
u8 *bssid, struct ieee80211_txrx_data *rx,
struct ieee80211_hdr *hdr)
{
int multicast = is_multicast_ether_addr(hdr->addr1);
switch (sdata->type) {
case IEEE80211_IF_TYPE_STA:
if (!bssid)
return 0;
if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
return 0;
rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
} else if (!multicast &&
compare_ether_addr(sdata->dev->dev_addr,
hdr->addr1) != 0) {
if (!(sdata->flags & IEEE80211_SDATA_PROMISC))
return 0;
rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
}
break;
case IEEE80211_IF_TYPE_IBSS:
if (!bssid)
return 0;
if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
return 0;
rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
} else if (!multicast &&
compare_ether_addr(sdata->dev->dev_addr,
hdr->addr1) != 0) {
if (!(sdata->flags & IEEE80211_SDATA_PROMISC))
return 0;
rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
} else if (!rx->sta)
rx->sta = ieee80211_ibss_add_sta(sdata->dev, rx->skb,
bssid, hdr->addr2);
break;
case IEEE80211_IF_TYPE_AP:
if (!bssid) {
if (compare_ether_addr(sdata->dev->dev_addr,
hdr->addr1))
return 0;
} else if (!ieee80211_bssid_match(bssid,
sdata->dev->dev_addr)) {
if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
return 0;
rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
}
if (sdata->dev == sdata->local->mdev &&
!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
/* do not receive anything via
* master device when not scanning */
return 0;
break;
case IEEE80211_IF_TYPE_WDS:
if (bssid ||
(rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA)
return 0;
if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
return 0;
break;
}
return 1;
}
/*
* This is the receive path handler. It is called by a low level driver when an
* 802.11 MPDU is received from the hardware.
*/
void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
struct ieee80211_rx_status *status)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_sub_if_data *sdata;
struct sta_info *sta;
struct ieee80211_hdr *hdr;
struct ieee80211_txrx_data rx;
u16 type;
int radiotap_len = 0, prepres;
struct ieee80211_sub_if_data *prev = NULL;
struct sk_buff *skb_new;
u8 *bssid;
int bogon;
if (status->flag & RX_FLAG_RADIOTAP) {
radiotap_len = ieee80211_get_radiotap_len(skb->data);
skb_pull(skb, radiotap_len);
}
/*
* key references are protected using RCU and this requires that
* we are in a read-site RCU section during receive processing
*/
rcu_read_lock();
hdr = (struct ieee80211_hdr *) skb->data;
memset(&rx, 0, sizeof(rx));
rx.skb = skb;
rx.local = local;
rx.u.rx.status = status;
rx.fc = skb->len >= 2 ? le16_to_cpu(hdr->frame_control) : 0;
type = rx.fc & IEEE80211_FCTL_FTYPE;
bogon = status->flag & (RX_FLAG_FAILED_FCS_CRC |
RX_FLAG_FAILED_PLCP_CRC);
if (!bogon && (type == IEEE80211_FTYPE_DATA ||
type == IEEE80211_FTYPE_MGMT))
local->dot11ReceivedFragmentCount++;
if (!bogon && skb->len >= 16) {
sta = rx.sta = sta_info_get(local, hdr->addr2);
if (sta) {
rx.dev = rx.sta->dev;
rx.sdata = IEEE80211_DEV_TO_SUB_IF(rx.dev);
}
} else
sta = rx.sta = NULL;
if ((status->flag & RX_FLAG_MMIC_ERROR)) {
ieee80211_rx_michael_mic_report(local->mdev, hdr, sta, &rx);
goto end;
}
if (unlikely(local->sta_scanning))
rx.flags |= IEEE80211_TXRXD_RXIN_SCAN;
if (__ieee80211_invoke_rx_handlers(local, local->rx_pre_handlers, &rx,
sta) != TXRX_CONTINUE)
goto end;
skb = rx.skb;
skb_push(skb, radiotap_len);
if (sta && !(sta->flags & (WLAN_STA_WDS | WLAN_STA_ASSOC_AP)) &&
!local->iff_promiscs && !is_multicast_ether_addr(hdr->addr1)) {
rx.flags |= IEEE80211_TXRXD_RXRA_MATCH;
ieee80211_invoke_rx_handlers(local, local->rx_handlers, &rx,
rx.sta);
sta_info_put(sta);
rcu_read_unlock();
return;
}
bssid = ieee80211_get_bssid(hdr, skb->len - radiotap_len);
read_lock(&local->sub_if_lock);
list_for_each_entry(sdata, &local->sub_if_list, list) {
rx.flags |= IEEE80211_TXRXD_RXRA_MATCH;
if (!netif_running(sdata->dev))
continue;
prepres = prepare_for_handlers(sdata, bssid, &rx, hdr);
/* prepare_for_handlers can change sta */
sta = rx.sta;
if (!prepres)
continue;
/*
* frame is destined for this interface, but if it's not
* also for the previous one we handle that after the
* loop to avoid copying the SKB once too much
*/
if (!prev) {
prev = sdata;
continue;
}
/*
* frame was destined for the previous interface
* so invoke RX handlers for it
*/
skb_new = skb_copy(skb, GFP_ATOMIC);
if (!skb_new) {
if (net_ratelimit())
printk(KERN_DEBUG "%s: failed to copy "
"multicast frame for %s",
local->mdev->name, prev->dev->name);
continue;
}
rx.skb = skb_new;
rx.dev = prev->dev;
rx.sdata = prev;
ieee80211_invoke_rx_handlers(local, local->rx_handlers,
&rx, sta);
prev = sdata;
}
if (prev) {
rx.skb = skb;
rx.dev = prev->dev;
rx.sdata = prev;
ieee80211_invoke_rx_handlers(local, local->rx_handlers,
&rx, sta);
} else
dev_kfree_skb(skb);
read_unlock(&local->sub_if_lock);
end:
rcu_read_unlock();
if (sta)
sta_info_put(sta);
}
EXPORT_SYMBOL(__ieee80211_rx);
/* This is a version of the rx handler that can be called from hard irq
* context. Post the skb on the queue and schedule the tasklet */
void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb,
struct ieee80211_rx_status *status)
{
struct ieee80211_local *local = hw_to_local(hw);
BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
skb->dev = local->mdev;
/* copy status into skb->cb for use by tasklet */
memcpy(skb->cb, status, sizeof(*status));
skb->pkt_type = IEEE80211_RX_MSG;
skb_queue_tail(&local->skb_queue, skb);
tasklet_schedule(&local->tasklet);
}
EXPORT_SYMBOL(ieee80211_rx_irqsafe);