summaryrefslogblamecommitdiff
path: root/net/ipv4/tcp_output.c
blob: f3c8747caf91ca9749cd5babab4ec61814d641f0 (plain) (tree)
1
2
3
4
5
6
7
8
9
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360








                                                                            
                         


































































































































































































































































































































































































































                                                                                             
                                                             











                                                                               
                                                               
 



                                                 







                                                        

                                                            
                                                   
                                                              





































































                                                                                             

                                       









































































                                                                              
                                              





















































































































































                                                                                 
                                                     

























































































































































































































































































































































































































































































































































































































                                                                                                           
                                                       














                                                                   

                                                                           
                                                                           
                                                                                                 





                                                                          
                                 

                                        

                                                     




                                                            
                                                       





                                                                                      
                                                                                                      

                                           
                                        
                                     
                                               





                                                                            

                                                                                               








































































































































































































































































                                                                                                                             
                                                              



























































                                                                                                
/*
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		Implementation of the Transmission Control Protocol(TCP).
 *
 * Version:	$Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $
 *
 * Authors:	Ross Biro
 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 *		Florian La Roche, <flla@stud.uni-sb.de>
 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 *		Jorge Cwik, <jorge@laser.satlink.net>
 */

/*
 * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
 *				:	Fragmentation on mtu decrease
 *				:	Segment collapse on retransmit
 *				:	AF independence
 *
 *		Linus Torvalds	:	send_delayed_ack
 *		David S. Miller	:	Charge memory using the right skb
 *					during syn/ack processing.
 *		David S. Miller :	Output engine completely rewritten.
 *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
 *		Cacophonix Gaul :	draft-minshall-nagle-01
 *		J Hadi Salim	:	ECN support
 *
 */

#include <net/tcp.h>

#include <linux/compiler.h>
#include <linux/module.h>
#include <linux/smp_lock.h>

/* People can turn this off for buggy TCP's found in printers etc. */
int sysctl_tcp_retrans_collapse = 1;

/* This limits the percentage of the congestion window which we
 * will allow a single TSO frame to consume.  Building TSO frames
 * which are too large can cause TCP streams to be bursty.
 */
int sysctl_tcp_tso_win_divisor = 8;

static inline void update_send_head(struct sock *sk, struct tcp_sock *tp,
				    struct sk_buff *skb)
{
	sk->sk_send_head = skb->next;
	if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue)
		sk->sk_send_head = NULL;
	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
	tcp_packets_out_inc(sk, tp, skb);
}

/* SND.NXT, if window was not shrunk.
 * If window has been shrunk, what should we make? It is not clear at all.
 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
 * invalid. OK, let's make this for now:
 */
static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp)
{
	if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt))
		return tp->snd_nxt;
	else
		return tp->snd_una+tp->snd_wnd;
}

/* Calculate mss to advertise in SYN segment.
 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
 *
 * 1. It is independent of path mtu.
 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
 *    attached devices, because some buggy hosts are confused by
 *    large MSS.
 * 4. We do not make 3, we advertise MSS, calculated from first
 *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
 *    This may be overridden via information stored in routing table.
 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
 *    probably even Jumbo".
 */
static __u16 tcp_advertise_mss(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct dst_entry *dst = __sk_dst_get(sk);
	int mss = tp->advmss;

	if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) {
		mss = dst_metric(dst, RTAX_ADVMSS);
		tp->advmss = mss;
	}

	return (__u16)mss;
}

/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
 * This is the first part of cwnd validation mechanism. */
static void tcp_cwnd_restart(struct tcp_sock *tp, struct dst_entry *dst)
{
	s32 delta = tcp_time_stamp - tp->lsndtime;
	u32 restart_cwnd = tcp_init_cwnd(tp, dst);
	u32 cwnd = tp->snd_cwnd;

	if (tcp_is_vegas(tp)) 
		tcp_vegas_enable(tp);

	tp->snd_ssthresh = tcp_current_ssthresh(tp);
	restart_cwnd = min(restart_cwnd, cwnd);

	while ((delta -= tp->rto) > 0 && cwnd > restart_cwnd)
		cwnd >>= 1;
	tp->snd_cwnd = max(cwnd, restart_cwnd);
	tp->snd_cwnd_stamp = tcp_time_stamp;
	tp->snd_cwnd_used = 0;
}

static inline void tcp_event_data_sent(struct tcp_sock *tp,
				       struct sk_buff *skb, struct sock *sk)
{
	u32 now = tcp_time_stamp;

	if (!tp->packets_out && (s32)(now - tp->lsndtime) > tp->rto)
		tcp_cwnd_restart(tp, __sk_dst_get(sk));

	tp->lsndtime = now;

	/* If it is a reply for ato after last received
	 * packet, enter pingpong mode.
	 */
	if ((u32)(now - tp->ack.lrcvtime) < tp->ack.ato)
		tp->ack.pingpong = 1;
}

static __inline__ void tcp_event_ack_sent(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);

	tcp_dec_quickack_mode(tp);
	tcp_clear_xmit_timer(sk, TCP_TIME_DACK);
}

/* Determine a window scaling and initial window to offer.
 * Based on the assumption that the given amount of space
 * will be offered. Store the results in the tp structure.
 * NOTE: for smooth operation initial space offering should
 * be a multiple of mss if possible. We assume here that mss >= 1.
 * This MUST be enforced by all callers.
 */
void tcp_select_initial_window(int __space, __u32 mss,
			       __u32 *rcv_wnd, __u32 *window_clamp,
			       int wscale_ok, __u8 *rcv_wscale)
{
	unsigned int space = (__space < 0 ? 0 : __space);

	/* If no clamp set the clamp to the max possible scaled window */
	if (*window_clamp == 0)
		(*window_clamp) = (65535 << 14);
	space = min(*window_clamp, space);

	/* Quantize space offering to a multiple of mss if possible. */
	if (space > mss)
		space = (space / mss) * mss;

	/* NOTE: offering an initial window larger than 32767
	 * will break some buggy TCP stacks. We try to be nice.
	 * If we are not window scaling, then this truncates
	 * our initial window offering to 32k. There should also
	 * be a sysctl option to stop being nice.
	 */
	(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
	(*rcv_wscale) = 0;
	if (wscale_ok) {
		/* Set window scaling on max possible window
		 * See RFC1323 for an explanation of the limit to 14 
		 */
		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
		while (space > 65535 && (*rcv_wscale) < 14) {
			space >>= 1;
			(*rcv_wscale)++;
		}
	}

	/* Set initial window to value enough for senders,
	 * following RFC1414. Senders, not following this RFC,
	 * will be satisfied with 2.
	 */
	if (mss > (1<<*rcv_wscale)) {
		int init_cwnd = 4;
		if (mss > 1460*3)
			init_cwnd = 2;
		else if (mss > 1460)
			init_cwnd = 3;
		if (*rcv_wnd > init_cwnd*mss)
			*rcv_wnd = init_cwnd*mss;
	}

	/* Set the clamp no higher than max representable value */
	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
}

/* Chose a new window to advertise, update state in tcp_sock for the
 * socket, and return result with RFC1323 scaling applied.  The return
 * value can be stuffed directly into th->window for an outgoing
 * frame.
 */
static __inline__ u16 tcp_select_window(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);
	u32 cur_win = tcp_receive_window(tp);
	u32 new_win = __tcp_select_window(sk);

	/* Never shrink the offered window */
	if(new_win < cur_win) {
		/* Danger Will Robinson!
		 * Don't update rcv_wup/rcv_wnd here or else
		 * we will not be able to advertise a zero
		 * window in time.  --DaveM
		 *
		 * Relax Will Robinson.
		 */
		new_win = cur_win;
	}
	tp->rcv_wnd = new_win;
	tp->rcv_wup = tp->rcv_nxt;

	/* Make sure we do not exceed the maximum possible
	 * scaled window.
	 */
	if (!tp->rx_opt.rcv_wscale)
		new_win = min(new_win, MAX_TCP_WINDOW);
	else
		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));

	/* RFC1323 scaling applied */
	new_win >>= tp->rx_opt.rcv_wscale;

	/* If we advertise zero window, disable fast path. */
	if (new_win == 0)
		tp->pred_flags = 0;

	return new_win;
}


/* This routine actually transmits TCP packets queued in by
 * tcp_do_sendmsg().  This is used by both the initial
 * transmission and possible later retransmissions.
 * All SKB's seen here are completely headerless.  It is our
 * job to build the TCP header, and pass the packet down to
 * IP so it can do the same plus pass the packet off to the
 * device.
 *
 * We are working here with either a clone of the original
 * SKB, or a fresh unique copy made by the retransmit engine.
 */
static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb)
{
	if (skb != NULL) {
		struct inet_sock *inet = inet_sk(sk);
		struct tcp_sock *tp = tcp_sk(sk);
		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
		int tcp_header_size = tp->tcp_header_len;
		struct tcphdr *th;
		int sysctl_flags;
		int err;

		BUG_ON(!tcp_skb_pcount(skb));

#define SYSCTL_FLAG_TSTAMPS	0x1
#define SYSCTL_FLAG_WSCALE	0x2
#define SYSCTL_FLAG_SACK	0x4

		sysctl_flags = 0;
		if (tcb->flags & TCPCB_FLAG_SYN) {
			tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS;
			if(sysctl_tcp_timestamps) {
				tcp_header_size += TCPOLEN_TSTAMP_ALIGNED;
				sysctl_flags |= SYSCTL_FLAG_TSTAMPS;
			}
			if(sysctl_tcp_window_scaling) {
				tcp_header_size += TCPOLEN_WSCALE_ALIGNED;
				sysctl_flags |= SYSCTL_FLAG_WSCALE;
			}
			if(sysctl_tcp_sack) {
				sysctl_flags |= SYSCTL_FLAG_SACK;
				if(!(sysctl_flags & SYSCTL_FLAG_TSTAMPS))
					tcp_header_size += TCPOLEN_SACKPERM_ALIGNED;
			}
		} else if (tp->rx_opt.eff_sacks) {
			/* A SACK is 2 pad bytes, a 2 byte header, plus
			 * 2 32-bit sequence numbers for each SACK block.
			 */
			tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED +
					    (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
		}
		
		/*
		 * If the connection is idle and we are restarting,
		 * then we don't want to do any Vegas calculations
		 * until we get fresh RTT samples.  So when we
		 * restart, we reset our Vegas state to a clean
		 * slate. After we get acks for this flight of
		 * packets, _then_ we can make Vegas calculations
		 * again.
		 */
		if (tcp_is_vegas(tp) && tcp_packets_in_flight(tp) == 0)
			tcp_vegas_enable(tp);

		th = (struct tcphdr *) skb_push(skb, tcp_header_size);
		skb->h.th = th;
		skb_set_owner_w(skb, sk);

		/* Build TCP header and checksum it. */
		th->source		= inet->sport;
		th->dest		= inet->dport;
		th->seq			= htonl(tcb->seq);
		th->ack_seq		= htonl(tp->rcv_nxt);
		*(((__u16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) | tcb->flags);
		if (tcb->flags & TCPCB_FLAG_SYN) {
			/* RFC1323: The window in SYN & SYN/ACK segments
			 * is never scaled.
			 */
			th->window	= htons(tp->rcv_wnd);
		} else {
			th->window	= htons(tcp_select_window(sk));
		}
		th->check		= 0;
		th->urg_ptr		= 0;

		if (tp->urg_mode &&
		    between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF)) {
			th->urg_ptr		= htons(tp->snd_up-tcb->seq);
			th->urg			= 1;
		}

		if (tcb->flags & TCPCB_FLAG_SYN) {
			tcp_syn_build_options((__u32 *)(th + 1),
					      tcp_advertise_mss(sk),
					      (sysctl_flags & SYSCTL_FLAG_TSTAMPS),
					      (sysctl_flags & SYSCTL_FLAG_SACK),
					      (sysctl_flags & SYSCTL_FLAG_WSCALE),
					      tp->rx_opt.rcv_wscale,
					      tcb->when,
		      			      tp->rx_opt.ts_recent);
		} else {
			tcp_build_and_update_options((__u32 *)(th + 1),
						     tp, tcb->when);

			TCP_ECN_send(sk, tp, skb, tcp_header_size);
		}
		tp->af_specific->send_check(sk, th, skb->len, skb);

		if (tcb->flags & TCPCB_FLAG_ACK)
			tcp_event_ack_sent(sk);

		if (skb->len != tcp_header_size)
			tcp_event_data_sent(tp, skb, sk);

		TCP_INC_STATS(TCP_MIB_OUTSEGS);

		err = tp->af_specific->queue_xmit(skb, 0);
		if (err <= 0)
			return err;

		tcp_enter_cwr(tp);

		/* NET_XMIT_CN is special. It does not guarantee,
		 * that this packet is lost. It tells that device
		 * is about to start to drop packets or already
		 * drops some packets of the same priority and
		 * invokes us to send less aggressively.
		 */
		return err == NET_XMIT_CN ? 0 : err;
	}
	return -ENOBUFS;
#undef SYSCTL_FLAG_TSTAMPS
#undef SYSCTL_FLAG_WSCALE
#undef SYSCTL_FLAG_SACK
}


/* This routine just queue's the buffer 
 *
 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
 * otherwise socket can stall.
 */
static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
{
	struct tcp_sock *tp = tcp_sk(sk);

	/* Advance write_seq and place onto the write_queue. */
	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
	skb_header_release(skb);
	__skb_queue_tail(&sk->sk_write_queue, skb);
	sk_charge_skb(sk, skb);

	/* Queue it, remembering where we must start sending. */
	if (sk->sk_send_head == NULL)
		sk->sk_send_head = skb;
}

static inline void tcp_tso_set_push(struct sk_buff *skb)
{
	/* Force push to be on for any TSO frames to workaround
	 * problems with busted implementations like Mac OS-X that
	 * hold off socket receive wakeups until push is seen.
	 */
	if (tcp_skb_pcount(skb) > 1)
		TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
}

/* Send _single_ skb sitting at the send head. This function requires
 * true push pending frames to setup probe timer etc.
 */
void tcp_push_one(struct sock *sk, unsigned cur_mss)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct sk_buff *skb = sk->sk_send_head;

	if (tcp_snd_test(sk, skb, cur_mss, TCP_NAGLE_PUSH)) {
		/* Send it out now. */
		TCP_SKB_CB(skb)->when = tcp_time_stamp;
		tcp_tso_set_push(skb);
		if (!tcp_transmit_skb(sk, skb_clone(skb, sk->sk_allocation))) {
			sk->sk_send_head = NULL;
			tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
			tcp_packets_out_inc(sk, tp, skb);
			return;
		}
	}
}

void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb)
{
	struct tcp_sock *tp = tcp_sk(sk);

	if (skb->len <= tp->mss_cache_std ||
	    !(sk->sk_route_caps & NETIF_F_TSO)) {
		/* Avoid the costly divide in the normal
		 * non-TSO case.
		 */
		skb_shinfo(skb)->tso_segs = 1;
		skb_shinfo(skb)->tso_size = 0;
	} else {
		unsigned int factor;

		factor = skb->len + (tp->mss_cache_std - 1);
		factor /= tp->mss_cache_std;
		skb_shinfo(skb)->tso_segs = factor;
		skb_shinfo(skb)->tso_size = tp->mss_cache_std;
	}
}

/* Function to create two new TCP segments.  Shrinks the given segment
 * to the specified size and appends a new segment with the rest of the
 * packet to the list.  This won't be called frequently, I hope. 
 * Remember, these are still headerless SKBs at this point.
 */
static int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct sk_buff *buff;
	int nsize;
	u16 flags;

	nsize = skb_headlen(skb) - len;
	if (nsize < 0)
		nsize = 0;

	if (skb_cloned(skb) &&
	    skb_is_nonlinear(skb) &&
	    pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
		return -ENOMEM;

	/* Get a new skb... force flag on. */
	buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
	if (buff == NULL)
		return -ENOMEM; /* We'll just try again later. */
	sk_charge_skb(sk, buff);

	/* Correct the sequence numbers. */
	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;

	/* PSH and FIN should only be set in the second packet. */
	flags = TCP_SKB_CB(skb)->flags;
	TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
	TCP_SKB_CB(buff)->flags = flags;
	TCP_SKB_CB(buff)->sacked =
		(TCP_SKB_CB(skb)->sacked &
		 (TCPCB_LOST | TCPCB_EVER_RETRANS | TCPCB_AT_TAIL));
	TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL;

	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_HW) {
		/* Copy and checksum data tail into the new buffer. */
		buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize),
						       nsize, 0);

		skb_trim(skb, len);

		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
	} else {
		skb->ip_summed = CHECKSUM_HW;
		skb_split(skb, buff, len);
	}

	buff->ip_summed = skb->ip_summed;

	/* Looks stupid, but our code really uses when of
	 * skbs, which it never sent before. --ANK
	 */
	TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;

	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) {
		tp->lost_out -= tcp_skb_pcount(skb);
		tp->left_out -= tcp_skb_pcount(skb);
	}

	/* Fix up tso_factor for both original and new SKB.  */
	tcp_set_skb_tso_segs(sk, skb);
	tcp_set_skb_tso_segs(sk, buff);

	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) {
		tp->lost_out += tcp_skb_pcount(skb);
		tp->left_out += tcp_skb_pcount(skb);
	}

	if (TCP_SKB_CB(buff)->sacked&TCPCB_LOST) {
		tp->lost_out += tcp_skb_pcount(buff);
		tp->left_out += tcp_skb_pcount(buff);
	}

	/* Link BUFF into the send queue. */
	__skb_append(skb, buff);

	return 0;
}

/* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
 * eventually). The difference is that pulled data not copied, but
 * immediately discarded.
 */
static unsigned char *__pskb_trim_head(struct sk_buff *skb, int len)
{
	int i, k, eat;

	eat = len;
	k = 0;
	for (i=0; i<skb_shinfo(skb)->nr_frags; i++) {
		if (skb_shinfo(skb)->frags[i].size <= eat) {
			put_page(skb_shinfo(skb)->frags[i].page);
			eat -= skb_shinfo(skb)->frags[i].size;
		} else {
			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
			if (eat) {
				skb_shinfo(skb)->frags[k].page_offset += eat;
				skb_shinfo(skb)->frags[k].size -= eat;
				eat = 0;
			}
			k++;
		}
	}
	skb_shinfo(skb)->nr_frags = k;

	skb->tail = skb->data;
	skb->data_len -= len;
	skb->len = skb->data_len;
	return skb->tail;
}

int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
{
	if (skb_cloned(skb) &&
	    pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
		return -ENOMEM;

	if (len <= skb_headlen(skb)) {
		__skb_pull(skb, len);
	} else {
		if (__pskb_trim_head(skb, len-skb_headlen(skb)) == NULL)
			return -ENOMEM;
	}

	TCP_SKB_CB(skb)->seq += len;
	skb->ip_summed = CHECKSUM_HW;

	skb->truesize	     -= len;
	sk->sk_wmem_queued   -= len;
	sk->sk_forward_alloc += len;
	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);

	/* Any change of skb->len requires recalculation of tso
	 * factor and mss.
	 */
	if (tcp_skb_pcount(skb) > 1)
		tcp_set_skb_tso_segs(sk, skb);

	return 0;
}

/* This function synchronize snd mss to current pmtu/exthdr set.

   tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
   for TCP options, but includes only bare TCP header.

   tp->rx_opt.mss_clamp is mss negotiated at connection setup.
   It is minumum of user_mss and mss received with SYN.
   It also does not include TCP options.

   tp->pmtu_cookie is last pmtu, seen by this function.

   tp->mss_cache is current effective sending mss, including
   all tcp options except for SACKs. It is evaluated,
   taking into account current pmtu, but never exceeds
   tp->rx_opt.mss_clamp.

   NOTE1. rfc1122 clearly states that advertised MSS
   DOES NOT include either tcp or ip options.

   NOTE2. tp->pmtu_cookie and tp->mss_cache are READ ONLY outside
   this function.			--ANK (980731)
 */

unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
{
	struct tcp_sock *tp = tcp_sk(sk);
	int mss_now;

	/* Calculate base mss without TCP options:
	   It is MMS_S - sizeof(tcphdr) of rfc1122
	 */
	mss_now = pmtu - tp->af_specific->net_header_len - sizeof(struct tcphdr);

	/* Clamp it (mss_clamp does not include tcp options) */
	if (mss_now > tp->rx_opt.mss_clamp)
		mss_now = tp->rx_opt.mss_clamp;

	/* Now subtract optional transport overhead */
	mss_now -= tp->ext_header_len;

	/* Then reserve room for full set of TCP options and 8 bytes of data */
	if (mss_now < 48)
		mss_now = 48;

	/* Now subtract TCP options size, not including SACKs */
	mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);

	/* Bound mss with half of window */
	if (tp->max_window && mss_now > (tp->max_window>>1))
		mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len);

	/* And store cached results */
	tp->pmtu_cookie = pmtu;
	tp->mss_cache = tp->mss_cache_std = mss_now;

	return mss_now;
}

/* Compute the current effective MSS, taking SACKs and IP options,
 * and even PMTU discovery events into account.
 *
 * LARGESEND note: !urg_mode is overkill, only frames up to snd_up
 * cannot be large. However, taking into account rare use of URG, this
 * is not a big flaw.
 */

unsigned int tcp_current_mss(struct sock *sk, int large)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct dst_entry *dst = __sk_dst_get(sk);
	unsigned int do_large, mss_now;

	mss_now = tp->mss_cache_std;
	if (dst) {
		u32 mtu = dst_mtu(dst);
		if (mtu != tp->pmtu_cookie)
			mss_now = tcp_sync_mss(sk, mtu);
	}

	do_large = (large &&
		    (sk->sk_route_caps & NETIF_F_TSO) &&
		    !tp->urg_mode);

	if (do_large) {
		unsigned int large_mss, factor, limit;

		large_mss = 65535 - tp->af_specific->net_header_len -
			tp->ext_header_len - tp->tcp_header_len;

		if (tp->max_window && large_mss > (tp->max_window>>1))
			large_mss = max((tp->max_window>>1),
					68U - tp->tcp_header_len);

		factor = large_mss / mss_now;

		/* Always keep large mss multiple of real mss, but
		 * do not exceed 1/tso_win_divisor of the congestion window
		 * so we can keep the ACK clock ticking and minimize
		 * bursting.
		 */
		limit = tp->snd_cwnd;
		if (sysctl_tcp_tso_win_divisor)
			limit /= sysctl_tcp_tso_win_divisor;
		limit = max(1U, limit);
		if (factor > limit)
			factor = limit;

		tp->mss_cache = mss_now * factor;

		mss_now = tp->mss_cache;
	}

	if (tp->rx_opt.eff_sacks)
		mss_now -= (TCPOLEN_SACK_BASE_ALIGNED +
			    (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
	return mss_now;
}

/* This routine writes packets to the network.  It advances the
 * send_head.  This happens as incoming acks open up the remote
 * window for us.
 *
 * Returns 1, if no segments are in flight and we have queued segments, but
 * cannot send anything now because of SWS or another problem.
 */
int tcp_write_xmit(struct sock *sk, int nonagle)
{
	struct tcp_sock *tp = tcp_sk(sk);
	unsigned int mss_now;

	/* If we are closed, the bytes will have to remain here.
	 * In time closedown will finish, we empty the write queue and all
	 * will be happy.
	 */
	if (sk->sk_state != TCP_CLOSE) {
		struct sk_buff *skb;
		int sent_pkts = 0;

		/* Account for SACKS, we may need to fragment due to this.
		 * It is just like the real MSS changing on us midstream.
		 * We also handle things correctly when the user adds some
		 * IP options mid-stream.  Silly to do, but cover it.
		 */
		mss_now = tcp_current_mss(sk, 1);

		while ((skb = sk->sk_send_head) &&
		       tcp_snd_test(sk, skb, mss_now,
			       	    tcp_skb_is_last(sk, skb) ? nonagle :
				    			       TCP_NAGLE_PUSH)) {
			if (skb->len > mss_now) {
				if (tcp_fragment(sk, skb, mss_now))
					break;
			}

			TCP_SKB_CB(skb)->when = tcp_time_stamp;
			tcp_tso_set_push(skb);
			if (tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)))
				break;

			/* Advance the send_head.  This one is sent out.
			 * This call will increment packets_out.
			 */
			update_send_head(sk, tp, skb);

			tcp_minshall_update(tp, mss_now, skb);
			sent_pkts = 1;
		}

		if (sent_pkts) {
			tcp_cwnd_validate(sk, tp);
			return 0;
		}

		return !tp->packets_out && sk->sk_send_head;
	}
	return 0;
}

/* This function returns the amount that we can raise the
 * usable window based on the following constraints
 *  
 * 1. The window can never be shrunk once it is offered (RFC 793)
 * 2. We limit memory per socket
 *
 * RFC 1122:
 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
 *  RECV.NEXT + RCV.WIN fixed until:
 *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
 *
 * i.e. don't raise the right edge of the window until you can raise
 * it at least MSS bytes.
 *
 * Unfortunately, the recommended algorithm breaks header prediction,
 * since header prediction assumes th->window stays fixed.
 *
 * Strictly speaking, keeping th->window fixed violates the receiver
 * side SWS prevention criteria. The problem is that under this rule
 * a stream of single byte packets will cause the right side of the
 * window to always advance by a single byte.
 * 
 * Of course, if the sender implements sender side SWS prevention
 * then this will not be a problem.
 * 
 * BSD seems to make the following compromise:
 * 
 *	If the free space is less than the 1/4 of the maximum
 *	space available and the free space is less than 1/2 mss,
 *	then set the window to 0.
 *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
 *	Otherwise, just prevent the window from shrinking
 *	and from being larger than the largest representable value.
 *
 * This prevents incremental opening of the window in the regime
 * where TCP is limited by the speed of the reader side taking
 * data out of the TCP receive queue. It does nothing about
 * those cases where the window is constrained on the sender side
 * because the pipeline is full.
 *
 * BSD also seems to "accidentally" limit itself to windows that are a
 * multiple of MSS, at least until the free space gets quite small.
 * This would appear to be a side effect of the mbuf implementation.
 * Combining these two algorithms results in the observed behavior
 * of having a fixed window size at almost all times.
 *
 * Below we obtain similar behavior by forcing the offered window to
 * a multiple of the mss when it is feasible to do so.
 *
 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
 * Regular options like TIMESTAMP are taken into account.
 */
u32 __tcp_select_window(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);
	/* MSS for the peer's data.  Previous verions used mss_clamp
	 * here.  I don't know if the value based on our guesses
	 * of peer's MSS is better for the performance.  It's more correct
	 * but may be worse for the performance because of rcv_mss
	 * fluctuations.  --SAW  1998/11/1
	 */
	int mss = tp->ack.rcv_mss;
	int free_space = tcp_space(sk);
	int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
	int window;

	if (mss > full_space)
		mss = full_space; 

	if (free_space < full_space/2) {
		tp->ack.quick = 0;

		if (tcp_memory_pressure)
			tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss);

		if (free_space < mss)
			return 0;
	}

	if (free_space > tp->rcv_ssthresh)
		free_space = tp->rcv_ssthresh;

	/* Don't do rounding if we are using window scaling, since the
	 * scaled window will not line up with the MSS boundary anyway.
	 */
	window = tp->rcv_wnd;
	if (tp->rx_opt.rcv_wscale) {
		window = free_space;

		/* Advertise enough space so that it won't get scaled away.
		 * Import case: prevent zero window announcement if
		 * 1<<rcv_wscale > mss.
		 */
		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
				  << tp->rx_opt.rcv_wscale);
	} else {
		/* Get the largest window that is a nice multiple of mss.
		 * Window clamp already applied above.
		 * If our current window offering is within 1 mss of the
		 * free space we just keep it. This prevents the divide
		 * and multiply from happening most of the time.
		 * We also don't do any window rounding when the free space
		 * is too small.
		 */
		if (window <= free_space - mss || window > free_space)
			window = (free_space/mss)*mss;
	}

	return window;
}

/* Attempt to collapse two adjacent SKB's during retransmission. */
static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct sk_buff *next_skb = skb->next;

	/* The first test we must make is that neither of these two
	 * SKB's are still referenced by someone else.
	 */
	if (!skb_cloned(skb) && !skb_cloned(next_skb)) {
		int skb_size = skb->len, next_skb_size = next_skb->len;
		u16 flags = TCP_SKB_CB(skb)->flags;

		/* Also punt if next skb has been SACK'd. */
		if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED)
			return;

		/* Next skb is out of window. */
		if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd))
			return;

		/* Punt if not enough space exists in the first SKB for
		 * the data in the second, or the total combined payload
		 * would exceed the MSS.
		 */
		if ((next_skb_size > skb_tailroom(skb)) ||
		    ((skb_size + next_skb_size) > mss_now))
			return;

		BUG_ON(tcp_skb_pcount(skb) != 1 ||
		       tcp_skb_pcount(next_skb) != 1);

		/* Ok.  We will be able to collapse the packet. */
		__skb_unlink(next_skb, next_skb->list);

		memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size);

		if (next_skb->ip_summed == CHECKSUM_HW)
			skb->ip_summed = CHECKSUM_HW;

		if (skb->ip_summed != CHECKSUM_HW)
			skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);

		/* Update sequence range on original skb. */
		TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;

		/* Merge over control information. */
		flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */
		TCP_SKB_CB(skb)->flags = flags;

		/* All done, get rid of second SKB and account for it so
		 * packet counting does not break.
		 */
		TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL);
		if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS)
			tp->retrans_out -= tcp_skb_pcount(next_skb);
		if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) {
			tp->lost_out -= tcp_skb_pcount(next_skb);
			tp->left_out -= tcp_skb_pcount(next_skb);
		}
		/* Reno case is special. Sigh... */
		if (!tp->rx_opt.sack_ok && tp->sacked_out) {
			tcp_dec_pcount_approx(&tp->sacked_out, next_skb);
			tp->left_out -= tcp_skb_pcount(next_skb);
		}

		/* Not quite right: it can be > snd.fack, but
		 * it is better to underestimate fackets.
		 */
		tcp_dec_pcount_approx(&tp->fackets_out, next_skb);
		tcp_packets_out_dec(tp, next_skb);
		sk_stream_free_skb(sk, next_skb);
	}
}

/* Do a simple retransmit without using the backoff mechanisms in
 * tcp_timer. This is used for path mtu discovery. 
 * The socket is already locked here.
 */ 
void tcp_simple_retransmit(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct sk_buff *skb;
	unsigned int mss = tcp_current_mss(sk, 0);
	int lost = 0;

	sk_stream_for_retrans_queue(skb, sk) {
		if (skb->len > mss && 
		    !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
			if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
				tp->retrans_out -= tcp_skb_pcount(skb);
			}
			if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) {
				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
				tp->lost_out += tcp_skb_pcount(skb);
				lost = 1;
			}
		}
	}

	if (!lost)
		return;

	tcp_sync_left_out(tp);

 	/* Don't muck with the congestion window here.
	 * Reason is that we do not increase amount of _data_
	 * in network, but units changed and effective
	 * cwnd/ssthresh really reduced now.
	 */
	if (tp->ca_state != TCP_CA_Loss) {
		tp->high_seq = tp->snd_nxt;
		tp->snd_ssthresh = tcp_current_ssthresh(tp);
		tp->prior_ssthresh = 0;
		tp->undo_marker = 0;
		tcp_set_ca_state(tp, TCP_CA_Loss);
	}
	tcp_xmit_retransmit_queue(sk);
}

/* This retransmits one SKB.  Policy decisions and retransmit queue
 * state updates are done by the caller.  Returns non-zero if an
 * error occurred which prevented the send.
 */
int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
{
	struct tcp_sock *tp = tcp_sk(sk);
 	unsigned int cur_mss = tcp_current_mss(sk, 0);
	int err;

	/* Do not sent more than we queued. 1/4 is reserved for possible
	 * copying overhead: frgagmentation, tunneling, mangling etc.
	 */
	if (atomic_read(&sk->sk_wmem_alloc) >
	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
		return -EAGAIN;

	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
			BUG();

		if (sk->sk_route_caps & NETIF_F_TSO) {
			sk->sk_route_caps &= ~NETIF_F_TSO;
			sock_set_flag(sk, SOCK_NO_LARGESEND);
			tp->mss_cache = tp->mss_cache_std;
		}

		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
			return -ENOMEM;
	}

	/* If receiver has shrunk his window, and skb is out of
	 * new window, do not retransmit it. The exception is the
	 * case, when window is shrunk to zero. In this case
	 * our retransmit serves as a zero window probe.
	 */
	if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)
	    && TCP_SKB_CB(skb)->seq != tp->snd_una)
		return -EAGAIN;

	if (skb->len > cur_mss) {
		int old_factor = tcp_skb_pcount(skb);
		int new_factor;

		if (tcp_fragment(sk, skb, cur_mss))
			return -ENOMEM; /* We'll try again later. */

		/* New SKB created, account for it. */
		new_factor = tcp_skb_pcount(skb);
		tp->packets_out -= old_factor - new_factor;
		tp->packets_out += tcp_skb_pcount(skb->next);
	}

	/* Collapse two adjacent packets if worthwhile and we can. */
	if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) &&
	   (skb->len < (cur_mss >> 1)) &&
	   (skb->next != sk->sk_send_head) &&
	   (skb->next != (struct sk_buff *)&sk->sk_write_queue) &&
	   (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) &&
	   (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) &&
	   (sysctl_tcp_retrans_collapse != 0))
		tcp_retrans_try_collapse(sk, skb, cur_mss);

	if(tp->af_specific->rebuild_header(sk))
		return -EHOSTUNREACH; /* Routing failure or similar. */

	/* Some Solaris stacks overoptimize and ignore the FIN on a
	 * retransmit when old data is attached.  So strip it off
	 * since it is cheap to do so and saves bytes on the network.
	 */
	if(skb->len > 0 &&
	   (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
	   tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
		if (!pskb_trim(skb, 0)) {
			TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1;
			skb_shinfo(skb)->tso_segs = 1;
			skb_shinfo(skb)->tso_size = 0;
			skb->ip_summed = CHECKSUM_NONE;
			skb->csum = 0;
		}
	}

	/* Make a copy, if the first transmission SKB clone we made
	 * is still in somebody's hands, else make a clone.
	 */
	TCP_SKB_CB(skb)->when = tcp_time_stamp;
	tcp_tso_set_push(skb);

	err = tcp_transmit_skb(sk, (skb_cloned(skb) ?
				    pskb_copy(skb, GFP_ATOMIC):
				    skb_clone(skb, GFP_ATOMIC)));

	if (err == 0) {
		/* Update global TCP statistics. */
		TCP_INC_STATS(TCP_MIB_RETRANSSEGS);

		tp->total_retrans++;

#if FASTRETRANS_DEBUG > 0
		if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
			if (net_ratelimit())
				printk(KERN_DEBUG "retrans_out leaked.\n");
		}
#endif
		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
		tp->retrans_out += tcp_skb_pcount(skb);

		/* Save stamp of the first retransmit. */
		if (!tp->retrans_stamp)
			tp->retrans_stamp = TCP_SKB_CB(skb)->when;

		tp->undo_retrans++;

		/* snd_nxt is stored to detect loss of retransmitted segment,
		 * see tcp_input.c tcp_sacktag_write_queue().
		 */
		TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
	}
	return err;
}

/* This gets called after a retransmit timeout, and the initially
 * retransmitted data is acknowledged.  It tries to continue
 * resending the rest of the retransmit queue, until either
 * we've sent it all or the congestion window limit is reached.
 * If doing SACK, the first ACK which comes back for a timeout
 * based retransmit packet might feed us FACK information again.
 * If so, we use it to avoid unnecessarily retransmissions.
 */
void tcp_xmit_retransmit_queue(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct sk_buff *skb;
	int packet_cnt = tp->lost_out;

	/* First pass: retransmit lost packets. */
	if (packet_cnt) {
		sk_stream_for_retrans_queue(skb, sk) {
			__u8 sacked = TCP_SKB_CB(skb)->sacked;

			/* Assume this retransmit will generate
			 * only one packet for congestion window
			 * calculation purposes.  This works because
			 * tcp_retransmit_skb() will chop up the
			 * packet to be MSS sized and all the
			 * packet counting works out.
			 */
			if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
				return;

			if (sacked&TCPCB_LOST) {
				if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) {
					if (tcp_retransmit_skb(sk, skb))
						return;
					if (tp->ca_state != TCP_CA_Loss)
						NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS);
					else
						NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS);

					if (skb ==
					    skb_peek(&sk->sk_write_queue))
						tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
				}

				packet_cnt -= tcp_skb_pcount(skb);
				if (packet_cnt <= 0)
					break;
			}
		}
	}

	/* OK, demanded retransmission is finished. */

	/* Forward retransmissions are possible only during Recovery. */
	if (tp->ca_state != TCP_CA_Recovery)
		return;

	/* No forward retransmissions in Reno are possible. */
	if (!tp->rx_opt.sack_ok)
		return;

	/* Yeah, we have to make difficult choice between forward transmission
	 * and retransmission... Both ways have their merits...
	 *
	 * For now we do not retransmit anything, while we have some new
	 * segments to send.
	 */

	if (tcp_may_send_now(sk, tp))
		return;

	packet_cnt = 0;

	sk_stream_for_retrans_queue(skb, sk) {
		/* Similar to the retransmit loop above we
		 * can pretend that the retransmitted SKB
		 * we send out here will be composed of one
		 * real MSS sized packet because tcp_retransmit_skb()
		 * will fragment it if necessary.
		 */
		if (++packet_cnt > tp->fackets_out)
			break;

		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
			break;

		if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS)
			continue;

		/* Ok, retransmit it. */
		if (tcp_retransmit_skb(sk, skb))
			break;

		if (skb == skb_peek(&sk->sk_write_queue))
			tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);

		NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS);
	}
}


/* Send a fin.  The caller locks the socket for us.  This cannot be
 * allowed to fail queueing a FIN frame under any circumstances.
 */
void tcp_send_fin(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);	
	struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue);
	int mss_now;
	
	/* Optimization, tack on the FIN if we have a queue of
	 * unsent frames.  But be careful about outgoing SACKS
	 * and IP options.
	 */
	mss_now = tcp_current_mss(sk, 1);

	if (sk->sk_send_head != NULL) {
		TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN;
		TCP_SKB_CB(skb)->end_seq++;
		tp->write_seq++;
	} else {
		/* Socket is locked, keep trying until memory is available. */
		for (;;) {
			skb = alloc_skb(MAX_TCP_HEADER, GFP_KERNEL);
			if (skb)
				break;
			yield();
		}

		/* Reserve space for headers and prepare control bits. */
		skb_reserve(skb, MAX_TCP_HEADER);
		skb->csum = 0;
		TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN);
		TCP_SKB_CB(skb)->sacked = 0;
		skb_shinfo(skb)->tso_segs = 1;
		skb_shinfo(skb)->tso_size = 0;

		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
		TCP_SKB_CB(skb)->seq = tp->write_seq;
		TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
		tcp_queue_skb(sk, skb);
	}
	__tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF);
}

/* We get here when a process closes a file descriptor (either due to
 * an explicit close() or as a byproduct of exit()'ing) and there
 * was unread data in the receive queue.  This behavior is recommended
 * by draft-ietf-tcpimpl-prob-03.txt section 3.10.  -DaveM
 */
void tcp_send_active_reset(struct sock *sk, int priority)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct sk_buff *skb;

	/* NOTE: No TCP options attached and we never retransmit this. */
	skb = alloc_skb(MAX_TCP_HEADER, priority);
	if (!skb) {
		NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
		return;
	}

	/* Reserve space for headers and prepare control bits. */
	skb_reserve(skb, MAX_TCP_HEADER);
	skb->csum = 0;
	TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST);
	TCP_SKB_CB(skb)->sacked = 0;
	skb_shinfo(skb)->tso_segs = 1;
	skb_shinfo(skb)->tso_size = 0;

	/* Send it off. */
	TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp);
	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
	TCP_SKB_CB(skb)->when = tcp_time_stamp;
	if (tcp_transmit_skb(sk, skb))
		NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
}

/* WARNING: This routine must only be called when we have already sent
 * a SYN packet that crossed the incoming SYN that caused this routine
 * to get called. If this assumption fails then the initial rcv_wnd
 * and rcv_wscale values will not be correct.
 */
int tcp_send_synack(struct sock *sk)
{
	struct sk_buff* skb;

	skb = skb_peek(&sk->sk_write_queue);
	if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) {
		printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n");
		return -EFAULT;
	}
	if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) {
		if (skb_cloned(skb)) {
			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
			if (nskb == NULL)
				return -ENOMEM;
			__skb_unlink(skb, &sk->sk_write_queue);
			skb_header_release(nskb);
			__skb_queue_head(&sk->sk_write_queue, nskb);
			sk_stream_free_skb(sk, skb);
			sk_charge_skb(sk, nskb);
			skb = nskb;
		}

		TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK;
		TCP_ECN_send_synack(tcp_sk(sk), skb);
	}
	TCP_SKB_CB(skb)->when = tcp_time_stamp;
	return tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC));
}

/*
 * Prepare a SYN-ACK.
 */
struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
				 struct open_request *req)
{
	struct inet_request_sock *ireq = inet_rsk(req);
	struct tcp_sock *tp = tcp_sk(sk);
	struct tcphdr *th;
	int tcp_header_size;
	struct sk_buff *skb;

	skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
	if (skb == NULL)
		return NULL;

	/* Reserve space for headers. */
	skb_reserve(skb, MAX_TCP_HEADER);

	skb->dst = dst_clone(dst);

	tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS +
			   (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) +
			   (ireq->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) +
			   /* SACK_PERM is in the place of NOP NOP of TS */
			   ((ireq->sack_ok && !ireq->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0));
	skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size);

	memset(th, 0, sizeof(struct tcphdr));
	th->syn = 1;
	th->ack = 1;
	if (dst->dev->features&NETIF_F_TSO)
		ireq->ecn_ok = 0;
	TCP_ECN_make_synack(req, th);
	th->source = inet_sk(sk)->sport;
	th->dest = ireq->rmt_port;
	TCP_SKB_CB(skb)->seq = tcp_rsk(req)->snt_isn;
	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
	TCP_SKB_CB(skb)->sacked = 0;
	skb_shinfo(skb)->tso_segs = 1;
	skb_shinfo(skb)->tso_size = 0;
	th->seq = htonl(TCP_SKB_CB(skb)->seq);
	th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1);
	if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
		__u8 rcv_wscale; 
		/* Set this up on the first call only */
		req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
		/* tcp_full_space because it is guaranteed to be the first packet */
		tcp_select_initial_window(tcp_full_space(sk), 
			dst_metric(dst, RTAX_ADVMSS) - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
			&req->rcv_wnd,
			&req->window_clamp,
			ireq->wscale_ok,
			&rcv_wscale);
		ireq->rcv_wscale = rcv_wscale; 
	}

	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
	th->window = htons(req->rcv_wnd);

	TCP_SKB_CB(skb)->when = tcp_time_stamp;
	tcp_syn_build_options((__u32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), ireq->tstamp_ok,
			      ireq->sack_ok, ireq->wscale_ok, ireq->rcv_wscale,
			      TCP_SKB_CB(skb)->when,
			      req->ts_recent);

	skb->csum = 0;
	th->doff = (tcp_header_size >> 2);
	TCP_INC_STATS(TCP_MIB_OUTSEGS);
	return skb;
}

/* 
 * Do all connect socket setups that can be done AF independent.
 */ 
static inline void tcp_connect_init(struct sock *sk)
{
	struct dst_entry *dst = __sk_dst_get(sk);
	struct tcp_sock *tp = tcp_sk(sk);
	__u8 rcv_wscale;

	/* We'll fix this up when we get a response from the other end.
	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
	 */
	tp->tcp_header_len = sizeof(struct tcphdr) +
		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);

	/* If user gave his TCP_MAXSEG, record it to clamp */
	if (tp->rx_opt.user_mss)
		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
	tp->max_window = 0;
	tcp_sync_mss(sk, dst_mtu(dst));

	if (!tp->window_clamp)
		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
	tp->advmss = dst_metric(dst, RTAX_ADVMSS);
	tcp_initialize_rcv_mss(sk);
	tcp_ca_init(tp);

	tcp_select_initial_window(tcp_full_space(sk),
				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
				  &tp->rcv_wnd,
				  &tp->window_clamp,
				  sysctl_tcp_window_scaling,
				  &rcv_wscale);

	tp->rx_opt.rcv_wscale = rcv_wscale;
	tp->rcv_ssthresh = tp->rcv_wnd;

	sk->sk_err = 0;
	sock_reset_flag(sk, SOCK_DONE);
	tp->snd_wnd = 0;
	tcp_init_wl(tp, tp->write_seq, 0);
	tp->snd_una = tp->write_seq;
	tp->snd_sml = tp->write_seq;
	tp->rcv_nxt = 0;
	tp->rcv_wup = 0;
	tp->copied_seq = 0;

	tp->rto = TCP_TIMEOUT_INIT;
	tp->retransmits = 0;
	tcp_clear_retrans(tp);
}

/*
 * Build a SYN and send it off.
 */ 
int tcp_connect(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct sk_buff *buff;

	tcp_connect_init(sk);

	buff = alloc_skb(MAX_TCP_HEADER + 15, sk->sk_allocation);
	if (unlikely(buff == NULL))
		return -ENOBUFS;

	/* Reserve space for headers. */
	skb_reserve(buff, MAX_TCP_HEADER);

	TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN;
	TCP_ECN_send_syn(sk, tp, buff);
	TCP_SKB_CB(buff)->sacked = 0;
	skb_shinfo(buff)->tso_segs = 1;
	skb_shinfo(buff)->tso_size = 0;
	buff->csum = 0;
	TCP_SKB_CB(buff)->seq = tp->write_seq++;
	TCP_SKB_CB(buff)->end_seq = tp->write_seq;
	tp->snd_nxt = tp->write_seq;
	tp->pushed_seq = tp->write_seq;
	tcp_ca_init(tp);

	/* Send it off. */
	TCP_SKB_CB(buff)->when = tcp_time_stamp;
	tp->retrans_stamp = TCP_SKB_CB(buff)->when;
	skb_header_release(buff);
	__skb_queue_tail(&sk->sk_write_queue, buff);
	sk_charge_skb(sk, buff);
	tp->packets_out += tcp_skb_pcount(buff);
	tcp_transmit_skb(sk, skb_clone(buff, GFP_KERNEL));
	TCP_INC_STATS(TCP_MIB_ACTIVEOPENS);

	/* Timer for repeating the SYN until an answer. */
	tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
	return 0;
}

/* Send out a delayed ack, the caller does the policy checking
 * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
 * for details.
 */
void tcp_send_delayed_ack(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);
	int ato = tp->ack.ato;
	unsigned long timeout;

	if (ato > TCP_DELACK_MIN) {
		int max_ato = HZ/2;

		if (tp->ack.pingpong || (tp->ack.pending&TCP_ACK_PUSHED))
			max_ato = TCP_DELACK_MAX;

		/* Slow path, intersegment interval is "high". */

		/* If some rtt estimate is known, use it to bound delayed ack.
		 * Do not use tp->rto here, use results of rtt measurements
		 * directly.
		 */
		if (tp->srtt) {
			int rtt = max(tp->srtt>>3, TCP_DELACK_MIN);

			if (rtt < max_ato)
				max_ato = rtt;
		}

		ato = min(ato, max_ato);
	}

	/* Stay within the limit we were given */
	timeout = jiffies + ato;

	/* Use new timeout only if there wasn't a older one earlier. */
	if (tp->ack.pending&TCP_ACK_TIMER) {
		/* If delack timer was blocked or is about to expire,
		 * send ACK now.
		 */
		if (tp->ack.blocked || time_before_eq(tp->ack.timeout, jiffies+(ato>>2))) {
			tcp_send_ack(sk);
			return;
		}

		if (!time_before(timeout, tp->ack.timeout))
			timeout = tp->ack.timeout;
	}
	tp->ack.pending |= TCP_ACK_SCHED|TCP_ACK_TIMER;
	tp->ack.timeout = timeout;
	sk_reset_timer(sk, &tp->delack_timer, timeout);
}

/* This routine sends an ack and also updates the window. */
void tcp_send_ack(struct sock *sk)
{
	/* If we have been reset, we may not send again. */
	if (sk->sk_state != TCP_CLOSE) {
		struct tcp_sock *tp = tcp_sk(sk);
		struct sk_buff *buff;

		/* We are not putting this on the write queue, so
		 * tcp_transmit_skb() will set the ownership to this
		 * sock.
		 */
		buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
		if (buff == NULL) {
			tcp_schedule_ack(tp);
			tp->ack.ato = TCP_ATO_MIN;
			tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX);
			return;
		}

		/* Reserve space for headers and prepare control bits. */
		skb_reserve(buff, MAX_TCP_HEADER);
		buff->csum = 0;
		TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK;
		TCP_SKB_CB(buff)->sacked = 0;
		skb_shinfo(buff)->tso_segs = 1;
		skb_shinfo(buff)->tso_size = 0;

		/* Send it off, this clears delayed acks for us. */
		TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp);
		TCP_SKB_CB(buff)->when = tcp_time_stamp;
		tcp_transmit_skb(sk, buff);
	}
}

/* This routine sends a packet with an out of date sequence
 * number. It assumes the other end will try to ack it.
 *
 * Question: what should we make while urgent mode?
 * 4.4BSD forces sending single byte of data. We cannot send
 * out of window data, because we have SND.NXT==SND.MAX...
 *
 * Current solution: to send TWO zero-length segments in urgent mode:
 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
 * out-of-date with SND.UNA-1 to probe window.
 */
static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct sk_buff *skb;

	/* We don't queue it, tcp_transmit_skb() sets ownership. */
	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
	if (skb == NULL) 
		return -1;

	/* Reserve space for headers and set control bits. */
	skb_reserve(skb, MAX_TCP_HEADER);
	skb->csum = 0;
	TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK;
	TCP_SKB_CB(skb)->sacked = urgent;
	skb_shinfo(skb)->tso_segs = 1;
	skb_shinfo(skb)->tso_size = 0;

	/* Use a previous sequence.  This should cause the other
	 * end to send an ack.  Don't queue or clone SKB, just
	 * send it.
	 */
	TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1;
	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
	TCP_SKB_CB(skb)->when = tcp_time_stamp;
	return tcp_transmit_skb(sk, skb);
}

int tcp_write_wakeup(struct sock *sk)
{
	if (sk->sk_state != TCP_CLOSE) {
		struct tcp_sock *tp = tcp_sk(sk);
		struct sk_buff *skb;

		if ((skb = sk->sk_send_head) != NULL &&
		    before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) {
			int err;
			unsigned int mss = tcp_current_mss(sk, 0);
			unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq;

			if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
				tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;

			/* We are probing the opening of a window
			 * but the window size is != 0
			 * must have been a result SWS avoidance ( sender )
			 */
			if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
			    skb->len > mss) {
				seg_size = min(seg_size, mss);
				TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
				if (tcp_fragment(sk, skb, seg_size))
					return -1;
				/* SWS override triggered forced fragmentation.
				 * Disable TSO, the connection is too sick. */
				if (sk->sk_route_caps & NETIF_F_TSO) {
					sock_set_flag(sk, SOCK_NO_LARGESEND);
					sk->sk_route_caps &= ~NETIF_F_TSO;
					tp->mss_cache = tp->mss_cache_std;
				}
			} else if (!tcp_skb_pcount(skb))
				tcp_set_skb_tso_segs(sk, skb);

			TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
			TCP_SKB_CB(skb)->when = tcp_time_stamp;
			tcp_tso_set_push(skb);
			err = tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC));
			if (!err) {
				update_send_head(sk, tp, skb);
			}
			return err;
		} else {
			if (tp->urg_mode &&
			    between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF))
				tcp_xmit_probe_skb(sk, TCPCB_URG);
			return tcp_xmit_probe_skb(sk, 0);
		}
	}
	return -1;
}

/* A window probe timeout has occurred.  If window is not closed send
 * a partial packet else a zero probe.
 */
void tcp_send_probe0(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);
	int err;

	err = tcp_write_wakeup(sk);

	if (tp->packets_out || !sk->sk_send_head) {
		/* Cancel probe timer, if it is not required. */
		tp->probes_out = 0;
		tp->backoff = 0;
		return;
	}

	if (err <= 0) {
		if (tp->backoff < sysctl_tcp_retries2)
			tp->backoff++;
		tp->probes_out++;
		tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0, 
				      min(tp->rto << tp->backoff, TCP_RTO_MAX));
	} else {
		/* If packet was not sent due to local congestion,
		 * do not backoff and do not remember probes_out.
		 * Let local senders to fight for local resources.
		 *
		 * Use accumulated backoff yet.
		 */
		if (!tp->probes_out)
			tp->probes_out=1;
		tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0, 
				      min(tp->rto << tp->backoff, TCP_RESOURCE_PROBE_INTERVAL));
	}
}

EXPORT_SYMBOL(tcp_connect);
EXPORT_SYMBOL(tcp_make_synack);
EXPORT_SYMBOL(tcp_simple_retransmit);
EXPORT_SYMBOL(tcp_sync_mss);