summaryrefslogblamecommitdiff
path: root/net/ipv4/tcp_minisocks.c
blob: fd70509f0d53df8e39b63efbbbfeb360e34dbf2e (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077




















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                                       
/*
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		Implementation of the Transmission Control Protocol(TCP).
 *
 * Version:	$Id: tcp_minisocks.c,v 1.15 2002/02/01 22:01:04 davem Exp $
 *
 * Authors:	Ross Biro, <bir7@leland.Stanford.Edu>
 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 *		Florian La Roche, <flla@stud.uni-sb.de>
 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 *		Jorge Cwik, <jorge@laser.satlink.net>
 */

#include <linux/config.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/sysctl.h>
#include <linux/workqueue.h>
#include <net/tcp.h>
#include <net/inet_common.h>
#include <net/xfrm.h>

#ifdef CONFIG_SYSCTL
#define SYNC_INIT 0 /* let the user enable it */
#else
#define SYNC_INIT 1
#endif

int sysctl_tcp_tw_recycle;
int sysctl_tcp_max_tw_buckets = NR_FILE*2;

int sysctl_tcp_syncookies = SYNC_INIT; 
int sysctl_tcp_abort_on_overflow;

static void tcp_tw_schedule(struct tcp_tw_bucket *tw, int timeo);

static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
{
	if (seq == s_win)
		return 1;
	if (after(end_seq, s_win) && before(seq, e_win))
		return 1;
	return (seq == e_win && seq == end_seq);
}

/* New-style handling of TIME_WAIT sockets. */

int tcp_tw_count;


/* Must be called with locally disabled BHs. */
static void tcp_timewait_kill(struct tcp_tw_bucket *tw)
{
	struct tcp_ehash_bucket *ehead;
	struct tcp_bind_hashbucket *bhead;
	struct tcp_bind_bucket *tb;

	/* Unlink from established hashes. */
	ehead = &tcp_ehash[tw->tw_hashent];
	write_lock(&ehead->lock);
	if (hlist_unhashed(&tw->tw_node)) {
		write_unlock(&ehead->lock);
		return;
	}
	__hlist_del(&tw->tw_node);
	sk_node_init(&tw->tw_node);
	write_unlock(&ehead->lock);

	/* Disassociate with bind bucket. */
	bhead = &tcp_bhash[tcp_bhashfn(tw->tw_num)];
	spin_lock(&bhead->lock);
	tb = tw->tw_tb;
	__hlist_del(&tw->tw_bind_node);
	tw->tw_tb = NULL;
	tcp_bucket_destroy(tb);
	spin_unlock(&bhead->lock);

#ifdef INET_REFCNT_DEBUG
	if (atomic_read(&tw->tw_refcnt) != 1) {
		printk(KERN_DEBUG "tw_bucket %p refcnt=%d\n", tw,
		       atomic_read(&tw->tw_refcnt));
	}
#endif
	tcp_tw_put(tw);
}

/* 
 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 *   (and, probably, tail of data) and one or more our ACKs are lost.
 * * What is TIME-WAIT timeout? It is associated with maximal packet
 *   lifetime in the internet, which results in wrong conclusion, that
 *   it is set to catch "old duplicate segments" wandering out of their path.
 *   It is not quite correct. This timeout is calculated so that it exceeds
 *   maximal retransmission timeout enough to allow to lose one (or more)
 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 * * When TIME-WAIT socket receives RST, it means that another end
 *   finally closed and we are allowed to kill TIME-WAIT too.
 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 * * If we invented some more clever way to catch duplicates
 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 *
 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 * from the very beginning.
 *
 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 * is _not_ stateless. It means, that strictly speaking we must
 * spinlock it. I do not want! Well, probability of misbehaviour
 * is ridiculously low and, seems, we could use some mb() tricks
 * to avoid misread sequence numbers, states etc.  --ANK
 */
enum tcp_tw_status
tcp_timewait_state_process(struct tcp_tw_bucket *tw, struct sk_buff *skb,
			   struct tcphdr *th, unsigned len)
{
	struct tcp_options_received tmp_opt;
	int paws_reject = 0;

	tmp_opt.saw_tstamp = 0;
	if (th->doff > (sizeof(struct tcphdr) >> 2) && tw->tw_ts_recent_stamp) {
		tcp_parse_options(skb, &tmp_opt, 0);

		if (tmp_opt.saw_tstamp) {
			tmp_opt.ts_recent	   = tw->tw_ts_recent;
			tmp_opt.ts_recent_stamp = tw->tw_ts_recent_stamp;
			paws_reject = tcp_paws_check(&tmp_opt, th->rst);
		}
	}

	if (tw->tw_substate == TCP_FIN_WAIT2) {
		/* Just repeat all the checks of tcp_rcv_state_process() */

		/* Out of window, send ACK */
		if (paws_reject ||
		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
				   tw->tw_rcv_nxt,
				   tw->tw_rcv_nxt + tw->tw_rcv_wnd))
			return TCP_TW_ACK;

		if (th->rst)
			goto kill;

		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tw->tw_rcv_nxt))
			goto kill_with_rst;

		/* Dup ACK? */
		if (!after(TCP_SKB_CB(skb)->end_seq, tw->tw_rcv_nxt) ||
		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
			tcp_tw_put(tw);
			return TCP_TW_SUCCESS;
		}

		/* New data or FIN. If new data arrive after half-duplex close,
		 * reset.
		 */
		if (!th->fin ||
		    TCP_SKB_CB(skb)->end_seq != tw->tw_rcv_nxt + 1) {
kill_with_rst:
			tcp_tw_deschedule(tw);
			tcp_tw_put(tw);
			return TCP_TW_RST;
		}

		/* FIN arrived, enter true time-wait state. */
		tw->tw_substate	= TCP_TIME_WAIT;
		tw->tw_rcv_nxt	= TCP_SKB_CB(skb)->end_seq;
		if (tmp_opt.saw_tstamp) {
			tw->tw_ts_recent_stamp	= xtime.tv_sec;
			tw->tw_ts_recent	= tmp_opt.rcv_tsval;
		}

		/* I am shamed, but failed to make it more elegant.
		 * Yes, it is direct reference to IP, which is impossible
		 * to generalize to IPv6. Taking into account that IPv6
		 * do not undertsnad recycling in any case, it not
		 * a big problem in practice. --ANK */
		if (tw->tw_family == AF_INET &&
		    sysctl_tcp_tw_recycle && tw->tw_ts_recent_stamp &&
		    tcp_v4_tw_remember_stamp(tw))
			tcp_tw_schedule(tw, tw->tw_timeout);
		else
			tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);
		return TCP_TW_ACK;
	}

	/*
	 *	Now real TIME-WAIT state.
	 *
	 *	RFC 1122:
	 *	"When a connection is [...] on TIME-WAIT state [...]
	 *	[a TCP] MAY accept a new SYN from the remote TCP to
	 *	reopen the connection directly, if it:
	 *	
	 *	(1)  assigns its initial sequence number for the new
	 *	connection to be larger than the largest sequence
	 *	number it used on the previous connection incarnation,
	 *	and
	 *
	 *	(2)  returns to TIME-WAIT state if the SYN turns out 
	 *	to be an old duplicate".
	 */

	if (!paws_reject &&
	    (TCP_SKB_CB(skb)->seq == tw->tw_rcv_nxt &&
	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
		/* In window segment, it may be only reset or bare ack. */

		if (th->rst) {
			/* This is TIME_WAIT assasination, in two flavors.
			 * Oh well... nobody has a sufficient solution to this
			 * protocol bug yet.
			 */
			if (sysctl_tcp_rfc1337 == 0) {
kill:
				tcp_tw_deschedule(tw);
				tcp_tw_put(tw);
				return TCP_TW_SUCCESS;
			}
		}
		tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);

		if (tmp_opt.saw_tstamp) {
			tw->tw_ts_recent	= tmp_opt.rcv_tsval;
			tw->tw_ts_recent_stamp	= xtime.tv_sec;
		}

		tcp_tw_put(tw);
		return TCP_TW_SUCCESS;
	}

	/* Out of window segment.

	   All the segments are ACKed immediately.

	   The only exception is new SYN. We accept it, if it is
	   not old duplicate and we are not in danger to be killed
	   by delayed old duplicates. RFC check is that it has
	   newer sequence number works at rates <40Mbit/sec.
	   However, if paws works, it is reliable AND even more,
	   we even may relax silly seq space cutoff.

	   RED-PEN: we violate main RFC requirement, if this SYN will appear
	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
	   we must return socket to time-wait state. It is not good,
	   but not fatal yet.
	 */

	if (th->syn && !th->rst && !th->ack && !paws_reject &&
	    (after(TCP_SKB_CB(skb)->seq, tw->tw_rcv_nxt) ||
	     (tmp_opt.saw_tstamp && (s32)(tw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
		u32 isn = tw->tw_snd_nxt + 65535 + 2;
		if (isn == 0)
			isn++;
		TCP_SKB_CB(skb)->when = isn;
		return TCP_TW_SYN;
	}

	if (paws_reject)
		NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);

	if(!th->rst) {
		/* In this case we must reset the TIMEWAIT timer.
		 *
		 * If it is ACKless SYN it may be both old duplicate
		 * and new good SYN with random sequence number <rcv_nxt.
		 * Do not reschedule in the last case.
		 */
		if (paws_reject || th->ack)
			tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);

		/* Send ACK. Note, we do not put the bucket,
		 * it will be released by caller.
		 */
		return TCP_TW_ACK;
	}
	tcp_tw_put(tw);
	return TCP_TW_SUCCESS;
}

/* Enter the time wait state.  This is called with locally disabled BH.
 * Essentially we whip up a timewait bucket, copy the
 * relevant info into it from the SK, and mess with hash chains
 * and list linkage.
 */
static void __tcp_tw_hashdance(struct sock *sk, struct tcp_tw_bucket *tw)
{
	struct tcp_ehash_bucket *ehead = &tcp_ehash[sk->sk_hashent];
	struct tcp_bind_hashbucket *bhead;

	/* Step 1: Put TW into bind hash. Original socket stays there too.
	   Note, that any socket with inet_sk(sk)->num != 0 MUST be bound in
	   binding cache, even if it is closed.
	 */
	bhead = &tcp_bhash[tcp_bhashfn(inet_sk(sk)->num)];
	spin_lock(&bhead->lock);
	tw->tw_tb = tcp_sk(sk)->bind_hash;
	BUG_TRAP(tcp_sk(sk)->bind_hash);
	tw_add_bind_node(tw, &tw->tw_tb->owners);
	spin_unlock(&bhead->lock);

	write_lock(&ehead->lock);

	/* Step 2: Remove SK from established hash. */
	if (__sk_del_node_init(sk))
		sock_prot_dec_use(sk->sk_prot);

	/* Step 3: Hash TW into TIMEWAIT half of established hash table. */
	tw_add_node(tw, &(ehead + tcp_ehash_size)->chain);
	atomic_inc(&tw->tw_refcnt);

	write_unlock(&ehead->lock);
}

/* 
 * Move a socket to time-wait or dead fin-wait-2 state.
 */ 
void tcp_time_wait(struct sock *sk, int state, int timeo)
{
	struct tcp_tw_bucket *tw = NULL;
	struct tcp_sock *tp = tcp_sk(sk);
	int recycle_ok = 0;

	if (sysctl_tcp_tw_recycle && tp->rx_opt.ts_recent_stamp)
		recycle_ok = tp->af_specific->remember_stamp(sk);

	if (tcp_tw_count < sysctl_tcp_max_tw_buckets)
		tw = kmem_cache_alloc(tcp_timewait_cachep, SLAB_ATOMIC);

	if(tw != NULL) {
		struct inet_sock *inet = inet_sk(sk);
		int rto = (tp->rto<<2) - (tp->rto>>1);

		/* Give us an identity. */
		tw->tw_daddr		= inet->daddr;
		tw->tw_rcv_saddr	= inet->rcv_saddr;
		tw->tw_bound_dev_if	= sk->sk_bound_dev_if;
		tw->tw_num		= inet->num;
		tw->tw_state		= TCP_TIME_WAIT;
		tw->tw_substate		= state;
		tw->tw_sport		= inet->sport;
		tw->tw_dport		= inet->dport;
		tw->tw_family		= sk->sk_family;
		tw->tw_reuse		= sk->sk_reuse;
		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
		atomic_set(&tw->tw_refcnt, 1);

		tw->tw_hashent		= sk->sk_hashent;
		tw->tw_rcv_nxt		= tp->rcv_nxt;
		tw->tw_snd_nxt		= tp->snd_nxt;
		tw->tw_rcv_wnd		= tcp_receive_window(tp);
		tw->tw_ts_recent	= tp->rx_opt.ts_recent;
		tw->tw_ts_recent_stamp	= tp->rx_opt.ts_recent_stamp;
		tw_dead_node_init(tw);

#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
		if (tw->tw_family == PF_INET6) {
			struct ipv6_pinfo *np = inet6_sk(sk);

			ipv6_addr_copy(&tw->tw_v6_daddr, &np->daddr);
			ipv6_addr_copy(&tw->tw_v6_rcv_saddr, &np->rcv_saddr);
			tw->tw_v6_ipv6only = np->ipv6only;
		} else {
			memset(&tw->tw_v6_daddr, 0, sizeof(tw->tw_v6_daddr));
			memset(&tw->tw_v6_rcv_saddr, 0, sizeof(tw->tw_v6_rcv_saddr));
			tw->tw_v6_ipv6only = 0;
		}
#endif
		/* Linkage updates. */
		__tcp_tw_hashdance(sk, tw);

		/* Get the TIME_WAIT timeout firing. */
		if (timeo < rto)
			timeo = rto;

		if (recycle_ok) {
			tw->tw_timeout = rto;
		} else {
			tw->tw_timeout = TCP_TIMEWAIT_LEN;
			if (state == TCP_TIME_WAIT)
				timeo = TCP_TIMEWAIT_LEN;
		}

		tcp_tw_schedule(tw, timeo);
		tcp_tw_put(tw);
	} else {
		/* Sorry, if we're out of memory, just CLOSE this
		 * socket up.  We've got bigger problems than
		 * non-graceful socket closings.
		 */
		if (net_ratelimit())
			printk(KERN_INFO "TCP: time wait bucket table overflow\n");
	}

	tcp_update_metrics(sk);
	tcp_done(sk);
}

/* Kill off TIME_WAIT sockets once their lifetime has expired. */
static int tcp_tw_death_row_slot;

static void tcp_twkill(unsigned long);

/* TIME_WAIT reaping mechanism. */
#define TCP_TWKILL_SLOTS	8	/* Please keep this a power of 2. */
#define TCP_TWKILL_PERIOD	(TCP_TIMEWAIT_LEN/TCP_TWKILL_SLOTS)

#define TCP_TWKILL_QUOTA	100

static struct hlist_head tcp_tw_death_row[TCP_TWKILL_SLOTS];
static DEFINE_SPINLOCK(tw_death_lock);
static struct timer_list tcp_tw_timer = TIMER_INITIALIZER(tcp_twkill, 0, 0);
static void twkill_work(void *);
static DECLARE_WORK(tcp_twkill_work, twkill_work, NULL);
static u32 twkill_thread_slots;

/* Returns non-zero if quota exceeded.  */
static int tcp_do_twkill_work(int slot, unsigned int quota)
{
	struct tcp_tw_bucket *tw;
	struct hlist_node *node;
	unsigned int killed;
	int ret;

	/* NOTE: compare this to previous version where lock
	 * was released after detaching chain. It was racy,
	 * because tw buckets are scheduled in not serialized context
	 * in 2.3 (with netfilter), and with softnet it is common, because
	 * soft irqs are not sequenced.
	 */
	killed = 0;
	ret = 0;
rescan:
	tw_for_each_inmate(tw, node, &tcp_tw_death_row[slot]) {
		__tw_del_dead_node(tw);
		spin_unlock(&tw_death_lock);
		tcp_timewait_kill(tw);
		tcp_tw_put(tw);
		killed++;
		spin_lock(&tw_death_lock);
		if (killed > quota) {
			ret = 1;
			break;
		}

		/* While we dropped tw_death_lock, another cpu may have
		 * killed off the next TW bucket in the list, therefore
		 * do a fresh re-read of the hlist head node with the
		 * lock reacquired.  We still use the hlist traversal
		 * macro in order to get the prefetches.
		 */
		goto rescan;
	}

	tcp_tw_count -= killed;
	NET_ADD_STATS_BH(LINUX_MIB_TIMEWAITED, killed);

	return ret;
}

static void tcp_twkill(unsigned long dummy)
{
	int need_timer, ret;

	spin_lock(&tw_death_lock);

	if (tcp_tw_count == 0)
		goto out;

	need_timer = 0;
	ret = tcp_do_twkill_work(tcp_tw_death_row_slot, TCP_TWKILL_QUOTA);
	if (ret) {
		twkill_thread_slots |= (1 << tcp_tw_death_row_slot);
		mb();
		schedule_work(&tcp_twkill_work);
		need_timer = 1;
	} else {
		/* We purged the entire slot, anything left?  */
		if (tcp_tw_count)
			need_timer = 1;
	}
	tcp_tw_death_row_slot =
		((tcp_tw_death_row_slot + 1) & (TCP_TWKILL_SLOTS - 1));
	if (need_timer)
		mod_timer(&tcp_tw_timer, jiffies + TCP_TWKILL_PERIOD);
out:
	spin_unlock(&tw_death_lock);
}

extern void twkill_slots_invalid(void);

static void twkill_work(void *dummy)
{
	int i;

	if ((TCP_TWKILL_SLOTS - 1) > (sizeof(twkill_thread_slots) * 8))
		twkill_slots_invalid();

	while (twkill_thread_slots) {
		spin_lock_bh(&tw_death_lock);
		for (i = 0; i < TCP_TWKILL_SLOTS; i++) {
			if (!(twkill_thread_slots & (1 << i)))
				continue;

			while (tcp_do_twkill_work(i, TCP_TWKILL_QUOTA) != 0) {
				if (need_resched()) {
					spin_unlock_bh(&tw_death_lock);
					schedule();
					spin_lock_bh(&tw_death_lock);
				}
			}

			twkill_thread_slots &= ~(1 << i);
		}
		spin_unlock_bh(&tw_death_lock);
	}
}

/* These are always called from BH context.  See callers in
 * tcp_input.c to verify this.
 */

/* This is for handling early-kills of TIME_WAIT sockets. */
void tcp_tw_deschedule(struct tcp_tw_bucket *tw)
{
	spin_lock(&tw_death_lock);
	if (tw_del_dead_node(tw)) {
		tcp_tw_put(tw);
		if (--tcp_tw_count == 0)
			del_timer(&tcp_tw_timer);
	}
	spin_unlock(&tw_death_lock);
	tcp_timewait_kill(tw);
}

/* Short-time timewait calendar */

static int tcp_twcal_hand = -1;
static int tcp_twcal_jiffie;
static void tcp_twcal_tick(unsigned long);
static struct timer_list tcp_twcal_timer =
		TIMER_INITIALIZER(tcp_twcal_tick, 0, 0);
static struct hlist_head tcp_twcal_row[TCP_TW_RECYCLE_SLOTS];

static void tcp_tw_schedule(struct tcp_tw_bucket *tw, int timeo)
{
	struct hlist_head *list;
	int slot;

	/* timeout := RTO * 3.5
	 *
	 * 3.5 = 1+2+0.5 to wait for two retransmits.
	 *
	 * RATIONALE: if FIN arrived and we entered TIME-WAIT state,
	 * our ACK acking that FIN can be lost. If N subsequent retransmitted
	 * FINs (or previous seqments) are lost (probability of such event
	 * is p^(N+1), where p is probability to lose single packet and
	 * time to detect the loss is about RTO*(2^N - 1) with exponential
	 * backoff). Normal timewait length is calculated so, that we
	 * waited at least for one retransmitted FIN (maximal RTO is 120sec).
	 * [ BTW Linux. following BSD, violates this requirement waiting
	 *   only for 60sec, we should wait at least for 240 secs.
	 *   Well, 240 consumes too much of resources 8)
	 * ]
	 * This interval is not reduced to catch old duplicate and
	 * responces to our wandering segments living for two MSLs.
	 * However, if we use PAWS to detect
	 * old duplicates, we can reduce the interval to bounds required
	 * by RTO, rather than MSL. So, if peer understands PAWS, we
	 * kill tw bucket after 3.5*RTO (it is important that this number
	 * is greater than TS tick!) and detect old duplicates with help
	 * of PAWS.
	 */
	slot = (timeo + (1<<TCP_TW_RECYCLE_TICK) - 1) >> TCP_TW_RECYCLE_TICK;

	spin_lock(&tw_death_lock);

	/* Unlink it, if it was scheduled */
	if (tw_del_dead_node(tw))
		tcp_tw_count--;
	else
		atomic_inc(&tw->tw_refcnt);

	if (slot >= TCP_TW_RECYCLE_SLOTS) {
		/* Schedule to slow timer */
		if (timeo >= TCP_TIMEWAIT_LEN) {
			slot = TCP_TWKILL_SLOTS-1;
		} else {
			slot = (timeo + TCP_TWKILL_PERIOD-1) / TCP_TWKILL_PERIOD;
			if (slot >= TCP_TWKILL_SLOTS)
				slot = TCP_TWKILL_SLOTS-1;
		}
		tw->tw_ttd = jiffies + timeo;
		slot = (tcp_tw_death_row_slot + slot) & (TCP_TWKILL_SLOTS - 1);
		list = &tcp_tw_death_row[slot];
	} else {
		tw->tw_ttd = jiffies + (slot << TCP_TW_RECYCLE_TICK);

		if (tcp_twcal_hand < 0) {
			tcp_twcal_hand = 0;
			tcp_twcal_jiffie = jiffies;
			tcp_twcal_timer.expires = tcp_twcal_jiffie + (slot<<TCP_TW_RECYCLE_TICK);
			add_timer(&tcp_twcal_timer);
		} else {
			if (time_after(tcp_twcal_timer.expires, jiffies + (slot<<TCP_TW_RECYCLE_TICK)))
				mod_timer(&tcp_twcal_timer, jiffies + (slot<<TCP_TW_RECYCLE_TICK));
			slot = (tcp_twcal_hand + slot)&(TCP_TW_RECYCLE_SLOTS-1);
		}
		list = &tcp_twcal_row[slot];
	}

	hlist_add_head(&tw->tw_death_node, list);

	if (tcp_tw_count++ == 0)
		mod_timer(&tcp_tw_timer, jiffies+TCP_TWKILL_PERIOD);
	spin_unlock(&tw_death_lock);
}

void tcp_twcal_tick(unsigned long dummy)
{
	int n, slot;
	unsigned long j;
	unsigned long now = jiffies;
	int killed = 0;
	int adv = 0;

	spin_lock(&tw_death_lock);
	if (tcp_twcal_hand < 0)
		goto out;

	slot = tcp_twcal_hand;
	j = tcp_twcal_jiffie;

	for (n=0; n<TCP_TW_RECYCLE_SLOTS; n++) {
		if (time_before_eq(j, now)) {
			struct hlist_node *node, *safe;
			struct tcp_tw_bucket *tw;

			tw_for_each_inmate_safe(tw, node, safe,
					   &tcp_twcal_row[slot]) {
				__tw_del_dead_node(tw);
				tcp_timewait_kill(tw);
				tcp_tw_put(tw);
				killed++;
			}
		} else {
			if (!adv) {
				adv = 1;
				tcp_twcal_jiffie = j;
				tcp_twcal_hand = slot;
			}

			if (!hlist_empty(&tcp_twcal_row[slot])) {
				mod_timer(&tcp_twcal_timer, j);
				goto out;
			}
		}
		j += (1<<TCP_TW_RECYCLE_TICK);
		slot = (slot+1)&(TCP_TW_RECYCLE_SLOTS-1);
	}
	tcp_twcal_hand = -1;

out:
	if ((tcp_tw_count -= killed) == 0)
		del_timer(&tcp_tw_timer);
	NET_ADD_STATS_BH(LINUX_MIB_TIMEWAITKILLED, killed);
	spin_unlock(&tw_death_lock);
}

/* This is not only more efficient than what we used to do, it eliminates
 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
 *
 * Actually, we could lots of memory writes here. tp of listening
 * socket contains all necessary default parameters.
 */
struct sock *tcp_create_openreq_child(struct sock *sk, struct open_request *req, struct sk_buff *skb)
{
	/* allocate the newsk from the same slab of the master sock,
	 * if not, at sk_free time we'll try to free it from the wrong
	 * slabcache (i.e. is it TCPv4 or v6?), this is handled thru sk->sk_prot -acme */
	struct sock *newsk = sk_alloc(PF_INET, GFP_ATOMIC, sk->sk_prot, 0);

	if(newsk != NULL) {
		struct tcp_sock *newtp;
		struct sk_filter *filter;

		memcpy(newsk, sk, sizeof(struct tcp_sock));
		newsk->sk_state = TCP_SYN_RECV;

		/* SANITY */
		sk_node_init(&newsk->sk_node);
		tcp_sk(newsk)->bind_hash = NULL;

		/* Clone the TCP header template */
		inet_sk(newsk)->dport = req->rmt_port;

		sock_lock_init(newsk);
		bh_lock_sock(newsk);

		rwlock_init(&newsk->sk_dst_lock);
		atomic_set(&newsk->sk_rmem_alloc, 0);
		skb_queue_head_init(&newsk->sk_receive_queue);
		atomic_set(&newsk->sk_wmem_alloc, 0);
		skb_queue_head_init(&newsk->sk_write_queue);
		atomic_set(&newsk->sk_omem_alloc, 0);
		newsk->sk_wmem_queued = 0;
		newsk->sk_forward_alloc = 0;

		sock_reset_flag(newsk, SOCK_DONE);
		newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
		newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
		newsk->sk_send_head = NULL;
		rwlock_init(&newsk->sk_callback_lock);
		skb_queue_head_init(&newsk->sk_error_queue);
		newsk->sk_write_space = sk_stream_write_space;

		if ((filter = newsk->sk_filter) != NULL)
			sk_filter_charge(newsk, filter);

		if (unlikely(xfrm_sk_clone_policy(newsk))) {
			/* It is still raw copy of parent, so invalidate
			 * destructor and make plain sk_free() */
			newsk->sk_destruct = NULL;
			sk_free(newsk);
			return NULL;
		}

		/* Now setup tcp_sock */
		newtp = tcp_sk(newsk);
		newtp->pred_flags = 0;
		newtp->rcv_nxt = req->rcv_isn + 1;
		newtp->snd_nxt = req->snt_isn + 1;
		newtp->snd_una = req->snt_isn + 1;
		newtp->snd_sml = req->snt_isn + 1;

		tcp_prequeue_init(newtp);

		tcp_init_wl(newtp, req->snt_isn, req->rcv_isn);

		newtp->retransmits = 0;
		newtp->backoff = 0;
		newtp->srtt = 0;
		newtp->mdev = TCP_TIMEOUT_INIT;
		newtp->rto = TCP_TIMEOUT_INIT;

		newtp->packets_out = 0;
		newtp->left_out = 0;
		newtp->retrans_out = 0;
		newtp->sacked_out = 0;
		newtp->fackets_out = 0;
		newtp->snd_ssthresh = 0x7fffffff;

		/* So many TCP implementations out there (incorrectly) count the
		 * initial SYN frame in their delayed-ACK and congestion control
		 * algorithms that we must have the following bandaid to talk
		 * efficiently to them.  -DaveM
		 */
		newtp->snd_cwnd = 2;
		newtp->snd_cwnd_cnt = 0;

		newtp->frto_counter = 0;
		newtp->frto_highmark = 0;

		tcp_set_ca_state(newtp, TCP_CA_Open);
		tcp_init_xmit_timers(newsk);
		skb_queue_head_init(&newtp->out_of_order_queue);
		newtp->rcv_wup = req->rcv_isn + 1;
		newtp->write_seq = req->snt_isn + 1;
		newtp->pushed_seq = newtp->write_seq;
		newtp->copied_seq = req->rcv_isn + 1;

		newtp->rx_opt.saw_tstamp = 0;

		newtp->rx_opt.dsack = 0;
		newtp->rx_opt.eff_sacks = 0;

		newtp->probes_out = 0;
		newtp->rx_opt.num_sacks = 0;
		newtp->urg_data = 0;
		newtp->listen_opt = NULL;
		newtp->accept_queue = newtp->accept_queue_tail = NULL;
		/* Deinitialize syn_wait_lock to trap illegal accesses. */
		memset(&newtp->syn_wait_lock, 0, sizeof(newtp->syn_wait_lock));

		/* Back to base struct sock members. */
		newsk->sk_err = 0;
		newsk->sk_priority = 0;
		atomic_set(&newsk->sk_refcnt, 2);
#ifdef INET_REFCNT_DEBUG
		atomic_inc(&inet_sock_nr);
#endif
		atomic_inc(&tcp_sockets_allocated);

		if (sock_flag(newsk, SOCK_KEEPOPEN))
			tcp_reset_keepalive_timer(newsk,
						  keepalive_time_when(newtp));
		newsk->sk_socket = NULL;
		newsk->sk_sleep = NULL;

		newtp->rx_opt.tstamp_ok = req->tstamp_ok;
		if((newtp->rx_opt.sack_ok = req->sack_ok) != 0) {
			if (sysctl_tcp_fack)
				newtp->rx_opt.sack_ok |= 2;
		}
		newtp->window_clamp = req->window_clamp;
		newtp->rcv_ssthresh = req->rcv_wnd;
		newtp->rcv_wnd = req->rcv_wnd;
		newtp->rx_opt.wscale_ok = req->wscale_ok;
		if (newtp->rx_opt.wscale_ok) {
			newtp->rx_opt.snd_wscale = req->snd_wscale;
			newtp->rx_opt.rcv_wscale = req->rcv_wscale;
		} else {
			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
			newtp->window_clamp = min(newtp->window_clamp, 65535U);
		}
		newtp->snd_wnd = ntohs(skb->h.th->window) << newtp->rx_opt.snd_wscale;
		newtp->max_window = newtp->snd_wnd;

		if (newtp->rx_opt.tstamp_ok) {
			newtp->rx_opt.ts_recent = req->ts_recent;
			newtp->rx_opt.ts_recent_stamp = xtime.tv_sec;
			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
		} else {
			newtp->rx_opt.ts_recent_stamp = 0;
			newtp->tcp_header_len = sizeof(struct tcphdr);
		}
		if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len)
			newtp->ack.last_seg_size = skb->len-newtp->tcp_header_len;
		newtp->rx_opt.mss_clamp = req->mss;
		TCP_ECN_openreq_child(newtp, req);
		if (newtp->ecn_flags&TCP_ECN_OK)
			sock_set_flag(newsk, SOCK_NO_LARGESEND);

		tcp_ca_init(newtp);

		TCP_INC_STATS_BH(TCP_MIB_PASSIVEOPENS);
	}
	return newsk;
}

/* 
 *	Process an incoming packet for SYN_RECV sockets represented
 *	as an open_request.
 */

struct sock *tcp_check_req(struct sock *sk,struct sk_buff *skb,
			   struct open_request *req,
			   struct open_request **prev)
{
	struct tcphdr *th = skb->h.th;
	struct tcp_sock *tp = tcp_sk(sk);
	u32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
	int paws_reject = 0;
	struct tcp_options_received tmp_opt;
	struct sock *child;

	tmp_opt.saw_tstamp = 0;
	if (th->doff > (sizeof(struct tcphdr)>>2)) {
		tcp_parse_options(skb, &tmp_opt, 0);

		if (tmp_opt.saw_tstamp) {
			tmp_opt.ts_recent = req->ts_recent;
			/* We do not store true stamp, but it is not required,
			 * it can be estimated (approximately)
			 * from another data.
			 */
			tmp_opt.ts_recent_stamp = xtime.tv_sec - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
			paws_reject = tcp_paws_check(&tmp_opt, th->rst);
		}
	}

	/* Check for pure retransmitted SYN. */
	if (TCP_SKB_CB(skb)->seq == req->rcv_isn &&
	    flg == TCP_FLAG_SYN &&
	    !paws_reject) {
		/*
		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
		 * this case on figure 6 and figure 8, but formal
		 * protocol description says NOTHING.
		 * To be more exact, it says that we should send ACK,
		 * because this segment (at least, if it has no data)
		 * is out of window.
		 *
		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
		 *  describe SYN-RECV state. All the description
		 *  is wrong, we cannot believe to it and should
		 *  rely only on common sense and implementation
		 *  experience.
		 *
		 * Enforce "SYN-ACK" according to figure 8, figure 6
		 * of RFC793, fixed by RFC1122.
		 */
		req->class->rtx_syn_ack(sk, req, NULL);
		return NULL;
	}

	/* Further reproduces section "SEGMENT ARRIVES"
	   for state SYN-RECEIVED of RFC793.
	   It is broken, however, it does not work only
	   when SYNs are crossed.

	   You would think that SYN crossing is impossible here, since
	   we should have a SYN_SENT socket (from connect()) on our end,
	   but this is not true if the crossed SYNs were sent to both
	   ends by a malicious third party.  We must defend against this,
	   and to do that we first verify the ACK (as per RFC793, page
	   36) and reset if it is invalid.  Is this a true full defense?
	   To convince ourselves, let us consider a way in which the ACK
	   test can still pass in this 'malicious crossed SYNs' case.
	   Malicious sender sends identical SYNs (and thus identical sequence
	   numbers) to both A and B:

		A: gets SYN, seq=7
		B: gets SYN, seq=7

	   By our good fortune, both A and B select the same initial
	   send sequence number of seven :-)

		A: sends SYN|ACK, seq=7, ack_seq=8
		B: sends SYN|ACK, seq=7, ack_seq=8

	   So we are now A eating this SYN|ACK, ACK test passes.  So
	   does sequence test, SYN is truncated, and thus we consider
	   it a bare ACK.

	   If tp->defer_accept, we silently drop this bare ACK.  Otherwise,
	   we create an established connection.  Both ends (listening sockets)
	   accept the new incoming connection and try to talk to each other. 8-)

	   Note: This case is both harmless, and rare.  Possibility is about the
	   same as us discovering intelligent life on another plant tomorrow.

	   But generally, we should (RFC lies!) to accept ACK
	   from SYNACK both here and in tcp_rcv_state_process().
	   tcp_rcv_state_process() does not, hence, we do not too.

	   Note that the case is absolutely generic:
	   we cannot optimize anything here without
	   violating protocol. All the checks must be made
	   before attempt to create socket.
	 */

	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
	 *                  and the incoming segment acknowledges something not yet
	 *                  sent (the segment carries an unaccaptable ACK) ...
	 *                  a reset is sent."
	 *
	 * Invalid ACK: reset will be sent by listening socket
	 */
	if ((flg & TCP_FLAG_ACK) &&
	    (TCP_SKB_CB(skb)->ack_seq != req->snt_isn+1))
		return sk;

	/* Also, it would be not so bad idea to check rcv_tsecr, which
	 * is essentially ACK extension and too early or too late values
	 * should cause reset in unsynchronized states.
	 */

	/* RFC793: "first check sequence number". */

	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
					  req->rcv_isn+1, req->rcv_isn+1+req->rcv_wnd)) {
		/* Out of window: send ACK and drop. */
		if (!(flg & TCP_FLAG_RST))
			req->class->send_ack(skb, req);
		if (paws_reject)
			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
		return NULL;
	}

	/* In sequence, PAWS is OK. */

	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, req->rcv_isn+1))
			req->ts_recent = tmp_opt.rcv_tsval;

		if (TCP_SKB_CB(skb)->seq == req->rcv_isn) {
			/* Truncate SYN, it is out of window starting
			   at req->rcv_isn+1. */
			flg &= ~TCP_FLAG_SYN;
		}

		/* RFC793: "second check the RST bit" and
		 *	   "fourth, check the SYN bit"
		 */
		if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN))
			goto embryonic_reset;

		/* ACK sequence verified above, just make sure ACK is
		 * set.  If ACK not set, just silently drop the packet.
		 */
		if (!(flg & TCP_FLAG_ACK))
			return NULL;

		/* If TCP_DEFER_ACCEPT is set, drop bare ACK. */
		if (tp->defer_accept && TCP_SKB_CB(skb)->end_seq == req->rcv_isn+1) {
			req->acked = 1;
			return NULL;
		}

		/* OK, ACK is valid, create big socket and
		 * feed this segment to it. It will repeat all
		 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
		 * ESTABLISHED STATE. If it will be dropped after
		 * socket is created, wait for troubles.
		 */
		child = tp->af_specific->syn_recv_sock(sk, skb, req, NULL);
		if (child == NULL)
			goto listen_overflow;

		tcp_synq_unlink(tp, req, prev);
		tcp_synq_removed(sk, req);

		tcp_acceptq_queue(sk, req, child);
		return child;

	listen_overflow:
		if (!sysctl_tcp_abort_on_overflow) {
			req->acked = 1;
			return NULL;
		}

	embryonic_reset:
		NET_INC_STATS_BH(LINUX_MIB_EMBRYONICRSTS);
		if (!(flg & TCP_FLAG_RST))
			req->class->send_reset(skb);

		tcp_synq_drop(sk, req, prev);
		return NULL;
}

/*
 * Queue segment on the new socket if the new socket is active,
 * otherwise we just shortcircuit this and continue with
 * the new socket.
 */

int tcp_child_process(struct sock *parent, struct sock *child,
		      struct sk_buff *skb)
{
	int ret = 0;
	int state = child->sk_state;

	if (!sock_owned_by_user(child)) {
		ret = tcp_rcv_state_process(child, skb, skb->h.th, skb->len);

		/* Wakeup parent, send SIGIO */
		if (state == TCP_SYN_RECV && child->sk_state != state)
			parent->sk_data_ready(parent, 0);
	} else {
		/* Alas, it is possible again, because we do lookup
		 * in main socket hash table and lock on listening
		 * socket does not protect us more.
		 */
		sk_add_backlog(child, skb);
	}

	bh_unlock_sock(child);
	sock_put(child);
	return ret;
}

EXPORT_SYMBOL(tcp_check_req);
EXPORT_SYMBOL(tcp_child_process);
EXPORT_SYMBOL(tcp_create_openreq_child);
EXPORT_SYMBOL(tcp_timewait_state_process);
EXPORT_SYMBOL(tcp_tw_deschedule);