// SPDX-License-Identifier: GPL-2.0-only
/*
* TCP CUBIC: Binary Increase Congestion control for TCP v2.3
* Home page:
* http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
* This is from the implementation of CUBIC TCP in
* Sangtae Ha, Injong Rhee and Lisong Xu,
* "CUBIC: A New TCP-Friendly High-Speed TCP Variant"
* in ACM SIGOPS Operating System Review, July 2008.
* Available from:
* http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
*
* CUBIC integrates a new slow start algorithm, called HyStart.
* The details of HyStart are presented in
* Sangtae Ha and Injong Rhee,
* "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008.
* Available from:
* http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf
*
* All testing results are available from:
* http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing
*
* Unless CUBIC is enabled and congestion window is large
* this behaves the same as the original Reno.
*/
#include <linux/mm.h>
#include <linux/btf.h>
#include <linux/btf_ids.h>
#include <linux/module.h>
#include <linux/math64.h>
#include <net/tcp.h>
#define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation
* max_cwnd = snd_cwnd * beta
*/
#define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */
/* Two methods of hybrid slow start */
#define HYSTART_ACK_TRAIN 0x1
#define HYSTART_DELAY 0x2
/* Number of delay samples for detecting the increase of delay */
#define HYSTART_MIN_SAMPLES 8
#define HYSTART_DELAY_MIN (4000U) /* 4 ms */
#define HYSTART_DELAY_MAX (16000U) /* 16 ms */
#define HYSTART_DELAY_THRESH(x) clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX)
static int fast_convergence __read_mostly = 1;
static int beta __read_mostly = 717; /* = 717/1024 (BICTCP_BETA_SCALE) */
static int initial_ssthresh __read_mostly;
static int bic_scale __read_mostly = 41;
static int tcp_friendliness __read_mostly = 1;
static int hystart __read_mostly = 1;
static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY;
static int hystart_low_window __read_mostly = 16;
static int hystart_ack_delta_us __read_mostly = 2000;
static u32 cube_rtt_scale __read_mostly;
static u32 beta_scale __read_mostly;
static u64 cube_factor __read_mostly;
/* Note parameters that are used for precomputing scale factors are read-only */
module_param(fast_convergence, int, 0644);
MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
module_param(beta, int, 0644);
MODULE_PARM_DESC(beta, "beta for multiplicative increase");
module_param(initial_ssthresh, int, 0644);
MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
module_param(bic_scale, int, 0444);
MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
module_param(tcp_friendliness, int, 0644);
MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
module_param(hystart, int, 0644);
MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm");
module_param(hystart_detect, int, 0644);
MODULE_PARM_DESC(hystart_detect, "hybrid slow start detection mechanisms"
" 1: packet-train 2: delay 3: both packet-train and delay");
module_param(hystart_low_window, int, 0644);
MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start");
module_param(hystart_ack_delta_us, int, 0644);
MODULE_PARM_DESC(hystart_ack_delta_us, "spacing between ack's indicating train (usecs)");
/* BIC TCP Parameters */
struct bictcp {
u32 cnt; /* increase cwnd by 1 after ACKs */
u32 last_max_cwnd; /* last maximum snd_cwnd */
u32 last_cwnd; /* the last snd_cwnd */
u32 last_time; /* time when updated last_cwnd */
u32 bic_origin_point;/* origin point of bic function */
u32 bic_K; /* time to origin point
from the beginning of the current epoch */
u32 delay_min; /* min delay (usec) */
u32 epoch_start; /* beginning of an epoch */
u32 ack_cnt; /* number of acks */
u32 tcp_cwnd; /* estimated tcp cwnd */
u16 unused;
u8 sample_cnt; /* number of samples to decide curr_rtt */
u8 found; /* the exit point is found? */
u32 round_start; /* beginning of each round */
u32 end_seq; /* end_seq of the round */
u32 last_ack; /* last time when the ACK spacing is close */
u32 curr_rtt; /* the minimum rtt of current round */
};
static inline void bictcp_reset(struct bictcp *ca)
{
memset(ca, 0, offsetof(struct bictcp, unused));
ca->found = 0;
}
static inline u32 bictcp_clock_us(const struct sock *sk)
{
return tcp_sk(sk)->tcp_mstamp;
}
static inline void bictcp_hystart_reset(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
struct bictcp *ca = inet_csk_ca(sk);
ca->round_start = ca->last_ack = bictcp_clock_us(sk);
ca->end_seq = tp->snd_nxt;
ca->curr_rtt = ~0U;
ca->sample_cnt = 0;
}
static void cubictcp_init(struct sock *sk)
{
struct bictcp *ca = inet_csk_ca(sk);
bictcp_reset(ca);
if (hystart)
bictcp_hystart_reset(sk);
if (!hystart && initial_ssthresh)
tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
}
static void cubictcp_cwnd_event(struct sock *sk, enum tcp_ca_event event)
{
if (event == CA_EVENT_TX_START) {
struct bictcp *ca = inet_csk_ca(sk);
u32 now = tcp_jiffies32;
s32 delta;
delta = now - tcp_sk(sk)->lsndtime;
/* We were application limited (idle) for a while.
* Shift epoch_start to keep cwnd growth to cubic curve.
*/
if (ca->epoch_start && delta > 0) {
ca->epoch_start += delta;
if (after(ca->epoch_start, now))
ca->epoch_start = now;
}
return;
}
}
/* calculate the cubic root of x using a table lookup followed by one
* Newton-Raphson iteration.
* Avg err ~= 0.195%
*/
static u32 cubic_root(u64 a)
{
u32 x, b, shift;
/*
* cbrt(x) MSB values for x MSB values in [0..63].
* Precomputed then refined by hand - Willy Tarreau
*
* For x in [0..63],
* v = cbrt(x << 18) - 1
* cbrt(x) = (v[x] + 10) >> 6
*/
static const u8 v[] = {
/* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118,
/* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156,
/* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179,
/* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199,
/* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215,
/* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229,
/* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242,
/* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254,
};
b = fls64(a);
if (b < 7) {
/* a in [0..63] */
return ((u32)v[(u32)a] + 35) >> 6;
}
b = ((b * 84) >> 8) - 1;
shift = (a >> (b * 3));
x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;
/*
* Newton-Raphson iteration
* 2
* x = ( 2 * x + a / x ) / 3
* k+1 k k
*/
x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1)));
x = ((x * 341) >> 10);
return x;
}
/*
* Compute congestion window to use.
*/
static inline void bictcp_update(struct bictcp *ca, u32 cwnd, u32 acked)
{
u32 delta, bic_target, max_cnt;
u64 offs, t;
ca->ack_cnt += acked; /* count the number of ACKed packets */
if (ca->last_cwnd == cwnd &&
(s32)(tcp_jiffies32 - ca->last_time) <= HZ / 32)
return;
/* The CUBIC function can update ca->cnt at most once per jiffy.
* On all cwnd reduction events, ca->epoch_start is set to 0,
* which will force a recalculation of ca->cnt.
*/
if (ca->epoch_start && tcp_jiffies32 == ca->last_time)
goto tcp_friendliness;
ca->last_cwnd = cwnd;
ca->last_time = tcp_jiffies32;
if (ca->epoch_start == 0) {
ca->epoch_start = tcp_jiffies32; /* record beginning */
ca->ack_cnt = acked; /* start counting */
ca->tcp_cwnd = cwnd; /* syn with cubic */
if (ca->last_max_cwnd <= cwnd) {
ca->bic_K = 0;
ca->bic_origin_point = cwnd;
} else {
/* Compute new K based on
* (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
*/
ca->bic_K = cubic_root(cube_factor
* (ca->last_max_cwnd - cwnd));
ca->bic_origin_point = ca->last_max_cwnd;
}
}
/* cubic function - calc*/
/* calculate c * time^3 / rtt,
* while considering overflow in calculation of time^3
* (so time^3 is done by using 64 bit)
* and without the support of division of 64bit numbers
* (so all divisions are done by using 32 bit)
* also NOTE the unit of those veriables
* time = (t - K) / 2^bictcp_HZ
* c = bic_scale >> 10
* rtt = (srtt >> 3) / HZ
* !!! The following code does not have overflow problems,
* if the cwnd < 1 million packets !!!
*/
t = (s32)(tcp_jiffies32 - ca->epoch_start);
t += usecs_to_jiffies(ca->delay_min);
/* change the unit from HZ to bictcp_HZ */
t <<= BICTCP_HZ;
do_div(t, HZ);
if (t < ca->bic_K) /* t - K */
offs = ca->bic_K - t;
else
offs = t - ca->bic_K;
/* c/rtt * (t-K)^3 */
delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
if (t < ca->bic_K) /* below origin*/
bic_target = ca->bic_origin_point - delta;
else /* above origin*/
bic_target = ca->bic_origin_point + delta;
/* cubic function - calc bictcp_cnt*/
if (bic_target > cwnd) {
ca->cnt = cwnd / (bic_target - cwnd);
} else {
ca->cnt = 100 * cwnd; /* very small increment*/
}
/*
* The initial growth of cubic function may be too conservative
* when the available bandwidth is still unknown.
*/
if (ca->last_max_cwnd == 0 && ca->cnt > 20)
ca->cnt = 20; /* increase cwnd 5% per RTT */
tcp_friendliness:
/* TCP Friendly */
if (tcp_friendliness) {
u32 scale = beta_scale;
delta = (cwnd * scale) >> 3;
while (ca->ack_cnt > delta) { /* update tcp cwnd */
ca->ack_cnt -= delta;
ca->tcp_cwnd++;
}
if (ca->tcp_cwnd > cwnd) { /* if bic is slower than tcp */
delta = ca->tcp_cwnd - cwnd;
max_cnt = cwnd / delta;
if (ca->cnt > max_cnt)
ca->cnt = max_cnt;
}
}
/* The maximum rate of cwnd increase CUBIC allows is 1 packet per
* 2 packets ACKed, meaning cwnd grows at 1.5x per RTT.
*/
ca->cnt = max(ca->cnt, 2U);
}
static void cubictcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
{
struct tcp_sock *tp = tcp_sk(sk);
struct bictcp *ca = inet_csk_ca(sk);
if (!tcp_is_cwnd_limited(sk))
return;
if (tcp_in_slow_start(tp)) {
acked = tcp_slow_start(tp, acked);
if (!acked)
return;
}
bictcp_update(ca, tcp_snd_cwnd(tp), acked);
tcp_cong_avoid_ai(tp, ca->cnt, acked);
}
static u32 cubictcp_recalc_ssthresh(struct sock *sk)
{
const struct tcp_sock *tp = tcp_sk(sk);
struct bictcp *ca = inet_csk_ca(sk);
ca->epoch_start = 0; /* end of epoch */
/* Wmax and fast convergence */
if (tcp_snd_cwnd(tp) < ca->last_max_cwnd && fast_convergence)
ca->last_max_cwnd = (tcp_snd_cwnd(tp) * (BICTCP_BETA_SCALE + beta))
/ (2 * BICTCP_BETA_SCALE);
else
ca->last_max_cwnd = tcp_snd_cwnd(tp);
return max((tcp_snd_cwnd(tp) * beta) / BICTCP_BETA_SCALE, 2U);
}
static void cubictcp_state(struct sock *sk, u8 new_state)
{
if (new_state == TCP_CA_Loss) {
bictcp_reset(inet_csk_ca(sk));
bictcp_hystart_reset(sk);
}
}
/* Account for TSO/GRO delays.
* Otherwise short RTT flows could get too small ssthresh, since during
* slow start we begin with small TSO packets and ca->delay_min would
* not account for long aggregation delay when TSO packets get bigger.
* Ideally even with a very small RTT we would like to have at least one
* TSO packet being sent and received by GRO, and another one in qdisc layer.
* We apply another 100% factor because @rate is doubled at this point.
* We cap the cushion to 1ms.
*/
static u32 hystart_ack_delay(const struct sock *sk)
{
unsigned long rate;
rate = READ_ONCE(sk->sk_pacing_rate);
if (!rate)
return 0;
return min_t(u64, USEC_PER_MSEC,
div64_ul((u64)sk->sk_gso_max_size * 4 * USEC_PER_SEC, rate));
}
static void hystart_update(struct sock *sk, u32 delay)
{
struct tcp_sock *tp = tcp_sk(sk);
struct bictcp *ca = inet_csk_ca(sk);
u32 threshold;
if (after(tp->snd_una, ca->end_seq))
bictcp_hystart_reset(sk);
if (hystart_detect & HYSTART_ACK_TRAIN) {
u32 now = bictcp_clock_us(sk);
/* first detection parameter - ack-train detection */
if ((s32)(now - ca->last_ack) <= hystart_ack_delta_us) {
ca->last_ack = now;
threshold = ca->delay_min + hystart_ack_delay(sk);
/* Hystart ack train triggers if we get ack past
* ca->delay_min/2.
* Pacing might have delayed packets up to RTT/2
* during slow start.
*/
if (sk->sk_pacing_status == SK_PACING_NONE)
threshold >>= 1;
if ((s32)(now - ca->round_start) > threshold) {
ca->found = 1;
pr_debug("hystart_ack_train (%u > %u) delay_min %u (+ ack_delay %u) cwnd %u\n",
now - ca->round_start, threshold,
ca->delay_min, hystart_ack_delay(sk), tcp_snd_cwnd(tp));
NET_INC_STATS(sock_net(sk),
LINUX_MIB_TCPHYSTARTTRAINDETECT);
NET_ADD_STATS(sock_net(sk),
LINUX_MIB_TCPHYSTARTTRAINCWND,
tcp_snd_cwnd(tp));
tp->snd_ssthresh = tcp_snd_cwnd(tp);
}
}
}
if (hystart_detect & HYSTART_DELAY) {
/* obtain the minimum delay of more than sampling packets */
if (ca->curr_rtt > delay)
ca->curr_rtt = delay;
if (ca->sample_cnt < HYSTART_MIN_SAMPLES) {
ca->sample_cnt++;
} else {
if (ca->curr_rtt > ca->delay_min +
HYSTART_DELAY_THRESH(ca->delay_min >> 3)) {
ca->found = 1;
NET_INC_STATS(sock_net(sk),
LINUX_MIB_TCPHYSTARTDELAYDETECT);
NET_ADD_STATS(sock_net(sk),
LINUX_MIB_TCPHYSTARTDELAYCWND,
tcp_snd_cwnd(tp));
tp->snd_ssthresh = tcp_snd_cwnd(tp);
}
}
}
}
static void cubictcp_acked(struct sock *sk, const struct ack_sample *sample)
{
const struct tcp_sock *tp = tcp_sk(sk);
struct bictcp *ca = inet_csk_ca(sk);
u32 delay;
/* Some calls are for duplicates without timetamps */
if (sample->rtt_us < 0)
return;
/* Discard delay samples right after fast recovery */
if (ca->epoch_start && (s32)(tcp_jiffies32 - ca->epoch_start) < HZ)
return;
delay = sample->rtt_us;
if (delay == 0)
delay = 1;
/* first time call or link delay decreases */
if (ca->delay_min == 0 || ca->delay_min > delay)
ca->delay_min = delay;
/* hystart triggers when cwnd is larger than some threshold */
if (!ca->found && tcp_in_slow_start(tp) && hystart &&
tcp_snd_cwnd(tp) >= hystart_low_window)
hystart_update(sk, delay);
}
static struct tcp_congestion_ops cubictcp __read_mostly = {
.init = cubictcp_init,
.ssthresh = cubictcp_recalc_ssthresh,
.cong_avoid = cubictcp_cong_avoid,
.set_state = cubictcp_state,
.undo_cwnd = tcp_reno_undo_cwnd,
.cwnd_event = cubictcp_cwnd_event,
.pkts_acked = cubictcp_acked,
.owner = THIS_MODULE,
.name = "cubic",
};
BTF_SET8_START(tcp_cubic_check_kfunc_ids)
#ifdef CONFIG_X86
#ifdef CONFIG_DYNAMIC_FTRACE
BTF_ID_FLAGS(func, cubictcp_init)
BTF_ID_FLAGS(func, cubictcp_recalc_ssthresh)
BTF_ID_FLAGS(func, cubictcp_cong_avoid)
BTF_ID_FLAGS(func, cubictcp_state)
BTF_ID_FLAGS(func, cubictcp_cwnd_event)
BTF_ID_FLAGS(func, cubictcp_acked)
#endif
#endif
BTF_SET8_END(tcp_cubic_check_kfunc_ids)
static const struct btf_kfunc_id_set tcp_cubic_kfunc_set = {
.owner = THIS_MODULE,
.set = &tcp_cubic_check_kfunc_ids,
};
static int __init cubictcp_register(void)
{
int ret;
BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
/* Precompute a bunch of the scaling factors that are used per-packet
* based on SRTT of 100ms
*/
beta_scale = 8*(BICTCP_BETA_SCALE+beta) / 3
/ (BICTCP_BETA_SCALE - beta);
cube_rtt_scale = (bic_scale * 10); /* 1024*c/rtt */
/* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
* so K = cubic_root( (wmax-cwnd)*rtt/c )
* the unit of K is bictcp_HZ=2^10, not HZ
*
* c = bic_scale >> 10
* rtt = 100ms
*
* the following code has been designed and tested for
* cwnd < 1 million packets
* RTT < 100 seconds
* HZ < 1,000,00 (corresponding to 10 nano-second)
*/
/* 1/c * 2^2*bictcp_HZ * srtt */
cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
/* divide by bic_scale and by constant Srtt (100ms) */
do_div(cube_factor, bic_scale * 10);
ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &tcp_cubic_kfunc_set);
if (ret < 0)
return ret;
return tcp_register_congestion_control(&cubictcp);
}
static void __exit cubictcp_unregister(void)
{
tcp_unregister_congestion_control(&cubictcp);
}
module_init(cubictcp_register);
module_exit(cubictcp_unregister);
MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("CUBIC TCP");
MODULE_VERSION("2.3");