summaryrefslogblamecommitdiff
path: root/net/ipv4/fib_trie.c
blob: b56e88edf1b351a10a8d83a0abf0a20f4c663e29 (plain) (tree)
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476












































                                                                               
                       








































































































































































































































































































                                                                                                 



                                          























































































































































































































































































































































































































































































































































                                                                                            

                                                            


























































                                                                                           







                                                                   



                                       







                                               



                               



                                 




                                               



































                                                                                   
 






                                                       




















                                                                                    


                      































































































































                                                                           





                                                              











                                                                                 


                                               







































































































































































































































































































































































































































































































































































































































                                                                                                              
                                                        
























































































































































































































































































































































































































































































































































































































































































                                                                                                                                         
/*
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation; either version
 *   2 of the License, or (at your option) any later version.
 *
 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 *     & Swedish University of Agricultural Sciences.
 *
 *   Jens Laas <jens.laas@data.slu.se> Swedish University of 
 *     Agricultural Sciences.
 * 
 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 *
 * This work is based on the LPC-trie which is originally descibed in:
 * 
 * An experimental study of compression methods for dynamic tries
 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
 *
 *
 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 *
 * Version:	$Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
 *
 *
 * Code from fib_hash has been reused which includes the following header:
 *
 *
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		IPv4 FIB: lookup engine and maintenance routines.
 *
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
 */

#define VERSION "0.324"

#include <linux/config.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/bitops.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
#include "fib_lookup.h"

#undef CONFIG_IP_FIB_TRIE_STATS
#define MAX_CHILDS 16384

#define EXTRACT(p, n, str) ((str)<<(p)>>(32-(n)))
#define KEYLENGTH (8*sizeof(t_key))
#define MASK_PFX(k, l) (((l)==0)?0:(k >> (KEYLENGTH-l)) << (KEYLENGTH-l))
#define TKEY_GET_MASK(offset, bits) (((bits)==0)?0:((t_key)(-1) << (KEYLENGTH - bits) >> offset))

static DEFINE_RWLOCK(fib_lock);

typedef unsigned int t_key;

#define T_TNODE 0
#define T_LEAF  1
#define NODE_TYPE_MASK	0x1UL
#define NODE_PARENT(_node) \
((struct tnode *)((_node)->_parent & ~NODE_TYPE_MASK))
#define NODE_SET_PARENT(_node, _ptr) \
((_node)->_parent = (((unsigned long)(_ptr)) | \
                     ((_node)->_parent & NODE_TYPE_MASK)))
#define NODE_INIT_PARENT(_node, _type) \
((_node)->_parent = (_type))
#define NODE_TYPE(_node) \
((_node)->_parent & NODE_TYPE_MASK)

#define IS_TNODE(n) (!(n->_parent & T_LEAF))
#define IS_LEAF(n) (n->_parent & T_LEAF)

struct node {
        t_key key;
	unsigned long _parent;
};

struct leaf {
        t_key key;
	unsigned long _parent;
	struct hlist_head list;
};

struct leaf_info {
	struct hlist_node hlist;
	int plen;
	struct list_head falh;
};

struct tnode {
        t_key key;
	unsigned long _parent;
        unsigned short pos:5;        /* 2log(KEYLENGTH) bits needed */
        unsigned short bits:5;       /* 2log(KEYLENGTH) bits needed */
        unsigned short full_children;  /* KEYLENGTH bits needed */
        unsigned short empty_children; /* KEYLENGTH bits needed */
        struct node *child[0];
};

#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
	unsigned int gets;
	unsigned int backtrack;
	unsigned int semantic_match_passed;
	unsigned int semantic_match_miss;
	unsigned int null_node_hit;
};
#endif

struct trie_stat {
	unsigned int totdepth;
	unsigned int maxdepth;
	unsigned int tnodes;
	unsigned int leaves;
	unsigned int nullpointers;
	unsigned int nodesizes[MAX_CHILDS];
};    

struct trie {
        struct node *trie;
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats stats;
#endif
        int size;
	unsigned int revision;
};

static int trie_debug = 0;

static int tnode_full(struct tnode *tn, struct node *n);
static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull);
static int tnode_child_length(struct tnode *tn);
static struct node *resize(struct trie *t, struct tnode *tn);
static struct tnode *inflate(struct trie *t, struct tnode *tn);
static struct tnode *halve(struct trie *t, struct tnode *tn);
static void tnode_free(struct tnode *tn);
static void trie_dump_seq(struct seq_file *seq, struct trie *t);
extern struct fib_alias *fib_find_alias(struct list_head *fah, u8 tos, u32 prio);
extern int fib_detect_death(struct fib_info *fi, int order,
                            struct fib_info **last_resort, int *last_idx, int *dflt);

extern void rtmsg_fib(int event, u32 key, struct fib_alias *fa, int z, int tb_id,
               struct nlmsghdr *n, struct netlink_skb_parms *req);

static kmem_cache_t *fn_alias_kmem;
static struct trie *trie_local = NULL, *trie_main = NULL;

static void trie_bug(char *err)
{
	printk("Trie Bug: %s\n", err);
	BUG();
}

static inline struct node *tnode_get_child(struct tnode *tn, int i) 
{
        if (i >=  1<<tn->bits) 
                trie_bug("tnode_get_child");

        return tn->child[i];
}

static inline int tnode_child_length(struct tnode *tn)
{
        return 1<<tn->bits;
}

/*
  _________________________________________________________________
  | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
  ----------------------------------------------------------------
    0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15 

  _________________________________________________________________
  | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
  -----------------------------------------------------------------
   16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31

  tp->pos = 7
  tp->bits = 3
  n->pos = 15
  n->bits=4
  KEYLENGTH=32
*/

static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
{
        if (offset < KEYLENGTH)
		return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
        else
		return 0;
}

static inline int tkey_equals(t_key a, t_key b)
{
  return a == b;
}

static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
{
     if (bits == 0 || offset >= KEYLENGTH)
            return 1;
        bits = bits > KEYLENGTH ? KEYLENGTH : bits;
        return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
}	

static inline int tkey_mismatch(t_key a, int offset, t_key b)
{
	t_key diff = a ^ b;
	int i = offset;

	if(!diff) 
	  return 0;
	while((diff << i) >> (KEYLENGTH-1) == 0)
		i++;
	return i;
}

/* Candiate for fib_semantics */

static void fn_free_alias(struct fib_alias *fa)
{
	fib_release_info(fa->fa_info);
	kmem_cache_free(fn_alias_kmem, fa);
}

/*
  To understand this stuff, an understanding of keys and all their bits is 
  necessary. Every node in the trie has a key associated with it, but not 
  all of the bits in that key are significant.

  Consider a node 'n' and its parent 'tp'.

  If n is a leaf, every bit in its key is significant. Its presence is 
  necessitaded by path compression, since during a tree traversal (when 
  searching for a leaf - unless we are doing an insertion) we will completely 
  ignore all skipped bits we encounter. Thus we need to verify, at the end of 
  a potentially successful search, that we have indeed been walking the 
  correct key path.

  Note that we can never "miss" the correct key in the tree if present by 
  following the wrong path. Path compression ensures that segments of the key 
  that are the same for all keys with a given prefix are skipped, but the 
  skipped part *is* identical for each node in the subtrie below the skipped 
  bit! trie_insert() in this implementation takes care of that - note the 
  call to tkey_sub_equals() in trie_insert().

  if n is an internal node - a 'tnode' here, the various parts of its key 
  have many different meanings.

  Example:  
  _________________________________________________________________
  | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
  -----------------------------------------------------------------
    0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15 

  _________________________________________________________________
  | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
  -----------------------------------------------------------------
   16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31

  tp->pos = 7
  tp->bits = 3
  n->pos = 15
  n->bits=4

  First, let's just ignore the bits that come before the parent tp, that is 
  the bits from 0 to (tp->pos-1). They are *known* but at this point we do 
  not use them for anything.

  The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
  index into the parent's child array. That is, they will be used to find 
  'n' among tp's children.

  The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
  for the node n.

  All the bits we have seen so far are significant to the node n. The rest 
  of the bits are really not needed or indeed known in n->key.

  The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 
  n's child array, and will of course be different for each child.
  
  The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
  at this point.

*/

static void check_tnode(struct tnode *tn)
{
	if(tn && tn->pos+tn->bits > 32) {
		printk("TNODE ERROR tn=%p, pos=%d, bits=%d\n", tn, tn->pos, tn->bits);
	}
}

static int halve_threshold = 25;
static int inflate_threshold = 50;

static struct leaf *leaf_new(void)
{
	struct leaf *l = kmalloc(sizeof(struct leaf),  GFP_KERNEL);
	if(l) {
		NODE_INIT_PARENT(l, T_LEAF);
		INIT_HLIST_HEAD(&l->list);
	}
	return l;
}

static struct leaf_info *leaf_info_new(int plen)
{
	struct leaf_info *li = kmalloc(sizeof(struct leaf_info),  GFP_KERNEL);
	if(li) {
		li->plen = plen;
		INIT_LIST_HEAD(&li->falh);
	}
	return li;
}

static inline void free_leaf(struct leaf *l)
{
	kfree(l);
}

static inline void free_leaf_info(struct leaf_info *li)
{
	kfree(li);
}

static struct tnode* tnode_new(t_key key, int pos, int bits)
{
	int nchildren = 1<<bits;
	int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *);
	struct tnode *tn = kmalloc(sz,  GFP_KERNEL);

	if(tn)  {
		memset(tn, 0, sz);
		NODE_INIT_PARENT(tn, T_TNODE);
		tn->pos = pos;
		tn->bits = bits;
		tn->key = key;
		tn->full_children = 0;
		tn->empty_children = 1<<bits;
	}
	if(trie_debug > 0) 
		printk("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode),
		       (unsigned int) (sizeof(struct node) * 1<<bits));
	return tn;
}

static void tnode_free(struct tnode *tn)
{
	if(!tn) {
		trie_bug("tnode_free\n");
	}
	if(IS_LEAF(tn)) {
		free_leaf((struct leaf *)tn);
		if(trie_debug > 0 ) 
			printk("FL %p \n", tn);
	}
	else if(IS_TNODE(tn)) { 
		kfree(tn);
		if(trie_debug > 0 ) 
			printk("FT %p \n", tn);
	}
	else {
		trie_bug("tnode_free\n");
	}
}

/*
 * Check whether a tnode 'n' is "full", i.e. it is an internal node
 * and no bits are skipped. See discussion in dyntree paper p. 6
 */

static inline int tnode_full(struct tnode *tn, struct node *n)
{
	if(n == NULL || IS_LEAF(n))
		return 0;

	return ((struct tnode *) n)->pos == tn->pos + tn->bits;
}

static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n) 
{
	tnode_put_child_reorg(tn, i, n, -1);
}

 /* 
  * Add a child at position i overwriting the old value.
  * Update the value of full_children and empty_children.
  */

static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull) 
{
	struct node *chi;
	int isfull;

	if(i >=  1<<tn->bits) {
		printk("bits=%d, i=%d\n", tn->bits, i);
		trie_bug("tnode_put_child_reorg bits");
	}
	write_lock_bh(&fib_lock);
	chi = tn->child[i];	

	/* update emptyChildren */
	if (n == NULL && chi != NULL)
		tn->empty_children++;
	else if (n != NULL && chi == NULL)
		tn->empty_children--;
  
	/* update fullChildren */
        if (wasfull == -1)
		wasfull = tnode_full(tn, chi);

	isfull = tnode_full(tn, n);
	if (wasfull && !isfull) 
		tn->full_children--;
	
	else if (!wasfull && isfull) 
		tn->full_children++;
	if(n) 
		NODE_SET_PARENT(n, tn);	

	tn->child[i] = n;
	write_unlock_bh(&fib_lock);
}

static struct node *resize(struct trie *t, struct tnode *tn) 
{
	int i;

 	if (!tn)
		return NULL;

	if(trie_debug) 
		printk("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 
		      tn, inflate_threshold, halve_threshold);

	/* No children */
	if (tn->empty_children == tnode_child_length(tn)) {
		tnode_free(tn);
		return NULL;
	}
	/* One child */
	if (tn->empty_children == tnode_child_length(tn) - 1)
		for (i = 0; i < tnode_child_length(tn); i++) {

			write_lock_bh(&fib_lock);
			if (tn->child[i] != NULL) {

				/* compress one level */
				struct node *n = tn->child[i];
				if(n)
					NODE_INIT_PARENT(n, NODE_TYPE(n));

				write_unlock_bh(&fib_lock);
				tnode_free(tn);
				return n;
			}
			write_unlock_bh(&fib_lock);
		}
	/* 
	 * Double as long as the resulting node has a number of
	 * nonempty nodes that are above the threshold.
	 */

	/*
	 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of 
	 * the Helsinki University of Technology and Matti Tikkanen of Nokia 
	 * Telecommunications, page 6:
	 * "A node is doubled if the ratio of non-empty children to all 
	 * children in the *doubled* node is at least 'high'."
	 *
	 * 'high' in this instance is the variable 'inflate_threshold'. It 
	 * is expressed as a percentage, so we multiply it with 
	 * tnode_child_length() and instead of multiplying by 2 (since the 
	 * child array will be doubled by inflate()) and multiplying 
	 * the left-hand side by 100 (to handle the percentage thing) we 
	 * multiply the left-hand side by 50.
	 * 
	 * The left-hand side may look a bit weird: tnode_child_length(tn) 
	 * - tn->empty_children is of course the number of non-null children 
	 * in the current node. tn->full_children is the number of "full" 
	 * children, that is non-null tnodes with a skip value of 0.
	 * All of those will be doubled in the resulting inflated tnode, so 
	 * we just count them one extra time here.
	 * 
	 * A clearer way to write this would be:
	 * 
	 * to_be_doubled = tn->full_children;
	 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children - 
	 *     tn->full_children;
	 *
	 * new_child_length = tnode_child_length(tn) * 2;
	 *
	 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 
	 *      new_child_length;
	 * if (new_fill_factor >= inflate_threshold)
	 * 
	 * ...and so on, tho it would mess up the while() loop.
	 * 
	 * anyway,
	 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
	 *      inflate_threshold
	 * 
	 * avoid a division:
	 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
	 *      inflate_threshold * new_child_length
	 * 
	 * expand not_to_be_doubled and to_be_doubled, and shorten:
	 * 100 * (tnode_child_length(tn) - tn->empty_children + 
	 *    tn->full_children ) >= inflate_threshold * new_child_length
	 * 
	 * expand new_child_length:
	 * 100 * (tnode_child_length(tn) - tn->empty_children + 
	 *    tn->full_children ) >=
	 *      inflate_threshold * tnode_child_length(tn) * 2
	 * 
	 * shorten again:
	 * 50 * (tn->full_children + tnode_child_length(tn) - 
	 *    tn->empty_children ) >= inflate_threshold * 
	 *    tnode_child_length(tn)
	 * 
	 */

	check_tnode(tn);

	while ((tn->full_children > 0 &&
	       50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >=
				inflate_threshold * tnode_child_length(tn))) {

		tn = inflate(t, tn);
	}

	check_tnode(tn);

	/*
	 * Halve as long as the number of empty children in this
	 * node is above threshold.
	 */
	while (tn->bits > 1 &&
	       100 * (tnode_child_length(tn) - tn->empty_children) <
	       halve_threshold * tnode_child_length(tn))

		tn = halve(t, tn);
  
	/* Only one child remains */

	if (tn->empty_children == tnode_child_length(tn) - 1)
		for (i = 0; i < tnode_child_length(tn); i++) {
			
			write_lock_bh(&fib_lock);
			if (tn->child[i] != NULL) {
				/* compress one level */
				struct node *n = tn->child[i];

				if(n)
					NODE_INIT_PARENT(n, NODE_TYPE(n));

				write_unlock_bh(&fib_lock);
				tnode_free(tn);
				return n;
			}
			write_unlock_bh(&fib_lock);
		}

	return (struct node *) tn;
}

static struct tnode *inflate(struct trie *t, struct tnode *tn)
{
	struct tnode *inode;
	struct tnode *oldtnode = tn;
	int olen = tnode_child_length(tn);
	int i;

  	if(trie_debug) 
		printk("In inflate\n");

	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);

	if (!tn)
		trie_bug("tnode_new failed");

	for(i = 0; i < olen; i++) {
		struct node *node = tnode_get_child(oldtnode, i);
      
		/* An empty child */
		if (node == NULL)
			continue;

		/* A leaf or an internal node with skipped bits */

		if(IS_LEAF(node) || ((struct tnode *) node)->pos >
		   tn->pos + tn->bits - 1) {
			if(tkey_extract_bits(node->key, tn->pos + tn->bits - 1,
					     1) == 0)
				put_child(t, tn, 2*i, node);
			else
				put_child(t, tn, 2*i+1, node);
			continue;
		}

		/* An internal node with two children */
		inode = (struct tnode *) node;

		if (inode->bits == 1) {
			put_child(t, tn, 2*i, inode->child[0]);
			put_child(t, tn, 2*i+1, inode->child[1]);

			tnode_free(inode);
		}

			/* An internal node with more than two children */
		else {
			struct tnode *left, *right;
			int size, j;

			/* We will replace this node 'inode' with two new 
			 * ones, 'left' and 'right', each with half of the 
			 * original children. The two new nodes will have 
			 * a position one bit further down the key and this 
			 * means that the "significant" part of their keys 
			 * (see the discussion near the top of this file) 
			 * will differ by one bit, which will be "0" in 
			 * left's key and "1" in right's key. Since we are 
			 * moving the key position by one step, the bit that 
			 * we are moving away from - the bit at position 
			 * (inode->pos) - is the one that will differ between 
			 * left and right. So... we synthesize that bit in the
			 * two  new keys.
			 * The mask 'm' below will be a single "one" bit at 
			 * the position (inode->pos)
			 */

			t_key m = TKEY_GET_MASK(inode->pos, 1);
 
			/* Use the old key, but set the new significant 
			 *   bit to zero. 
			 */
			left = tnode_new(inode->key&(~m), inode->pos + 1,
					 inode->bits - 1);

			if(!left) 
				trie_bug("tnode_new failed");
			
			
			/* Use the old key, but set the new significant 
			 * bit to one. 
			 */
			right = tnode_new(inode->key|m, inode->pos + 1,
					  inode->bits - 1);

			if(!right) 
				trie_bug("tnode_new failed");
			
			size = tnode_child_length(left);
			for(j = 0; j < size; j++) {
				put_child(t, left, j, inode->child[j]);
				put_child(t, right, j, inode->child[j + size]);
			}
			put_child(t, tn, 2*i, resize(t, left));
			put_child(t, tn, 2*i+1, resize(t, right));

			tnode_free(inode);
		}
	}
	tnode_free(oldtnode);
	return tn;
}

static struct tnode *halve(struct trie *t, struct tnode *tn)
{
	struct tnode *oldtnode = tn;
	struct node *left, *right;
	int i;
	int olen = tnode_child_length(tn);

	if(trie_debug) printk("In halve\n");
  
	tn=tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);

	if(!tn) 
		trie_bug("tnode_new failed");

	for(i = 0; i < olen; i += 2) {
		left = tnode_get_child(oldtnode, i);
		right = tnode_get_child(oldtnode, i+1);
    
		/* At least one of the children is empty */
		if (left == NULL) {
			if (right == NULL)    /* Both are empty */
				continue;
			put_child(t, tn, i/2, right);
		} else if (right == NULL)
			put_child(t, tn, i/2, left);
     
		/* Two nonempty children */
		else {
			struct tnode *newBinNode =
				tnode_new(left->key, tn->pos + tn->bits, 1);

			if(!newBinNode) 
				trie_bug("tnode_new failed");

			put_child(t, newBinNode, 0, left);
			put_child(t, newBinNode, 1, right);
			put_child(t, tn, i/2, resize(t, newBinNode));
		}
	}
	tnode_free(oldtnode);
	return tn;
}

static void *trie_init(struct trie *t)
{
	if(t) {
		t->size = 0;
		t->trie = NULL;
		t->revision = 0;
#ifdef CONFIG_IP_FIB_TRIE_STATS
       		memset(&t->stats, 0, sizeof(struct trie_use_stats));
#endif
	}
	return t;
}

static struct leaf_info *find_leaf_info(struct hlist_head *head, int plen)
{
	struct hlist_node *node;
	struct leaf_info *li;

	hlist_for_each_entry(li, node, head, hlist) {
		  
		if ( li->plen == plen )
			return li;
	}
	return NULL;
}

static inline struct list_head * get_fa_head(struct leaf *l, int plen)
{
	struct list_head *fa_head=NULL;
	struct leaf_info *li = find_leaf_info(&l->list, plen);
	
	if(li) 
		fa_head = &li->falh;
	
	return fa_head;
}

static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
{
	struct leaf_info *li=NULL, *last=NULL;
	struct hlist_node *node, *tmp;

	write_lock_bh(&fib_lock);
	
	if(hlist_empty(head))
		hlist_add_head(&new->hlist, head);
	else {
		hlist_for_each_entry_safe(li, node, tmp, head, hlist) {
			
			if (new->plen > li->plen) 
				break;
			
			last = li;
		}
		if(last) 
			hlist_add_after(&last->hlist, &new->hlist);
		else 
			hlist_add_before(&new->hlist, &li->hlist);
	}
	write_unlock_bh(&fib_lock);
}

static struct leaf *
fib_find_node(struct trie *t, u32 key)
{
	int pos;
	struct tnode *tn;
	struct node *n;

	pos = 0;
	n=t->trie;

	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
		tn = (struct tnode *) n;
			
		check_tnode(tn);
			
		if(tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
			pos=tn->pos + tn->bits;
			n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
		}
		else
			break;
	}
	/* Case we have found a leaf. Compare prefixes */

	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
		struct leaf *l = (struct leaf *) n;
		return l;
	}
	return NULL;
}

static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
{
	int i = 0;
	int wasfull;
	t_key cindex, key;
	struct tnode *tp = NULL;

	if(!tn) 
		BUG();
	
	key = tn->key;
	i = 0;

	while (tn != NULL && NODE_PARENT(tn) != NULL) {

		if( i > 10 ) {
			printk("Rebalance tn=%p \n", tn);
			if(tn) 		printk("tn->parent=%p \n", NODE_PARENT(tn));
			
			printk("Rebalance tp=%p \n", tp);
			if(tp) 		printk("tp->parent=%p \n", NODE_PARENT(tp));
		}

		if( i > 12 ) BUG();
		i++;

		tp = NODE_PARENT(tn);
		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
		wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
		tn = (struct tnode *) resize (t, (struct tnode *)tn);
		tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull);
		
		if(!NODE_PARENT(tn))
			break;

		tn = NODE_PARENT(tn);
	}
	/* Handle last (top) tnode */
	if (IS_TNODE(tn)) 
		tn = (struct tnode*) resize(t, (struct tnode *)tn);

	return (struct node*) tn;
}

static  struct list_head *
fib_insert_node(struct trie *t, int *err, u32 key, int plen)
{
	int pos, newpos;
	struct tnode *tp = NULL, *tn = NULL;
	struct node *n;
	struct leaf *l;
	int missbit;
	struct list_head *fa_head=NULL;
	struct leaf_info *li;
	t_key cindex;

	pos = 0;
	n=t->trie;

	/* If we point to NULL, stop. Either the tree is empty and we should 
	 * just put a new leaf in if, or we have reached an empty child slot, 
	 * and we should just put our new leaf in that.
	 * If we point to a T_TNODE, check if it matches our key. Note that 
	 * a T_TNODE might be skipping any number of bits - its 'pos' need 
	 * not be the parent's 'pos'+'bits'!
	 *
	 * If it does match the current key, get pos/bits from it, extract 
	 * the index from our key, push the T_TNODE and walk the tree.
	 *
	 * If it doesn't, we have to replace it with a new T_TNODE.
	 *
	 * If we point to a T_LEAF, it might or might not have the same key 
	 * as we do. If it does, just change the value, update the T_LEAF's 
	 * value, and return it. 
	 * If it doesn't, we need to replace it with a T_TNODE.
	 */

	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
		tn = (struct tnode *) n;
			
		check_tnode(tn);
		
		if(tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
			tp = tn;
			pos=tn->pos + tn->bits;
			n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));

			if(n && NODE_PARENT(n) != tn) {
				printk("BUG tn=%p, n->parent=%p\n", tn, NODE_PARENT(n));
				BUG();
			}
		}
		else
			break;
	}

	/*
	 * n  ----> NULL, LEAF or TNODE
	 *
	 * tp is n's (parent) ----> NULL or TNODE  
	 */

	if(tp && IS_LEAF(tp))
		BUG();


	/* Case 1: n is a leaf. Compare prefixes */

	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) { 
		struct leaf *l = ( struct leaf *)  n;
		
		li = leaf_info_new(plen);
		
		if(! li) {
			*err = -ENOMEM;
			goto err;
		}

		fa_head = &li->falh;
		insert_leaf_info(&l->list, li);
		goto done;
	}
	t->size++;
	l = leaf_new();

	if(! l) {
		*err = -ENOMEM;
		goto err;
	}

	l->key = key;
	li = leaf_info_new(plen);

	if(! li) {
		tnode_free((struct tnode *) l);
		*err = -ENOMEM;
		goto err;
	}

	fa_head = &li->falh;
	insert_leaf_info(&l->list, li);

	/* Case 2: n is NULL, and will just insert a new leaf */
	if (t->trie && n == NULL) {

		NODE_SET_PARENT(l, tp);
		
		if (!tp) 
			BUG();

		else {
			cindex = tkey_extract_bits(key, tp->pos, tp->bits);
			put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
		}
	}
	/* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
	else {
		/* 
		 *  Add a new tnode here 
		 *  first tnode need some special handling
		 */

		if (tp)
			pos=tp->pos+tp->bits;
		else
			pos=0;
		if(n) {
			newpos = tkey_mismatch(key, pos, n->key);
			tn = tnode_new(n->key, newpos, 1);
		}
		else {
			newpos = 0;
			tn = tnode_new(key, newpos, 1); /* First tnode */ 
		}

		if(!tn) {
			free_leaf_info(li);
			tnode_free((struct tnode *) l);
			*err = -ENOMEM;
			goto err;
		}			
			
		NODE_SET_PARENT(tn, tp);

		missbit=tkey_extract_bits(key, newpos, 1);
		put_child(t, tn, missbit, (struct node *)l);
		put_child(t, tn, 1-missbit, n);

		if(tp) {
			cindex = tkey_extract_bits(key, tp->pos, tp->bits);
			put_child(t, (struct tnode *)tp, cindex, (struct node *)tn);
		}
		else { 
			t->trie = (struct node*) tn; /* First tnode */
			tp = tn;
		}
	}
	if(tp && tp->pos+tp->bits > 32) {
		printk("ERROR tp=%p pos=%d, bits=%d, key=%0x plen=%d\n", 
		       tp, tp->pos, tp->bits, key, plen);
	}
	/* Rebalance the trie */
	t->trie = trie_rebalance(t, tp);
done:
	t->revision++;
err:;
	return fa_head;
}

static int
fn_trie_insert(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
	       struct nlmsghdr *nlhdr, struct netlink_skb_parms *req)
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct fib_alias *fa, *new_fa;
	struct list_head *fa_head=NULL;
	struct fib_info *fi;
	int plen = r->rtm_dst_len;
	int type = r->rtm_type;
	u8 tos = r->rtm_tos;
	u32 key, mask;
	int err;
	struct leaf *l;

	if (plen > 32)
		return -EINVAL;

	key = 0;
	if (rta->rta_dst) 
		memcpy(&key, rta->rta_dst, 4);

	key = ntohl(key);

	if(trie_debug)
		printk("Insert table=%d %08x/%d\n", tb->tb_id, key, plen);

	mask =  ntohl( inet_make_mask(plen) );

	if(key & ~mask)
		return -EINVAL;

	key = key & mask;

	if  ((fi = fib_create_info(r, rta, nlhdr, &err)) == NULL)
		goto err;

	l = fib_find_node(t, key);
	fa = NULL;	

	if(l) {
		fa_head = get_fa_head(l, plen);
		fa = fib_find_alias(fa_head, tos, fi->fib_priority);
	}

	/* Now fa, if non-NULL, points to the first fib alias
	 * with the same keys [prefix,tos,priority], if such key already
	 * exists or to the node before which we will insert new one.
	 *
	 * If fa is NULL, we will need to allocate a new one and
	 * insert to the head of f.
	 *
	 * If f is NULL, no fib node matched the destination key
	 * and we need to allocate a new one of those as well.
	 */

	if (fa &&
	    fa->fa_info->fib_priority == fi->fib_priority) {
		struct fib_alias *fa_orig;

		err = -EEXIST;
		if (nlhdr->nlmsg_flags & NLM_F_EXCL)
			goto out;

		if (nlhdr->nlmsg_flags & NLM_F_REPLACE) {
			struct fib_info *fi_drop;
			u8 state;

			write_lock_bh(&fib_lock);

			fi_drop = fa->fa_info;
			fa->fa_info = fi;
			fa->fa_type = type;
			fa->fa_scope = r->rtm_scope;
			state = fa->fa_state;
			fa->fa_state &= ~FA_S_ACCESSED;

			write_unlock_bh(&fib_lock);

			fib_release_info(fi_drop);
			if (state & FA_S_ACCESSED)
			  rt_cache_flush(-1);

			    goto succeeded;
		}
		/* Error if we find a perfect match which
		 * uses the same scope, type, and nexthop
		 * information.
		 */
		fa_orig = fa;
		list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
			if (fa->fa_tos != tos)
				break;
			if (fa->fa_info->fib_priority != fi->fib_priority)
				break;
			if (fa->fa_type == type &&
			    fa->fa_scope == r->rtm_scope &&
			    fa->fa_info == fi) {
				goto out;
			}
		}
		if (!(nlhdr->nlmsg_flags & NLM_F_APPEND))
			fa = fa_orig;
	}
	err = -ENOENT;
	if (!(nlhdr->nlmsg_flags&NLM_F_CREATE))
		goto out;

	err = -ENOBUFS;
	new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL);
	if (new_fa == NULL)
		goto out;

	new_fa->fa_info = fi;
	new_fa->fa_tos = tos;
	new_fa->fa_type = type;
	new_fa->fa_scope = r->rtm_scope;
	new_fa->fa_state = 0;
#if 0
	new_fa->dst  = NULL;
#endif
	/*
	 * Insert new entry to the list.
	 */

	if(!fa_head) {
		fa_head = fib_insert_node(t, &err, key, plen);
		err = 0;
		if(err) 
			goto out_free_new_fa;
	}

	write_lock_bh(&fib_lock);

	list_add_tail(&new_fa->fa_list,
		 (fa ? &fa->fa_list : fa_head));

	write_unlock_bh(&fib_lock);

	rt_cache_flush(-1);
	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, nlhdr, req);
succeeded:
	return 0;

out_free_new_fa:
	kmem_cache_free(fn_alias_kmem, new_fa);
out:
	fib_release_info(fi);
err:;	
	return err;
}

static inline int check_leaf(struct trie *t, struct leaf *l,  t_key key, int *plen, const struct flowi *flp, 
			     struct fib_result *res, int *err)
{
	int i;
	t_key mask;
	struct leaf_info *li;
	struct hlist_head *hhead = &l->list;
	struct hlist_node *node;
	
	hlist_for_each_entry(li, node, hhead, hlist) {

		i = li->plen;
		mask = ntohl(inet_make_mask(i));
		if (l->key != (key & mask)) 
			continue;

		if (((*err) = fib_semantic_match(&li->falh, flp, res, l->key, mask, i)) == 0) {
			*plen = i;
#ifdef CONFIG_IP_FIB_TRIE_STATS
			t->stats.semantic_match_passed++;
#endif
			return 1;
		}
#ifdef CONFIG_IP_FIB_TRIE_STATS
		t->stats.semantic_match_miss++;
#endif
	}
	return 0;
}

static int
fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
{
	struct trie *t = (struct trie *) tb->tb_data;
	int plen, ret = 0;
	struct node *n;
	struct tnode *pn;
	int pos, bits;
	t_key key=ntohl(flp->fl4_dst);
	int chopped_off;
	t_key cindex = 0;
	int current_prefix_length = KEYLENGTH;
	n = t->trie;

	read_lock(&fib_lock);
	if(!n)
		goto failed;

#ifdef CONFIG_IP_FIB_TRIE_STATS
	t->stats.gets++;
#endif

	/* Just a leaf? */
	if (IS_LEAF(n)) {
		if( check_leaf(t, (struct leaf *)n, key, &plen, flp, res, &ret) )
			goto found;
		goto failed;
	}
	pn = (struct tnode *) n;
	chopped_off = 0;
	
        while (pn) {

		pos = pn->pos;
		bits = pn->bits;

		if(!chopped_off) 
			cindex = tkey_extract_bits(MASK_PFX(key, current_prefix_length), pos, bits);

		n = tnode_get_child(pn, cindex);

		if (n == NULL) {
#ifdef CONFIG_IP_FIB_TRIE_STATS
			t->stats.null_node_hit++;
#endif
			goto backtrace;
		}

		if (IS_TNODE(n)) {
#define HL_OPTIMIZE
#ifdef HL_OPTIMIZE
			struct tnode *cn = (struct tnode *)n;
			t_key node_prefix, key_prefix, pref_mismatch;
			int mp;

			/*
			 * It's a tnode, and we can do some extra checks here if we 
			 * like, to avoid descending into a dead-end branch.
			 * This tnode is in the parent's child array at index 
			 * key[p_pos..p_pos+p_bits] but potentially with some bits 
			 * chopped off, so in reality the index may be just a 
			 * subprefix, padded with zero at the end.
			 * We can also take a look at any skipped bits in this 
			 * tnode - everything up to p_pos is supposed to be ok, 
			 * and the non-chopped bits of the index (se previous
			 * paragraph) are also guaranteed ok, but the rest is 
			 * considered unknown.
			 *
			 * The skipped bits are key[pos+bits..cn->pos].
			 */
			
			/* If current_prefix_length < pos+bits, we are already doing 
			 * actual prefix  matching, which means everything from 
			 * pos+(bits-chopped_off) onward must be zero along some 
			 * branch of this subtree - otherwise there is *no* valid 
			 * prefix present. Here we can only check the skipped
			 * bits. Remember, since we have already indexed into the 
			 * parent's child array, we know that the bits we chopped of 
			 * *are* zero.
			 */

			/* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */
			
			if (current_prefix_length < pos+bits) {
				if (tkey_extract_bits(cn->key, current_prefix_length,
						      cn->pos - current_prefix_length) != 0 ||
				    !(cn->child[0]))
					goto backtrace;
			}

			/*
			 * If chopped_off=0, the index is fully validated and we 
			 * only need to look at the skipped bits for this, the new, 
			 * tnode. What we actually want to do is to find out if
			 * these skipped bits match our key perfectly, or if we will
			 * have to count on finding a matching prefix further down, 
			 * because if we do, we would like to have some way of 
			 * verifying the existence of such a prefix at this point. 
			 */

			/* The only thing we can do at this point is to verify that
			 * any such matching prefix can indeed be a prefix to our
			 * key, and if the bits in the node we are inspecting that
			 * do not match our key are not ZERO, this cannot be true.
			 * Thus, find out where there is a mismatch (before cn->pos)
			 * and verify that all the mismatching bits are zero in the
			 * new tnode's key.
			 */

			/* Note: We aren't very concerned about the piece of the key 
			 * that precede pn->pos+pn->bits, since these have already been 
			 * checked. The bits after cn->pos aren't checked since these are 
			 * by definition "unknown" at this point. Thus, what we want to 
			 * see is if we are about to enter the "prefix matching" state, 
			 * and in that case verify that the skipped bits that will prevail 
			 * throughout this subtree are zero, as they have to be if we are 
			 * to find a matching prefix.
			 */

			node_prefix = MASK_PFX(cn->key, cn->pos);
			key_prefix =  MASK_PFX(key, cn->pos);
			pref_mismatch = key_prefix^node_prefix;
			mp = 0;

			/* In short: If skipped bits in this node do not match the search 
			 * key, enter the "prefix matching" state.directly.
			 */
			if (pref_mismatch) {
				while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
					mp++;
					pref_mismatch = pref_mismatch <<1;
				}
				key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
				
				if (key_prefix != 0)
					goto backtrace;

				if (current_prefix_length >= cn->pos)
					current_prefix_length=mp;
		       }
#endif
		       pn = (struct tnode *)n; /* Descend */
		       chopped_off = 0;
		       continue;
		} 
		if (IS_LEAF(n)) {	
			if( check_leaf(t, (struct leaf *)n, key, &plen, flp, res, &ret))
				goto found;
	       }
backtrace:
		chopped_off++;

		/* As zero don't change the child key (cindex) */
		while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1)))) {
			chopped_off++;
		}

		/* Decrease current_... with bits chopped off */
		if (current_prefix_length > pn->pos + pn->bits - chopped_off)
			current_prefix_length = pn->pos + pn->bits - chopped_off;
		
		/*
		 * Either we do the actual chop off according or if we have 
		 * chopped off all bits in this tnode walk up to our parent.
		 */

		if(chopped_off <= pn->bits)
			cindex &= ~(1 << (chopped_off-1));
		else {
			if( NODE_PARENT(pn) == NULL)
				goto failed;
			
			/* Get Child's index */
			cindex = tkey_extract_bits(pn->key, NODE_PARENT(pn)->pos, NODE_PARENT(pn)->bits);
			pn = NODE_PARENT(pn);
			chopped_off = 0;

#ifdef CONFIG_IP_FIB_TRIE_STATS
			t->stats.backtrack++;
#endif
			goto backtrace;
		} 
	}
failed:
	ret =  1;
found:
	read_unlock(&fib_lock);
	return ret;
}

static int trie_leaf_remove(struct trie *t, t_key key)
{
	t_key cindex;
	struct tnode *tp = NULL;
	struct node *n = t->trie;
	struct leaf *l;

	if(trie_debug) 
		printk("entering trie_leaf_remove(%p)\n", n);

	/* Note that in the case skipped bits, those bits are *not* checked!
	 * When we finish this, we will have NULL or a T_LEAF, and the 
	 * T_LEAF may or may not match our key.
	 */

        while (n != NULL && IS_TNODE(n)) {
		struct tnode *tn = (struct tnode *) n;
		check_tnode(tn);
		n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits));

			if(n && NODE_PARENT(n) != tn) {
				printk("BUG tn=%p, n->parent=%p\n", tn, NODE_PARENT(n));
				BUG();
			}
        }
	l = (struct leaf *) n;

	if(!n || !tkey_equals(l->key, key)) 
		return 0;
    
	/* 
	 * Key found. 
	 * Remove the leaf and rebalance the tree 
	 */

	t->revision++;
	t->size--;

	tp = NODE_PARENT(n);
	tnode_free((struct tnode *) n);

	if(tp) {
		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
		put_child(t, (struct tnode *)tp, cindex, NULL);
		t->trie = trie_rebalance(t, tp);
	}
	else
		t->trie = NULL;

	return 1;
}

static int
fn_trie_delete(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
	       struct nlmsghdr *nlhdr, struct netlink_skb_parms *req)
{
	struct trie *t = (struct trie *) tb->tb_data;
	u32 key, mask;
	int plen = r->rtm_dst_len;
	u8 tos = r->rtm_tos;
	struct fib_alias *fa, *fa_to_delete;
	struct list_head *fa_head;
	struct leaf *l;

	if (plen > 32) 
		return -EINVAL;

	key = 0;
	if (rta->rta_dst) 
		memcpy(&key, rta->rta_dst, 4);

	key = ntohl(key);
	mask =  ntohl( inet_make_mask(plen) );

	if(key & ~mask)
		return -EINVAL;

	key = key & mask;
	l = fib_find_node(t, key);

	if(!l)
		return -ESRCH;

	fa_head = get_fa_head(l, plen);
	fa = fib_find_alias(fa_head, tos, 0);

	if (!fa)
		return -ESRCH;

	if (trie_debug)
		printk("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);

	fa_to_delete = NULL;
	fa_head = fa->fa_list.prev;
	list_for_each_entry(fa, fa_head, fa_list) {
		struct fib_info *fi = fa->fa_info;

		if (fa->fa_tos != tos)
			break;

		if ((!r->rtm_type ||
		     fa->fa_type == r->rtm_type) &&
		    (r->rtm_scope == RT_SCOPE_NOWHERE ||
		     fa->fa_scope == r->rtm_scope) &&
		    (!r->rtm_protocol ||
		     fi->fib_protocol == r->rtm_protocol) &&
		    fib_nh_match(r, nlhdr, rta, fi) == 0) {
			fa_to_delete = fa;
			break;
		}
	}

	if (fa_to_delete) {
		int kill_li = 0;
		struct leaf_info *li;

		fa = fa_to_delete;
		rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, nlhdr, req);

		l = fib_find_node(t, key);
		li = find_leaf_info(&l->list, plen);

		write_lock_bh(&fib_lock);

		list_del(&fa->fa_list);

		if(list_empty(fa_head)) {
			hlist_del(&li->hlist);
			kill_li = 1;
		}
		write_unlock_bh(&fib_lock);
		
		if(kill_li)
			free_leaf_info(li);

		if(hlist_empty(&l->list))
			trie_leaf_remove(t, key);

		if (fa->fa_state & FA_S_ACCESSED)
			rt_cache_flush(-1);

		fn_free_alias(fa);
		return 0;
	}
	return -ESRCH;
}

static int trie_flush_list(struct trie *t, struct list_head *head)
{
	struct fib_alias *fa, *fa_node;
	int found = 0;

	list_for_each_entry_safe(fa, fa_node, head, fa_list) {
		struct fib_info *fi = fa->fa_info;
		
		if (fi && (fi->fib_flags&RTNH_F_DEAD)) {

 			write_lock_bh(&fib_lock);	
			list_del(&fa->fa_list);
			write_unlock_bh(&fib_lock); 

			fn_free_alias(fa);
			found++;
		}
	}
	return found;
}

static int trie_flush_leaf(struct trie *t, struct leaf *l)
{
	int found = 0;
	struct hlist_head *lih = &l->list;
	struct hlist_node *node, *tmp;
	struct leaf_info *li = NULL;

	hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
			
		found += trie_flush_list(t, &li->falh);

		if (list_empty(&li->falh)) {

 			write_lock_bh(&fib_lock); 
			hlist_del(&li->hlist);
			write_unlock_bh(&fib_lock); 

			free_leaf_info(li);
		}
	}
	return found;
}

static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf)
{
	struct node *c = (struct node *) thisleaf;
	struct tnode *p;
	int idx;

	if(c == NULL) {
		if(t->trie == NULL)
			return NULL;

		if (IS_LEAF(t->trie))          /* trie w. just a leaf */
			return (struct leaf *) t->trie;

		p = (struct tnode*) t->trie;  /* Start */
	}
	else 
		p = (struct tnode *) NODE_PARENT(c);
	while (p) {
		int pos, last;

		/*  Find the next child of the parent */
		if(c)
			pos  = 1 + tkey_extract_bits(c->key, p->pos, p->bits);
		else 
			pos = 0;

		last = 1 << p->bits;
		for(idx = pos; idx < last ; idx++) {
			if( p->child[idx]) {

				/* Decend if tnode */

				while (IS_TNODE(p->child[idx])) {
					p = (struct tnode*) p->child[idx];
					idx = 0;
					
					/* Rightmost non-NULL branch */
					if( p && IS_TNODE(p) )
						while ( p->child[idx] == NULL && idx < (1 << p->bits) ) idx++;

					/* Done with this tnode? */
					if( idx >= (1 << p->bits) || p->child[idx] == NULL ) 
						goto up;
				}
				return (struct leaf*) p->child[idx];
			}
		}
up:
		/* No more children go up one step  */
		c = (struct node*) p;
		p = (struct tnode *) NODE_PARENT(p);
	}
	return NULL; /* Ready. Root of trie */
}

static int fn_trie_flush(struct fib_table *tb)
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct leaf *ll = NULL, *l = NULL;
	int found = 0, h;

	t->revision++;

	for (h=0; (l = nextleaf(t, l)) != NULL; h++) {
		found += trie_flush_leaf(t, l);

		if (ll && hlist_empty(&ll->list))
			trie_leaf_remove(t, ll->key);
		ll = l;
	}

	if (ll && hlist_empty(&ll->list))
		trie_leaf_remove(t, ll->key);

	if(trie_debug) 
		printk("trie_flush found=%d\n", found);
	return found;
}

static int trie_last_dflt=-1;

static void
fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
{
	struct trie *t = (struct trie *) tb->tb_data;
	int order, last_idx;
	struct fib_info *fi = NULL;
	struct fib_info *last_resort;
	struct fib_alias *fa = NULL;
	struct list_head *fa_head;
	struct leaf *l;

	last_idx = -1;
	last_resort = NULL;
	order = -1;

	read_lock(&fib_lock);
	
	l = fib_find_node(t, 0);
	if(!l) 
		goto out;

	fa_head = get_fa_head(l, 0);
	if(!fa_head)
		goto out;

	if (list_empty(fa_head)) 
		goto out;

	list_for_each_entry(fa, fa_head, fa_list) {
		struct fib_info *next_fi = fa->fa_info;
		
		if (fa->fa_scope != res->scope ||
		    fa->fa_type != RTN_UNICAST)
			continue;
		
		if (next_fi->fib_priority > res->fi->fib_priority)
			break;
		if (!next_fi->fib_nh[0].nh_gw ||
		    next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
			continue;
		fa->fa_state |= FA_S_ACCESSED;
		
		if (fi == NULL) {
			if (next_fi != res->fi)
				break;
		} else if (!fib_detect_death(fi, order, &last_resort,
					     &last_idx, &trie_last_dflt)) {
			if (res->fi)
				fib_info_put(res->fi);
			res->fi = fi;
			atomic_inc(&fi->fib_clntref);
			trie_last_dflt = order;
			goto out;
		}
		fi = next_fi;
		order++;
	}
	if (order <= 0 || fi == NULL) {
		trie_last_dflt = -1;
		goto out;
	}

	if (!fib_detect_death(fi, order, &last_resort, &last_idx, &trie_last_dflt)) {
		if (res->fi)
			fib_info_put(res->fi);
		res->fi = fi;
		atomic_inc(&fi->fib_clntref);
		trie_last_dflt = order;
		goto out;
	}
	if (last_idx >= 0) {
		if (res->fi)
			fib_info_put(res->fi);
		res->fi = last_resort;
		if (last_resort)
			atomic_inc(&last_resort->fib_clntref);
	}
	trie_last_dflt = last_idx;
 out:;
	read_unlock(&fib_lock);	
}

static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb, 
			   struct sk_buff *skb, struct netlink_callback *cb)
{
	int i, s_i;
	struct fib_alias *fa;

	u32 xkey=htonl(key);

	s_i=cb->args[3];
	i = 0;

	list_for_each_entry(fa, fah, fa_list) {
		if (i < s_i) {
			i++;
			continue;
		}
		if (fa->fa_info->fib_nh == NULL) {
			printk("Trie error _fib_nh=NULL in fa[%d] k=%08x plen=%d\n", i, key, plen);
			i++;
			continue;
		}
		if (fa->fa_info == NULL) {
			printk("Trie error fa_info=NULL in fa[%d] k=%08x plen=%d\n", i, key, plen);
			i++;
			continue;
		}

		if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
				  cb->nlh->nlmsg_seq,
				  RTM_NEWROUTE,
				  tb->tb_id,
				  fa->fa_type,
				  fa->fa_scope,
				  &xkey,
				  plen,
				  fa->fa_tos,
				  fa->fa_info, 0) < 0) {
			cb->args[3] = i;
			return -1;
			}
		i++;
	}
	cb->args[3]=i;
	return skb->len;
}

static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb, 
			     struct netlink_callback *cb)
{
	int h, s_h;
	struct list_head *fa_head;
	struct leaf *l = NULL;
	s_h=cb->args[2];

	for (h=0; (l = nextleaf(t, l)) != NULL; h++) {

		if (h < s_h)
			continue;
		if (h > s_h)
			memset(&cb->args[3], 0,
			       sizeof(cb->args) - 3*sizeof(cb->args[0]));

		fa_head = get_fa_head(l, plen);
		
		if(!fa_head)
			continue;

		if(list_empty(fa_head))
			continue;

		if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) {
			cb->args[2]=h;
			return -1;
		}
	}
	cb->args[2]=h;
	return skb->len;
}

static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb)
{
	int m, s_m;
	struct trie *t = (struct trie *) tb->tb_data;

	s_m = cb->args[1];

	read_lock(&fib_lock);
	for (m=0; m<=32; m++) {

		if (m < s_m)
			continue;
		if (m > s_m)
			memset(&cb->args[2], 0,
			       sizeof(cb->args) - 2*sizeof(cb->args[0]));

		if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) {
			cb->args[1] = m;
			goto out;
		}
	}
	read_unlock(&fib_lock);
	cb->args[1] = m;
	return skb->len;
 out:
	read_unlock(&fib_lock);
	return -1;
}

/* Fix more generic FIB names for init later */

#ifdef CONFIG_IP_MULTIPLE_TABLES
struct fib_table * fib_hash_init(int id)
#else
struct fib_table * __init fib_hash_init(int id)
#endif
{
	struct fib_table *tb;
	struct trie *t;

	if (fn_alias_kmem == NULL)
		fn_alias_kmem = kmem_cache_create("ip_fib_alias",
						  sizeof(struct fib_alias),
						  0, SLAB_HWCACHE_ALIGN,
						  NULL, NULL);

	tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
		     GFP_KERNEL);
	if (tb == NULL)
		return NULL;

	tb->tb_id = id;
	tb->tb_lookup = fn_trie_lookup;
	tb->tb_insert = fn_trie_insert;
	tb->tb_delete = fn_trie_delete;
	tb->tb_flush = fn_trie_flush;
	tb->tb_select_default = fn_trie_select_default;
	tb->tb_dump = fn_trie_dump;
	memset(tb->tb_data, 0, sizeof(struct trie));

	t = (struct trie *) tb->tb_data;

	trie_init(t);

	if (id == RT_TABLE_LOCAL) 
                trie_local=t;
	  else if (id == RT_TABLE_MAIN) 
                trie_main=t;

	if (id == RT_TABLE_LOCAL)
		printk("IPv4 FIB: Using LC-trie version %s\n", VERSION);

	return tb;
}

/* Trie dump functions */

static void putspace_seq(struct seq_file *seq, int n)
{
	while (n--) seq_printf(seq, " ");
}

static void printbin_seq(struct seq_file *seq, unsigned int v, int bits)
{
	while (bits--)
		seq_printf(seq, "%s", (v & (1<<bits))?"1":"0");
}

static void printnode_seq(struct seq_file *seq, int indent, struct node *n, 
		   int pend, int cindex, int bits)
{
	putspace_seq(seq, indent);
	if (IS_LEAF(n))
		seq_printf(seq, "|");
	else
		seq_printf(seq, "+");
	if (bits) {
		seq_printf(seq, "%d/", cindex);
		printbin_seq(seq, cindex, bits);
		seq_printf(seq, ": ");
	}
	else
		seq_printf(seq, "<root>: ");
	seq_printf(seq, "%s:%p ", IS_LEAF(n)?"Leaf":"Internal node", n);

	if (IS_LEAF(n))
		seq_printf(seq, "key=%d.%d.%d.%d\n", 
			   n->key >> 24, (n->key >> 16) % 256, (n->key >> 8) % 256, n->key % 256);
	else {
		int plen=((struct tnode *)n)->pos;
		t_key prf=MASK_PFX(n->key, plen);
		seq_printf(seq, "key=%d.%d.%d.%d/%d\n", 
			   prf >> 24, (prf >> 16) % 256, (prf >> 8) % 256, prf % 256, plen);
	}
	if (IS_LEAF(n)) {
		struct leaf *l=(struct leaf *)n;
		struct fib_alias *fa;
		int i;
		for (i=32; i>=0; i--)
		  if(find_leaf_info(&l->list, i)) {
			
				struct list_head *fa_head = get_fa_head(l, i);
				
				if(!fa_head)
					continue;

				if(list_empty(fa_head))
					continue;

				putspace_seq(seq, indent+2);
				seq_printf(seq, "{/%d...dumping}\n", i);


				list_for_each_entry(fa, fa_head, fa_list) {
					putspace_seq(seq, indent+2);
					if (fa->fa_info->fib_nh == NULL) {
						seq_printf(seq, "Error _fib_nh=NULL\n");
						continue;
					}
					if (fa->fa_info == NULL) {
						seq_printf(seq, "Error fa_info=NULL\n");
						continue;
					}

					seq_printf(seq, "{type=%d scope=%d TOS=%d}\n",
					      fa->fa_type,
					      fa->fa_scope,
					      fa->fa_tos);
				}
			}
	}
	else if (IS_TNODE(n)) {
		struct tnode *tn=(struct tnode *)n;
		putspace_seq(seq, indent); seq_printf(seq, "|    ");
		seq_printf(seq, "{key prefix=%08x/", tn->key&TKEY_GET_MASK(0, tn->pos));
		printbin_seq(seq, tkey_extract_bits(tn->key, 0, tn->pos), tn->pos);
		seq_printf(seq, "}\n");
		putspace_seq(seq, indent); seq_printf(seq, "|    ");
		seq_printf(seq, "{pos=%d", tn->pos);
		seq_printf(seq, " (skip=%d bits)", tn->pos - pend);
		seq_printf(seq, " bits=%d (%u children)}\n", tn->bits, (1 << tn->bits));
		putspace_seq(seq, indent); seq_printf(seq, "|    ");
		seq_printf(seq, "{empty=%d full=%d}\n", tn->empty_children, tn->full_children);
	}
}

static void trie_dump_seq(struct seq_file *seq, struct trie *t)
{
	struct node *n=t->trie;
	int cindex=0;
	int indent=1;
	int pend=0;
	int depth = 0;

  	read_lock(&fib_lock);

	seq_printf(seq, "------ trie_dump of t=%p ------\n", t);
	if (n) {
		printnode_seq(seq, indent, n, pend, cindex, 0);
		if (IS_TNODE(n)) {
			struct tnode *tn=(struct tnode *)n;
			pend = tn->pos+tn->bits;
			putspace_seq(seq, indent); seq_printf(seq, "\\--\n");
			indent += 3;
			depth++;

			while (tn && cindex < (1 << tn->bits)) {
				if (tn->child[cindex]) {
					
					/* Got a child */
					
					printnode_seq(seq, indent, tn->child[cindex], pend, cindex, tn->bits);
					if (IS_LEAF(tn->child[cindex])) { 
						cindex++;
						
					}
					else {
						/* 
						 * New tnode. Decend one level 
						 */
						
						depth++;
						n=tn->child[cindex];
						tn=(struct tnode *)n;
						pend=tn->pos+tn->bits;
						putspace_seq(seq, indent); seq_printf(seq, "\\--\n");
						indent+=3;
						cindex=0;
					}
				}
				else 
					cindex++;

				/*
				 * Test if we are done 
				 */
				
				while (cindex >= (1 << tn->bits)) {

					/*
					 * Move upwards and test for root
					 * pop off all traversed  nodes
					 */
					
					if (NODE_PARENT(tn) == NULL) {
						tn = NULL;
						n = NULL;
						break;
					}
					else {
						cindex = tkey_extract_bits(tn->key, NODE_PARENT(tn)->pos, NODE_PARENT(tn)->bits);
						tn = NODE_PARENT(tn);
						cindex++;
						n=(struct node *)tn;
						pend=tn->pos+tn->bits;
						indent-=3;
						depth--;
					}
				}
			}
		}
		else n = NULL;
	}
	else seq_printf(seq, "------ trie is empty\n");

  	read_unlock(&fib_lock);
}

static struct trie_stat *trie_stat_new(void)
{
	struct trie_stat *s = kmalloc(sizeof(struct trie_stat), GFP_KERNEL);
	int i;
	
	if(s) {
		s->totdepth = 0;
		s->maxdepth = 0;
		s->tnodes = 0;
		s->leaves = 0;
		s->nullpointers = 0;
		
		for(i=0; i< MAX_CHILDS; i++)
			s->nodesizes[i] = 0;
	}
	return s;
}    

static struct trie_stat *trie_collect_stats(struct trie *t)
{
	struct node *n=t->trie;
	struct trie_stat *s = trie_stat_new();
	int cindex = 0;
	int indent = 1;
	int pend = 0;
	int depth = 0;

	read_lock(&fib_lock);		

	if (s) {
		if (n) {
			if (IS_TNODE(n)) {
				struct tnode *tn = (struct tnode *)n;
				pend=tn->pos+tn->bits;
				indent += 3;
				s->nodesizes[tn->bits]++;
				depth++;

				while (tn && cindex < (1 << tn->bits)) {
					if (tn->child[cindex]) {
						/* Got a child */
					
						if (IS_LEAF(tn->child[cindex])) { 
							cindex++;
						
							/* stats */
							if (depth > s->maxdepth)
								s->maxdepth = depth;
							s->totdepth += depth;
							s->leaves++;
						}
					
						else {
							/* 
							 * New tnode. Decend one level 
							 */
						
							s->tnodes++;
							s->nodesizes[tn->bits]++;
							depth++;
						
							n = tn->child[cindex];
							tn = (struct tnode *)n;
							pend = tn->pos+tn->bits;

							indent += 3;
							cindex = 0;
						}
					}
					else {
						cindex++;
						s->nullpointers++; 
					}

					/*
					 * Test if we are done 
					 */
				
					while (cindex >= (1 << tn->bits)) {

						/*
						 * Move upwards and test for root
						 * pop off all traversed  nodes
						 */

						
						if (NODE_PARENT(tn) == NULL) {
							tn = NULL;
							n = NULL;
							break;
						}
						else {
							cindex = tkey_extract_bits(tn->key, NODE_PARENT(tn)->pos, NODE_PARENT(tn)->bits);
							tn = NODE_PARENT(tn);
							cindex++; 
							n = (struct node *)tn;
							pend=tn->pos+tn->bits;
							indent -= 3;
							depth--;
						}
 					}
				}
			}
			else n = NULL;
		}
	}

	read_unlock(&fib_lock);		
	return s;
}

#ifdef CONFIG_PROC_FS

static struct fib_alias *fib_triestat_get_first(struct seq_file *seq)
{
	return NULL;
}

static struct fib_alias *fib_triestat_get_next(struct seq_file *seq)
{
	return NULL;
}

static void *fib_triestat_seq_start(struct seq_file *seq, loff_t *pos)
{
	void *v = NULL;

	if (ip_fib_main_table)
		v = *pos ? fib_triestat_get_next(seq) : SEQ_START_TOKEN;
	return v;
}

static void *fib_triestat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	++*pos;
	return v == SEQ_START_TOKEN ? fib_triestat_get_first(seq) : fib_triestat_get_next(seq);
}

static void fib_triestat_seq_stop(struct seq_file *seq, void *v)
{

}

/* 
 *	This outputs /proc/net/fib_triestats
 *
 *	It always works in backward compatibility mode.
 *	The format of the file is not supposed to be changed.
 */

static void collect_and_show(struct trie *t, struct seq_file *seq)
{
	int bytes = 0; /* How many bytes are used, a ref is 4 bytes */
	int i, max, pointers;
        struct trie_stat *stat;
	int avdepth;

	stat = trie_collect_stats(t);

	bytes=0;
	seq_printf(seq, "trie=%p\n", t);

	if (stat) {
		if (stat->leaves)
			avdepth=stat->totdepth*100 / stat->leaves;
		else
			avdepth=0;
		seq_printf(seq, "Aver depth: %d.%02d\n", avdepth / 100, avdepth % 100 );
		seq_printf(seq, "Max depth: %4d\n", stat->maxdepth);
				
		seq_printf(seq, "Leaves: %d\n", stat->leaves);
		bytes += sizeof(struct leaf) * stat->leaves;
		seq_printf(seq, "Internal nodes: %d\n", stat->tnodes);
		bytes += sizeof(struct tnode) * stat->tnodes;

		max = MAX_CHILDS-1;

		while (max >= 0 && stat->nodesizes[max] == 0)
			max--;
		pointers = 0;

		for (i = 1; i <= max; i++) 
			if (stat->nodesizes[i] != 0) {
				seq_printf(seq, "  %d: %d",  i, stat->nodesizes[i]);
				pointers += (1<<i) * stat->nodesizes[i];
			}
		seq_printf(seq, "\n");
		seq_printf(seq, "Pointers: %d\n", pointers);
		bytes += sizeof(struct node *) * pointers;
		seq_printf(seq, "Null ptrs: %d\n", stat->nullpointers);
		seq_printf(seq, "Total size: %d  kB\n", bytes / 1024);

		kfree(stat);
	}

#ifdef CONFIG_IP_FIB_TRIE_STATS
	seq_printf(seq, "Counters:\n---------\n");
	seq_printf(seq,"gets = %d\n", t->stats.gets);
	seq_printf(seq,"backtracks = %d\n", t->stats.backtrack);
	seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed);
	seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss);
	seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit);
#ifdef CLEAR_STATS
	memset(&(t->stats), 0, sizeof(t->stats));
#endif
#endif /*  CONFIG_IP_FIB_TRIE_STATS */
}

static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
	char bf[128];
    
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n", 
			   sizeof(struct leaf), sizeof(struct tnode));
		if (trie_local) 
			collect_and_show(trie_local, seq);

		if (trie_main) 
			collect_and_show(trie_main, seq);
	}
	else {
		snprintf(bf, sizeof(bf),
			 "*\t%08X\t%08X", 200, 400);
		
		seq_printf(seq, "%-127s\n", bf);
	}
	return 0;
}

static struct seq_operations fib_triestat_seq_ops = {
	.start  = fib_triestat_seq_start,
	.next   = fib_triestat_seq_next,
	.stop   = fib_triestat_seq_stop,
	.show   = fib_triestat_seq_show,
};

static int fib_triestat_seq_open(struct inode *inode, struct file *file)
{
	struct seq_file *seq;
	int rc = -ENOMEM;

	rc = seq_open(file, &fib_triestat_seq_ops);
	if (rc)
		goto out_kfree;

	seq	     = file->private_data;
out:
	return rc;
out_kfree:
	goto out;
}

static struct file_operations fib_triestat_seq_fops = {
	.owner		= THIS_MODULE,
	.open           = fib_triestat_seq_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release	= seq_release_private,
};

int __init fib_stat_proc_init(void)
{
	if (!proc_net_fops_create("fib_triestat", S_IRUGO, &fib_triestat_seq_fops))
		return -ENOMEM;
	return 0;
}

void __init fib_stat_proc_exit(void)
{
	proc_net_remove("fib_triestat");
}

static struct fib_alias *fib_trie_get_first(struct seq_file *seq)
{
	return NULL;
}

static struct fib_alias *fib_trie_get_next(struct seq_file *seq)
{
	return NULL;
}

static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
{
	void *v = NULL;

	if (ip_fib_main_table)
		v = *pos ? fib_trie_get_next(seq) : SEQ_START_TOKEN;
	return v;
}

static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	++*pos;
	return v == SEQ_START_TOKEN ? fib_trie_get_first(seq) : fib_trie_get_next(seq);
}

static void fib_trie_seq_stop(struct seq_file *seq, void *v)
{

}

/* 
 *	This outputs /proc/net/fib_trie.
 *
 *	It always works in backward compatibility mode.
 *	The format of the file is not supposed to be changed.
 */

static int fib_trie_seq_show(struct seq_file *seq, void *v)
{
	char bf[128];

	if (v == SEQ_START_TOKEN) {
		if (trie_local) 
			trie_dump_seq(seq, trie_local);

		if (trie_main) 
			trie_dump_seq(seq, trie_main);
	}

	else {
		snprintf(bf, sizeof(bf),
			 "*\t%08X\t%08X", 200, 400);
		seq_printf(seq, "%-127s\n", bf);
	}

	return 0;
}

static struct seq_operations fib_trie_seq_ops = {
	.start  = fib_trie_seq_start,
	.next   = fib_trie_seq_next,
	.stop   = fib_trie_seq_stop,
	.show   = fib_trie_seq_show,
};

static int fib_trie_seq_open(struct inode *inode, struct file *file)
{
	struct seq_file *seq;
	int rc = -ENOMEM;

	rc = seq_open(file, &fib_trie_seq_ops);
	if (rc)
		goto out_kfree;

	seq	     = file->private_data;
out:
	return rc;
out_kfree:
	goto out;
}

static struct file_operations fib_trie_seq_fops = {
	.owner		= THIS_MODULE,
	.open           = fib_trie_seq_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release	= seq_release_private,
};

int __init fib_proc_init(void)
{
	if (!proc_net_fops_create("fib_trie", S_IRUGO, &fib_trie_seq_fops))
		return -ENOMEM;
	return 0;
}

void __init fib_proc_exit(void)
{
	proc_net_remove("fib_trie");
}

#endif /* CONFIG_PROC_FS */