// SPDX-License-Identifier: GPL-2.0
/*
* BlueZ - Bluetooth protocol stack for Linux
*
* Copyright (C) 2021 Intel Corporation
*/
#include <linux/property.h>
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
#include <net/bluetooth/mgmt.h>
#include "hci_request.h"
#include "hci_codec.h"
#include "hci_debugfs.h"
#include "smp.h"
#include "eir.h"
#include "msft.h"
#include "aosp.h"
#include "leds.h"
static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
struct sk_buff *skb)
{
bt_dev_dbg(hdev, "result 0x%2.2x", result);
if (hdev->req_status != HCI_REQ_PEND)
return;
hdev->req_result = result;
hdev->req_status = HCI_REQ_DONE;
if (skb) {
struct sock *sk = hci_skb_sk(skb);
/* Drop sk reference if set */
if (sk)
sock_put(sk);
hdev->req_skb = skb_get(skb);
}
wake_up_interruptible(&hdev->req_wait_q);
}
static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode,
u32 plen, const void *param,
struct sock *sk)
{
int len = HCI_COMMAND_HDR_SIZE + plen;
struct hci_command_hdr *hdr;
struct sk_buff *skb;
skb = bt_skb_alloc(len, GFP_ATOMIC);
if (!skb)
return NULL;
hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
hdr->opcode = cpu_to_le16(opcode);
hdr->plen = plen;
if (plen)
skb_put_data(skb, param, plen);
bt_dev_dbg(hdev, "skb len %d", skb->len);
hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
hci_skb_opcode(skb) = opcode;
/* Grab a reference if command needs to be associated with a sock (e.g.
* likely mgmt socket that initiated the command).
*/
if (sk) {
hci_skb_sk(skb) = sk;
sock_hold(sk);
}
return skb;
}
static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen,
const void *param, u8 event, struct sock *sk)
{
struct hci_dev *hdev = req->hdev;
struct sk_buff *skb;
bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
/* If an error occurred during request building, there is no point in
* queueing the HCI command. We can simply return.
*/
if (req->err)
return;
skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk);
if (!skb) {
bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
opcode);
req->err = -ENOMEM;
return;
}
if (skb_queue_empty(&req->cmd_q))
bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
hci_skb_event(skb) = event;
skb_queue_tail(&req->cmd_q, skb);
}
static int hci_cmd_sync_run(struct hci_request *req)
{
struct hci_dev *hdev = req->hdev;
struct sk_buff *skb;
unsigned long flags;
bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
/* If an error occurred during request building, remove all HCI
* commands queued on the HCI request queue.
*/
if (req->err) {
skb_queue_purge(&req->cmd_q);
return req->err;
}
/* Do not allow empty requests */
if (skb_queue_empty(&req->cmd_q))
return -ENODATA;
skb = skb_peek_tail(&req->cmd_q);
bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete;
bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
spin_lock_irqsave(&hdev->cmd_q.lock, flags);
skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
queue_work(hdev->workqueue, &hdev->cmd_work);
return 0;
}
/* This function requires the caller holds hdev->req_lock. */
struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
const void *param, u8 event, u32 timeout,
struct sock *sk)
{
struct hci_request req;
struct sk_buff *skb;
int err = 0;
bt_dev_dbg(hdev, "Opcode 0x%4x", opcode);
hci_req_init(&req, hdev);
hci_cmd_sync_add(&req, opcode, plen, param, event, sk);
hdev->req_status = HCI_REQ_PEND;
err = hci_cmd_sync_run(&req);
if (err < 0)
return ERR_PTR(err);
err = wait_event_interruptible_timeout(hdev->req_wait_q,
hdev->req_status != HCI_REQ_PEND,
timeout);
if (err == -ERESTARTSYS)
return ERR_PTR(-EINTR);
switch (hdev->req_status) {
case HCI_REQ_DONE:
err = -bt_to_errno(hdev->req_result);
break;
case HCI_REQ_CANCELED:
err = -hdev->req_result;
break;
default:
err = -ETIMEDOUT;
break;
}
hdev->req_status = 0;
hdev->req_result = 0;
skb = hdev->req_skb;
hdev->req_skb = NULL;
bt_dev_dbg(hdev, "end: err %d", err);
if (err < 0) {
kfree_skb(skb);
return ERR_PTR(err);
}
return skb;
}
EXPORT_SYMBOL(__hci_cmd_sync_sk);
/* This function requires the caller holds hdev->req_lock. */
struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
const void *param, u32 timeout)
{
return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL);
}
EXPORT_SYMBOL(__hci_cmd_sync);
/* Send HCI command and wait for command complete event */
struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
const void *param, u32 timeout)
{
struct sk_buff *skb;
if (!test_bit(HCI_UP, &hdev->flags))
return ERR_PTR(-ENETDOWN);
bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
hci_req_sync_lock(hdev);
skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
hci_req_sync_unlock(hdev);
return skb;
}
EXPORT_SYMBOL(hci_cmd_sync);
/* This function requires the caller holds hdev->req_lock. */
struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
const void *param, u8 event, u32 timeout)
{
return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout,
NULL);
}
EXPORT_SYMBOL(__hci_cmd_sync_ev);
/* This function requires the caller holds hdev->req_lock. */
int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
const void *param, u8 event, u32 timeout,
struct sock *sk)
{
struct sk_buff *skb;
u8 status;
skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Opcode 0x%4x failed: %ld", opcode,
PTR_ERR(skb));
return PTR_ERR(skb);
}
/* If command return a status event skb will be set to NULL as there are
* no parameters, in case of failure IS_ERR(skb) would have be set to
* the actual error would be found with PTR_ERR(skb).
*/
if (!skb)
return 0;
status = skb->data[0];
kfree_skb(skb);
return status;
}
EXPORT_SYMBOL(__hci_cmd_sync_status_sk);
int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
const void *param, u32 timeout)
{
return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout,
NULL);
}
EXPORT_SYMBOL(__hci_cmd_sync_status);
static void hci_cmd_sync_work(struct work_struct *work)
{
struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work);
bt_dev_dbg(hdev, "");
/* Dequeue all entries and run them */
while (1) {
struct hci_cmd_sync_work_entry *entry;
mutex_lock(&hdev->cmd_sync_work_lock);
entry = list_first_entry_or_null(&hdev->cmd_sync_work_list,
struct hci_cmd_sync_work_entry,
list);
if (entry)
list_del(&entry->list);
mutex_unlock(&hdev->cmd_sync_work_lock);
if (!entry)
break;
bt_dev_dbg(hdev, "entry %p", entry);
if (entry->func) {
int err;
hci_req_sync_lock(hdev);
err = entry->func(hdev, entry->data);
if (entry->destroy)
entry->destroy(hdev, entry->data, err);
hci_req_sync_unlock(hdev);
}
kfree(entry);
}
}
static void hci_cmd_sync_cancel_work(struct work_struct *work)
{
struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work);
cancel_delayed_work_sync(&hdev->cmd_timer);
cancel_delayed_work_sync(&hdev->ncmd_timer);
atomic_set(&hdev->cmd_cnt, 1);
wake_up_interruptible(&hdev->req_wait_q);
}
static int hci_scan_disable_sync(struct hci_dev *hdev);
static int scan_disable_sync(struct hci_dev *hdev, void *data)
{
return hci_scan_disable_sync(hdev);
}
static int hci_inquiry_sync(struct hci_dev *hdev, u8 length);
static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data)
{
return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN);
}
static void le_scan_disable(struct work_struct *work)
{
struct hci_dev *hdev = container_of(work, struct hci_dev,
le_scan_disable.work);
int status;
bt_dev_dbg(hdev, "");
hci_dev_lock(hdev);
if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
goto _return;
cancel_delayed_work(&hdev->le_scan_restart);
status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL);
if (status) {
bt_dev_err(hdev, "failed to disable LE scan: %d", status);
goto _return;
}
hdev->discovery.scan_start = 0;
/* If we were running LE only scan, change discovery state. If
* we were running both LE and BR/EDR inquiry simultaneously,
* and BR/EDR inquiry is already finished, stop discovery,
* otherwise BR/EDR inquiry will stop discovery when finished.
* If we will resolve remote device name, do not change
* discovery state.
*/
if (hdev->discovery.type == DISCOV_TYPE_LE)
goto discov_stopped;
if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
goto _return;
if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
hdev->discovery.state != DISCOVERY_RESOLVING)
goto discov_stopped;
goto _return;
}
status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL);
if (status) {
bt_dev_err(hdev, "inquiry failed: status %d", status);
goto discov_stopped;
}
goto _return;
discov_stopped:
hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
_return:
hci_dev_unlock(hdev);
}
static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
u8 filter_dup);
static int hci_le_scan_restart_sync(struct hci_dev *hdev)
{
/* If controller is not scanning we are done. */
if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
return 0;
if (hdev->scanning_paused) {
bt_dev_dbg(hdev, "Scanning is paused for suspend");
return 0;
}
hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE,
LE_SCAN_FILTER_DUP_ENABLE);
}
static int le_scan_restart_sync(struct hci_dev *hdev, void *data)
{
return hci_le_scan_restart_sync(hdev);
}
static void le_scan_restart(struct work_struct *work)
{
struct hci_dev *hdev = container_of(work, struct hci_dev,
le_scan_restart.work);
unsigned long timeout, duration, scan_start, now;
int status;
bt_dev_dbg(hdev, "");
hci_dev_lock(hdev);
status = hci_cmd_sync_queue(hdev, le_scan_restart_sync, NULL, NULL);
if (status) {
bt_dev_err(hdev, "failed to restart LE scan: status %d",
status);
goto unlock;
}
if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
!hdev->discovery.scan_start)
goto unlock;
/* When the scan was started, hdev->le_scan_disable has been queued
* after duration from scan_start. During scan restart this job
* has been canceled, and we need to queue it again after proper
* timeout, to make sure that scan does not run indefinitely.
*/
duration = hdev->discovery.scan_duration;
scan_start = hdev->discovery.scan_start;
now = jiffies;
if (now - scan_start <= duration) {
int elapsed;
if (now >= scan_start)
elapsed = now - scan_start;
else
elapsed = ULONG_MAX - scan_start + now;
timeout = duration - elapsed;
} else {
timeout = 0;
}
queue_delayed_work(hdev->req_workqueue,
&hdev->le_scan_disable, timeout);
unlock:
hci_dev_unlock(hdev);
}
static int reenable_adv_sync(struct hci_dev *hdev, void *data)
{
bt_dev_dbg(hdev, "");
if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
list_empty(&hdev->adv_instances))
return 0;
if (hdev->cur_adv_instance) {
return hci_schedule_adv_instance_sync(hdev,
hdev->cur_adv_instance,
true);
} else {
if (ext_adv_capable(hdev)) {
hci_start_ext_adv_sync(hdev, 0x00);
} else {
hci_update_adv_data_sync(hdev, 0x00);
hci_update_scan_rsp_data_sync(hdev, 0x00);
hci_enable_advertising_sync(hdev);
}
}
return 0;
}
static void reenable_adv(struct work_struct *work)
{
struct hci_dev *hdev = container_of(work, struct hci_dev,
reenable_adv_work);
int status;
bt_dev_dbg(hdev, "");
hci_dev_lock(hdev);
status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL);
if (status)
bt_dev_err(hdev, "failed to reenable ADV: %d", status);
hci_dev_unlock(hdev);
}
static void cancel_adv_timeout(struct hci_dev *hdev)
{
if (hdev->adv_instance_timeout) {
hdev->adv_instance_timeout = 0;
cancel_delayed_work(&hdev->adv_instance_expire);
}
}
/* For a single instance:
* - force == true: The instance will be removed even when its remaining
* lifetime is not zero.
* - force == false: the instance will be deactivated but kept stored unless
* the remaining lifetime is zero.
*
* For instance == 0x00:
* - force == true: All instances will be removed regardless of their timeout
* setting.
* - force == false: Only instances that have a timeout will be removed.
*/
int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk,
u8 instance, bool force)
{
struct adv_info *adv_instance, *n, *next_instance = NULL;
int err;
u8 rem_inst;
/* Cancel any timeout concerning the removed instance(s). */
if (!instance || hdev->cur_adv_instance == instance)
cancel_adv_timeout(hdev);
/* Get the next instance to advertise BEFORE we remove
* the current one. This can be the same instance again
* if there is only one instance.
*/
if (instance && hdev->cur_adv_instance == instance)
next_instance = hci_get_next_instance(hdev, instance);
if (instance == 0x00) {
list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
list) {
if (!(force || adv_instance->timeout))
continue;
rem_inst = adv_instance->instance;
err = hci_remove_adv_instance(hdev, rem_inst);
if (!err)
mgmt_advertising_removed(sk, hdev, rem_inst);
}
} else {
adv_instance = hci_find_adv_instance(hdev, instance);
if (force || (adv_instance && adv_instance->timeout &&
!adv_instance->remaining_time)) {
/* Don't advertise a removed instance. */
if (next_instance &&
next_instance->instance == instance)
next_instance = NULL;
err = hci_remove_adv_instance(hdev, instance);
if (!err)
mgmt_advertising_removed(sk, hdev, instance);
}
}
if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
return 0;
if (next_instance && !ext_adv_capable(hdev))
return hci_schedule_adv_instance_sync(hdev,
next_instance->instance,
false);
return 0;
}
static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data)
{
u8 instance = *(u8 *)data;
kfree(data);
hci_clear_adv_instance_sync(hdev, NULL, instance, false);
if (list_empty(&hdev->adv_instances))
return hci_disable_advertising_sync(hdev);
return 0;
}
static void adv_timeout_expire(struct work_struct *work)
{
u8 *inst_ptr;
struct hci_dev *hdev = container_of(work, struct hci_dev,
adv_instance_expire.work);
bt_dev_dbg(hdev, "");
hci_dev_lock(hdev);
hdev->adv_instance_timeout = 0;
if (hdev->cur_adv_instance == 0x00)
goto unlock;
inst_ptr = kmalloc(1, GFP_KERNEL);
if (!inst_ptr)
goto unlock;
*inst_ptr = hdev->cur_adv_instance;
hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL);
unlock:
hci_dev_unlock(hdev);
}
void hci_cmd_sync_init(struct hci_dev *hdev)
{
INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work);
INIT_LIST_HEAD(&hdev->cmd_sync_work_list);
mutex_init(&hdev->cmd_sync_work_lock);
INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work);
INIT_WORK(&hdev->reenable_adv_work, reenable_adv);
INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable);
INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart);
INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
}
void hci_cmd_sync_clear(struct hci_dev *hdev)
{
struct hci_cmd_sync_work_entry *entry, *tmp;
cancel_work_sync(&hdev->cmd_sync_work);
cancel_work_sync(&hdev->reenable_adv_work);
list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) {
if (entry->destroy)
entry->destroy(hdev, entry->data, -ECANCELED);
list_del(&entry->list);
kfree(entry);
}
}
void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
{
bt_dev_dbg(hdev, "err 0x%2.2x", err);
if (hdev->req_status == HCI_REQ_PEND) {
hdev->req_result = err;
hdev->req_status = HCI_REQ_CANCELED;
cancel_delayed_work_sync(&hdev->cmd_timer);
cancel_delayed_work_sync(&hdev->ncmd_timer);
atomic_set(&hdev->cmd_cnt, 1);
wake_up_interruptible(&hdev->req_wait_q);
}
}
void hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
{
bt_dev_dbg(hdev, "err 0x%2.2x", err);
if (hdev->req_status == HCI_REQ_PEND) {
hdev->req_result = err;
hdev->req_status = HCI_REQ_CANCELED;
queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work);
}
}
EXPORT_SYMBOL(hci_cmd_sync_cancel);
int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
void *data, hci_cmd_sync_work_destroy_t destroy)
{
struct hci_cmd_sync_work_entry *entry;
if (hci_dev_test_flag(hdev, HCI_UNREGISTER))
return -ENODEV;
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
entry->func = func;
entry->data = data;
entry->destroy = destroy;
mutex_lock(&hdev->cmd_sync_work_lock);
list_add_tail(&entry->list, &hdev->cmd_sync_work_list);
mutex_unlock(&hdev->cmd_sync_work_lock);
queue_work(hdev->req_workqueue, &hdev->cmd_sync_work);
return 0;
}
EXPORT_SYMBOL(hci_cmd_sync_queue);
int hci_update_eir_sync(struct hci_dev *hdev)
{
struct hci_cp_write_eir cp;
bt_dev_dbg(hdev, "");
if (!hdev_is_powered(hdev))
return 0;
if (!lmp_ext_inq_capable(hdev))
return 0;
if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
return 0;
if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
return 0;
memset(&cp, 0, sizeof(cp));
eir_create(hdev, cp.data);
if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
return 0;
memcpy(hdev->eir, cp.data, sizeof(cp.data));
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
HCI_CMD_TIMEOUT);
}
static u8 get_service_classes(struct hci_dev *hdev)
{
struct bt_uuid *uuid;
u8 val = 0;
list_for_each_entry(uuid, &hdev->uuids, list)
val |= uuid->svc_hint;
return val;
}
int hci_update_class_sync(struct hci_dev *hdev)
{
u8 cod[3];
bt_dev_dbg(hdev, "");
if (!hdev_is_powered(hdev))
return 0;
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
return 0;
if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
return 0;
cod[0] = hdev->minor_class;
cod[1] = hdev->major_class;
cod[2] = get_service_classes(hdev);
if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
cod[1] |= 0x20;
if (memcmp(cod, hdev->dev_class, 3) == 0)
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV,
sizeof(cod), cod, HCI_CMD_TIMEOUT);
}
static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
{
/* If there is no connection we are OK to advertise. */
if (hci_conn_num(hdev, LE_LINK) == 0)
return true;
/* Check le_states if there is any connection in peripheral role. */
if (hdev->conn_hash.le_num_peripheral > 0) {
/* Peripheral connection state and non connectable mode
* bit 20.
*/
if (!connectable && !(hdev->le_states[2] & 0x10))
return false;
/* Peripheral connection state and connectable mode bit 38
* and scannable bit 21.
*/
if (connectable && (!(hdev->le_states[4] & 0x40) ||
!(hdev->le_states[2] & 0x20)))
return false;
}
/* Check le_states if there is any connection in central role. */
if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
/* Central connection state and non connectable mode bit 18. */
if (!connectable && !(hdev->le_states[2] & 0x02))
return false;
/* Central connection state and connectable mode bit 35 and
* scannable 19.
*/
if (connectable && (!(hdev->le_states[4] & 0x08) ||
!(hdev->le_states[2] & 0x08)))
return false;
}
return true;
}
static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
{
/* If privacy is not enabled don't use RPA */
if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
return false;
/* If basic privacy mode is enabled use RPA */
if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
return true;
/* If limited privacy mode is enabled don't use RPA if we're
* both discoverable and bondable.
*/
if ((flags & MGMT_ADV_FLAG_DISCOV) &&
hci_dev_test_flag(hdev, HCI_BONDABLE))
return false;
/* We're neither bondable nor discoverable in the limited
* privacy mode, therefore use RPA.
*/
return true;
}
static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa)
{
/* If we're advertising or initiating an LE connection we can't
* go ahead and change the random address at this time. This is
* because the eventual initiator address used for the
* subsequently created connection will be undefined (some
* controllers use the new address and others the one we had
* when the operation started).
*
* In this kind of scenario skip the update and let the random
* address be updated at the next cycle.
*/
if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
hci_lookup_le_connect(hdev)) {
bt_dev_dbg(hdev, "Deferring random address update");
hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
return 0;
}
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR,
6, rpa, HCI_CMD_TIMEOUT);
}
int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy,
bool rpa, u8 *own_addr_type)
{
int err;
/* If privacy is enabled use a resolvable private address. If
* current RPA has expired or there is something else than
* the current RPA in use, then generate a new one.
*/
if (rpa) {
/* If Controller supports LL Privacy use own address type is
* 0x03
*/
if (use_ll_privacy(hdev))
*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
else
*own_addr_type = ADDR_LE_DEV_RANDOM;
/* Check if RPA is valid */
if (rpa_valid(hdev))
return 0;
err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
if (err < 0) {
bt_dev_err(hdev, "failed to generate new RPA");
return err;
}
err = hci_set_random_addr_sync(hdev, &hdev->rpa);
if (err)
return err;
return 0;
}
/* In case of required privacy without resolvable private address,
* use an non-resolvable private address. This is useful for active
* scanning and non-connectable advertising.
*/
if (require_privacy) {
bdaddr_t nrpa;
while (true) {
/* The non-resolvable private address is generated
* from random six bytes with the two most significant
* bits cleared.
*/
get_random_bytes(&nrpa, 6);
nrpa.b[5] &= 0x3f;
/* The non-resolvable private address shall not be
* equal to the public address.
*/
if (bacmp(&hdev->bdaddr, &nrpa))
break;
}
*own_addr_type = ADDR_LE_DEV_RANDOM;
return hci_set_random_addr_sync(hdev, &nrpa);
}
/* If forcing static address is in use or there is no public
* address use the static address as random address (but skip
* the HCI command if the current random address is already the
* static one.
*
* In case BR/EDR has been disabled on a dual-mode controller
* and a static address has been configured, then use that
* address instead of the public BR/EDR address.
*/
if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
!bacmp(&hdev->bdaddr, BDADDR_ANY) ||
(!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
bacmp(&hdev->static_addr, BDADDR_ANY))) {
*own_addr_type = ADDR_LE_DEV_RANDOM;
if (bacmp(&hdev->static_addr, &hdev->random_addr))
return hci_set_random_addr_sync(hdev,
&hdev->static_addr);
return 0;
}
/* Neither privacy nor static address is being used so use a
* public address.
*/
*own_addr_type = ADDR_LE_DEV_PUBLIC;
return 0;
}
static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
{
struct hci_cp_le_set_ext_adv_enable *cp;
struct hci_cp_ext_adv_set *set;
u8 data[sizeof(*cp) + sizeof(*set) * 1];
u8 size;
/* If request specifies an instance that doesn't exist, fail */
if (instance > 0) {
struct adv_info *adv;
adv = hci_find_adv_instance(hdev, instance);
if (!adv)
return -EINVAL;
/* If not enabled there is nothing to do */
if (!adv->enabled)
return 0;
}
memset(data, 0, sizeof(data));
cp = (void *)data;
set = (void *)cp->data;
/* Instance 0x00 indicates all advertising instances will be disabled */
cp->num_of_sets = !!instance;
cp->enable = 0x00;
set->handle = instance;
size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
size, data, HCI_CMD_TIMEOUT);
}
static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance,
bdaddr_t *random_addr)
{
struct hci_cp_le_set_adv_set_rand_addr cp;
int err;
if (!instance) {
/* Instance 0x00 doesn't have an adv_info, instead it uses
* hdev->random_addr to track its address so whenever it needs
* to be updated this also set the random address since
* hdev->random_addr is shared with scan state machine.
*/
err = hci_set_random_addr_sync(hdev, random_addr);
if (err)
return err;
}
memset(&cp, 0, sizeof(cp));
cp.handle = instance;
bacpy(&cp.bdaddr, random_addr);
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
{
struct hci_cp_le_set_ext_adv_params cp;
bool connectable;
u32 flags;
bdaddr_t random_addr;
u8 own_addr_type;
int err;
struct adv_info *adv;
bool secondary_adv;
if (instance > 0) {
adv = hci_find_adv_instance(hdev, instance);
if (!adv)
return -EINVAL;
} else {
adv = NULL;
}
/* Updating parameters of an active instance will return a
* Command Disallowed error, so we must first disable the
* instance if it is active.
*/
if (adv && !adv->pending) {
err = hci_disable_ext_adv_instance_sync(hdev, instance);
if (err)
return err;
}
flags = hci_adv_instance_flags(hdev, instance);
/* If the "connectable" instance flag was not set, then choose between
* ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
*/
connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
mgmt_get_connectable(hdev);
if (!is_advertising_allowed(hdev, connectable))
return -EPERM;
/* Set require_privacy to true only when non-connectable
* advertising is used. In that case it is fine to use a
* non-resolvable private address.
*/
err = hci_get_random_address(hdev, !connectable,
adv_use_rpa(hdev, flags), adv,
&own_addr_type, &random_addr);
if (err < 0)
return err;
memset(&cp, 0, sizeof(cp));
if (adv) {
hci_cpu_to_le24(adv->min_interval, cp.min_interval);
hci_cpu_to_le24(adv->max_interval, cp.max_interval);
cp.tx_power = adv->tx_power;
} else {
hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
}
secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
if (connectable) {
if (secondary_adv)
cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
else
cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
} else if (hci_adv_instance_is_scannable(hdev, instance) ||
(flags & MGMT_ADV_PARAM_SCAN_RSP)) {
if (secondary_adv)
cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
else
cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
} else {
if (secondary_adv)
cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
else
cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
}
/* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter
* contains the peer’s Identity Address and the Peer_Address_Type
* parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01).
* These parameters are used to locate the corresponding local IRK in
* the resolving list; this IRK is used to generate their own address
* used in the advertisement.
*/
if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED)
hci_copy_identity_address(hdev, &cp.peer_addr,
&cp.peer_addr_type);
cp.own_addr_type = own_addr_type;
cp.channel_map = hdev->le_adv_channel_map;
cp.handle = instance;
if (flags & MGMT_ADV_FLAG_SEC_2M) {
cp.primary_phy = HCI_ADV_PHY_1M;
cp.secondary_phy = HCI_ADV_PHY_2M;
} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
cp.primary_phy = HCI_ADV_PHY_CODED;
cp.secondary_phy = HCI_ADV_PHY_CODED;
} else {
/* In all other cases use 1M */
cp.primary_phy = HCI_ADV_PHY_1M;
cp.secondary_phy = HCI_ADV_PHY_1M;
}
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
if (err)
return err;
if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
bacmp(&random_addr, BDADDR_ANY)) {
/* Check if random address need to be updated */
if (adv) {
if (!bacmp(&random_addr, &adv->random_addr))
return 0;
} else {
if (!bacmp(&random_addr, &hdev->random_addr))
return 0;
}
return hci_set_adv_set_random_addr_sync(hdev, instance,
&random_addr);
}
return 0;
}
static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
{
struct {
struct hci_cp_le_set_ext_scan_rsp_data cp;
u8 data[HCI_MAX_EXT_AD_LENGTH];
} pdu;
u8 len;
struct adv_info *adv = NULL;
int err;
memset(&pdu, 0, sizeof(pdu));
if (instance) {
adv = hci_find_adv_instance(hdev, instance);
if (!adv || !adv->scan_rsp_changed)
return 0;
}
len = eir_create_scan_rsp(hdev, instance, pdu.data);
pdu.cp.handle = instance;
pdu.cp.length = len;
pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
sizeof(pdu.cp) + len, &pdu.cp,
HCI_CMD_TIMEOUT);
if (err)
return err;
if (adv) {
adv->scan_rsp_changed = false;
} else {
memcpy(hdev->scan_rsp_data, pdu.data, len);
hdev->scan_rsp_data_len = len;
}
return 0;
}
static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
{
struct hci_cp_le_set_scan_rsp_data cp;
u8 len;
memset(&cp, 0, sizeof(cp));
len = eir_create_scan_rsp(hdev, instance, cp.data);
if (hdev->scan_rsp_data_len == len &&
!memcmp(cp.data, hdev->scan_rsp_data, len))
return 0;
memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
hdev->scan_rsp_data_len = len;
cp.length = len;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
{
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
return 0;
if (ext_adv_capable(hdev))
return hci_set_ext_scan_rsp_data_sync(hdev, instance);
return __hci_set_scan_rsp_data_sync(hdev, instance);
}
int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance)
{
struct hci_cp_le_set_ext_adv_enable *cp;
struct hci_cp_ext_adv_set *set;
u8 data[sizeof(*cp) + sizeof(*set) * 1];
struct adv_info *adv;
if (instance > 0) {
adv = hci_find_adv_instance(hdev, instance);
if (!adv)
return -EINVAL;
/* If already enabled there is nothing to do */
if (adv->enabled)
return 0;
} else {
adv = NULL;
}
cp = (void *)data;
set = (void *)cp->data;
memset(cp, 0, sizeof(*cp));
cp->enable = 0x01;
cp->num_of_sets = 0x01;
memset(set, 0, sizeof(*set));
set->handle = instance;
/* Set duration per instance since controller is responsible for
* scheduling it.
*/
if (adv && adv->timeout) {
u16 duration = adv->timeout * MSEC_PER_SEC;
/* Time = N * 10 ms */
set->duration = cpu_to_le16(duration / 10);
}
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
sizeof(*cp) +
sizeof(*set) * cp->num_of_sets,
data, HCI_CMD_TIMEOUT);
}
int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance)
{
int err;
err = hci_setup_ext_adv_instance_sync(hdev, instance);
if (err)
return err;
err = hci_set_ext_scan_rsp_data_sync(hdev, instance);
if (err)
return err;
return hci_enable_ext_advertising_sync(hdev, instance);
}
static int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
{
struct hci_cp_le_set_per_adv_enable cp;
/* If periodic advertising already disabled there is nothing to do. */
if (!hci_dev_test_flag(hdev, HCI_LE_PER_ADV))
return 0;
memset(&cp, 0, sizeof(cp));
cp.enable = 0x00;
cp.handle = instance;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance,
u16 min_interval, u16 max_interval)
{
struct hci_cp_le_set_per_adv_params cp;
memset(&cp, 0, sizeof(cp));
if (!min_interval)
min_interval = DISCOV_LE_PER_ADV_INT_MIN;
if (!max_interval)
max_interval = DISCOV_LE_PER_ADV_INT_MAX;
cp.handle = instance;
cp.min_interval = cpu_to_le16(min_interval);
cp.max_interval = cpu_to_le16(max_interval);
cp.periodic_properties = 0x0000;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance)
{
struct {
struct hci_cp_le_set_per_adv_data cp;
u8 data[HCI_MAX_PER_AD_LENGTH];
} pdu;
u8 len;
memset(&pdu, 0, sizeof(pdu));
if (instance) {
struct adv_info *adv = hci_find_adv_instance(hdev, instance);
if (!adv || !adv->periodic)
return 0;
}
len = eir_create_per_adv_data(hdev, instance, pdu.data);
pdu.cp.length = len;
pdu.cp.handle = instance;
pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA,
sizeof(pdu.cp) + len, &pdu,
HCI_CMD_TIMEOUT);
}
static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
{
struct hci_cp_le_set_per_adv_enable cp;
/* If periodic advertising already enabled there is nothing to do. */
if (hci_dev_test_flag(hdev, HCI_LE_PER_ADV))
return 0;
memset(&cp, 0, sizeof(cp));
cp.enable = 0x01;
cp.handle = instance;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
/* Checks if periodic advertising data contains a Basic Announcement and if it
* does generates a Broadcast ID and add Broadcast Announcement.
*/
static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv)
{
u8 bid[3];
u8 ad[4 + 3];
/* Skip if NULL adv as instance 0x00 is used for general purpose
* advertising so it cannot used for the likes of Broadcast Announcement
* as it can be overwritten at any point.
*/
if (!adv)
return 0;
/* Check if PA data doesn't contains a Basic Audio Announcement then
* there is nothing to do.
*/
if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len,
0x1851, NULL))
return 0;
/* Check if advertising data already has a Broadcast Announcement since
* the process may want to control the Broadcast ID directly and in that
* case the kernel shall no interfere.
*/
if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852,
NULL))
return 0;
/* Generate Broadcast ID */
get_random_bytes(bid, sizeof(bid));
eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid));
hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL);
return hci_update_adv_data_sync(hdev, adv->instance);
}
int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len,
u8 *data, u32 flags, u16 min_interval,
u16 max_interval, u16 sync_interval)
{
struct adv_info *adv = NULL;
int err;
bool added = false;
hci_disable_per_advertising_sync(hdev, instance);
if (instance) {
adv = hci_find_adv_instance(hdev, instance);
/* Create an instance if that could not be found */
if (!adv) {
adv = hci_add_per_instance(hdev, instance, flags,
data_len, data,
sync_interval,
sync_interval);
if (IS_ERR(adv))
return PTR_ERR(adv);
added = true;
}
}
/* Only start advertising if instance 0 or if a dedicated instance has
* been added.
*/
if (!adv || added) {
err = hci_start_ext_adv_sync(hdev, instance);
if (err < 0)
goto fail;
err = hci_adv_bcast_annoucement(hdev, adv);
if (err < 0)
goto fail;
}
err = hci_set_per_adv_params_sync(hdev, instance, min_interval,
max_interval);
if (err < 0)
goto fail;
err = hci_set_per_adv_data_sync(hdev, instance);
if (err < 0)
goto fail;
err = hci_enable_per_advertising_sync(hdev, instance);
if (err < 0)
goto fail;
return 0;
fail:
if (added)
hci_remove_adv_instance(hdev, instance);
return err;
}
static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance)
{
int err;
if (ext_adv_capable(hdev))
return hci_start_ext_adv_sync(hdev, instance);
err = hci_update_adv_data_sync(hdev, instance);
if (err)
return err;
err = hci_update_scan_rsp_data_sync(hdev, instance);
if (err)
return err;
return hci_enable_advertising_sync(hdev);
}
int hci_enable_advertising_sync(struct hci_dev *hdev)
{
struct adv_info *adv_instance;
struct hci_cp_le_set_adv_param cp;
u8 own_addr_type, enable = 0x01;
bool connectable;
u16 adv_min_interval, adv_max_interval;
u32 flags;
u8 status;
if (ext_adv_capable(hdev))
return hci_enable_ext_advertising_sync(hdev,
hdev->cur_adv_instance);
flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
/* If the "connectable" instance flag was not set, then choose between
* ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
*/
connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
mgmt_get_connectable(hdev);
if (!is_advertising_allowed(hdev, connectable))
return -EINVAL;
status = hci_disable_advertising_sync(hdev);
if (status)
return status;
/* Clear the HCI_LE_ADV bit temporarily so that the
* hci_update_random_address knows that it's safe to go ahead
* and write a new random address. The flag will be set back on
* as soon as the SET_ADV_ENABLE HCI command completes.
*/
hci_dev_clear_flag(hdev, HCI_LE_ADV);
/* Set require_privacy to true only when non-connectable
* advertising is used. In that case it is fine to use a
* non-resolvable private address.
*/
status = hci_update_random_address_sync(hdev, !connectable,
adv_use_rpa(hdev, flags),
&own_addr_type);
if (status)
return status;
memset(&cp, 0, sizeof(cp));
if (adv_instance) {
adv_min_interval = adv_instance->min_interval;
adv_max_interval = adv_instance->max_interval;
} else {
adv_min_interval = hdev->le_adv_min_interval;
adv_max_interval = hdev->le_adv_max_interval;
}
if (connectable) {
cp.type = LE_ADV_IND;
} else {
if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance))
cp.type = LE_ADV_SCAN_IND;
else
cp.type = LE_ADV_NONCONN_IND;
if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
}
}
cp.min_interval = cpu_to_le16(adv_min_interval);
cp.max_interval = cpu_to_le16(adv_max_interval);
cp.own_address_type = own_addr_type;
cp.channel_map = hdev->le_adv_channel_map;
status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
if (status)
return status;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
sizeof(enable), &enable, HCI_CMD_TIMEOUT);
}
static int enable_advertising_sync(struct hci_dev *hdev, void *data)
{
return hci_enable_advertising_sync(hdev);
}
int hci_enable_advertising(struct hci_dev *hdev)
{
if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
list_empty(&hdev->adv_instances))
return 0;
return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL);
}
int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance,
struct sock *sk)
{
int err;
if (!ext_adv_capable(hdev))
return 0;
err = hci_disable_ext_adv_instance_sync(hdev, instance);
if (err)
return err;
/* If request specifies an instance that doesn't exist, fail */
if (instance > 0 && !hci_find_adv_instance(hdev, instance))
return -EINVAL;
return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET,
sizeof(instance), &instance, 0,
HCI_CMD_TIMEOUT, sk);
}
static int remove_ext_adv_sync(struct hci_dev *hdev, void *data)
{
struct adv_info *adv = data;
u8 instance = 0;
if (adv)
instance = adv->instance;
return hci_remove_ext_adv_instance_sync(hdev, instance, NULL);
}
int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance)
{
struct adv_info *adv = NULL;
if (instance) {
adv = hci_find_adv_instance(hdev, instance);
if (!adv)
return -EINVAL;
}
return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL);
}
int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason)
{
struct hci_cp_le_term_big cp;
memset(&cp, 0, sizeof(cp));
cp.handle = handle;
cp.reason = reason;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance)
{
struct {
struct hci_cp_le_set_ext_adv_data cp;
u8 data[HCI_MAX_EXT_AD_LENGTH];
} pdu;
u8 len;
struct adv_info *adv = NULL;
int err;
memset(&pdu, 0, sizeof(pdu));
if (instance) {
adv = hci_find_adv_instance(hdev, instance);
if (!adv || !adv->adv_data_changed)
return 0;
}
len = eir_create_adv_data(hdev, instance, pdu.data);
pdu.cp.length = len;
pdu.cp.handle = instance;
pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA,
sizeof(pdu.cp) + len, &pdu.cp,
HCI_CMD_TIMEOUT);
if (err)
return err;
/* Update data if the command succeed */
if (adv) {
adv->adv_data_changed = false;
} else {
memcpy(hdev->adv_data, pdu.data, len);
hdev->adv_data_len = len;
}
return 0;
}
static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance)
{
struct hci_cp_le_set_adv_data cp;
u8 len;
memset(&cp, 0, sizeof(cp));
len = eir_create_adv_data(hdev, instance, cp.data);
/* There's nothing to do if the data hasn't changed */
if (hdev->adv_data_len == len &&
memcmp(cp.data, hdev->adv_data, len) == 0)
return 0;
memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
hdev->adv_data_len = len;
cp.length = len;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance)
{
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
return 0;
if (ext_adv_capable(hdev))
return hci_set_ext_adv_data_sync(hdev, instance);
return hci_set_adv_data_sync(hdev, instance);
}
int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance,
bool force)
{
struct adv_info *adv = NULL;
u16 timeout;
if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev))
return -EPERM;
if (hdev->adv_instance_timeout)
return -EBUSY;
adv = hci_find_adv_instance(hdev, instance);
if (!adv)
return -ENOENT;
/* A zero timeout means unlimited advertising. As long as there is
* only one instance, duration should be ignored. We still set a timeout
* in case further instances are being added later on.
*
* If the remaining lifetime of the instance is more than the duration
* then the timeout corresponds to the duration, otherwise it will be
* reduced to the remaining instance lifetime.
*/
if (adv->timeout == 0 || adv->duration <= adv->remaining_time)
timeout = adv->duration;
else
timeout = adv->remaining_time;
/* The remaining time is being reduced unless the instance is being
* advertised without time limit.
*/
if (adv->timeout)
adv->remaining_time = adv->remaining_time - timeout;
/* Only use work for scheduling instances with legacy advertising */
if (!ext_adv_capable(hdev)) {
hdev->adv_instance_timeout = timeout;
queue_delayed_work(hdev->req_workqueue,
&hdev->adv_instance_expire,
msecs_to_jiffies(timeout * 1000));
}
/* If we're just re-scheduling the same instance again then do not
* execute any HCI commands. This happens when a single instance is
* being advertised.
*/
if (!force && hdev->cur_adv_instance == instance &&
hci_dev_test_flag(hdev, HCI_LE_ADV))
return 0;
hdev->cur_adv_instance = instance;
return hci_start_adv_sync(hdev, instance);
}
static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk)
{
int err;
if (!ext_adv_capable(hdev))
return 0;
/* Disable instance 0x00 to disable all instances */
err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
if (err)
return err;
return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS,
0, NULL, 0, HCI_CMD_TIMEOUT, sk);
}
static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force)
{
struct adv_info *adv, *n;
int err = 0;
if (ext_adv_capable(hdev))
/* Remove all existing sets */
err = hci_clear_adv_sets_sync(hdev, sk);
if (ext_adv_capable(hdev))
return err;
/* This is safe as long as there is no command send while the lock is
* held.
*/
hci_dev_lock(hdev);
/* Cleanup non-ext instances */
list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) {
u8 instance = adv->instance;
int err;
if (!(force || adv->timeout))
continue;
err = hci_remove_adv_instance(hdev, instance);
if (!err)
mgmt_advertising_removed(sk, hdev, instance);
}
hci_dev_unlock(hdev);
return 0;
}
static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance,
struct sock *sk)
{
int err = 0;
/* If we use extended advertising, instance has to be removed first. */
if (ext_adv_capable(hdev))
err = hci_remove_ext_adv_instance_sync(hdev, instance, sk);
if (ext_adv_capable(hdev))
return err;
/* This is safe as long as there is no command send while the lock is
* held.
*/
hci_dev_lock(hdev);
err = hci_remove_adv_instance(hdev, instance);
if (!err)
mgmt_advertising_removed(sk, hdev, instance);
hci_dev_unlock(hdev);
return err;
}
/* For a single instance:
* - force == true: The instance will be removed even when its remaining
* lifetime is not zero.
* - force == false: the instance will be deactivated but kept stored unless
* the remaining lifetime is zero.
*
* For instance == 0x00:
* - force == true: All instances will be removed regardless of their timeout
* setting.
* - force == false: Only instances that have a timeout will be removed.
*/
int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk,
u8 instance, bool force)
{
struct adv_info *next = NULL;
int err;
/* Cancel any timeout concerning the removed instance(s). */
if (!instance || hdev->cur_adv_instance == instance)
cancel_adv_timeout(hdev);
/* Get the next instance to advertise BEFORE we remove
* the current one. This can be the same instance again
* if there is only one instance.
*/
if (hdev->cur_adv_instance == instance)
next = hci_get_next_instance(hdev, instance);
if (!instance) {
err = hci_clear_adv_sync(hdev, sk, force);
if (err)
return err;
} else {
struct adv_info *adv = hci_find_adv_instance(hdev, instance);
if (force || (adv && adv->timeout && !adv->remaining_time)) {
/* Don't advertise a removed instance. */
if (next && next->instance == instance)
next = NULL;
err = hci_remove_adv_sync(hdev, instance, sk);
if (err)
return err;
}
}
if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
return 0;
if (next && !ext_adv_capable(hdev))
hci_schedule_adv_instance_sync(hdev, next->instance, false);
return 0;
}
int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle)
{
struct hci_cp_read_rssi cp;
cp.handle = handle;
return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp)
{
return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK,
sizeof(*cp), cp, HCI_CMD_TIMEOUT);
}
int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type)
{
struct hci_cp_read_tx_power cp;
cp.handle = handle;
cp.type = type;
return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
int hci_disable_advertising_sync(struct hci_dev *hdev)
{
u8 enable = 0x00;
int err = 0;
/* If controller is not advertising we are done. */
if (!hci_dev_test_flag(hdev, HCI_LE_ADV))
return 0;
if (ext_adv_capable(hdev))
err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
if (ext_adv_capable(hdev))
return err;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
sizeof(enable), &enable, HCI_CMD_TIMEOUT);
}
static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val,
u8 filter_dup)
{
struct hci_cp_le_set_ext_scan_enable cp;
memset(&cp, 0, sizeof(cp));
cp.enable = val;
if (hci_dev_test_flag(hdev, HCI_MESH))
cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
else
cp.filter_dup = filter_dup;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
u8 filter_dup)
{
struct hci_cp_le_set_scan_enable cp;
if (use_ext_scan(hdev))
return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup);
memset(&cp, 0, sizeof(cp));
cp.enable = val;
if (val && hci_dev_test_flag(hdev, HCI_MESH))
cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
else
cp.filter_dup = filter_dup;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val)
{
if (!use_ll_privacy(hdev))
return 0;
/* If controller is not/already resolving we are done. */
if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE,
sizeof(val), &val, HCI_CMD_TIMEOUT);
}
static int hci_scan_disable_sync(struct hci_dev *hdev)
{
int err;
/* If controller is not scanning we are done. */
if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
return 0;
if (hdev->scanning_paused) {
bt_dev_dbg(hdev, "Scanning is paused for suspend");
return 0;
}
err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
if (err) {
bt_dev_err(hdev, "Unable to disable scanning: %d", err);
return err;
}
return err;
}
static bool scan_use_rpa(struct hci_dev *hdev)
{
return hci_dev_test_flag(hdev, HCI_PRIVACY);
}
static void hci_start_interleave_scan(struct hci_dev *hdev)
{
hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
queue_delayed_work(hdev->req_workqueue,
&hdev->interleave_scan, 0);
}
static bool is_interleave_scanning(struct hci_dev *hdev)
{
return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
}
static void cancel_interleave_scan(struct hci_dev *hdev)
{
bt_dev_dbg(hdev, "cancelling interleave scan");
cancel_delayed_work_sync(&hdev->interleave_scan);
hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
}
/* Return true if interleave_scan wasn't started until exiting this function,
* otherwise, return false
*/
static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev)
{
/* Do interleaved scan only if all of the following are true:
* - There is at least one ADV monitor
* - At least one pending LE connection or one device to be scanned for
* - Monitor offloading is not supported
* If so, we should alternate between allowlist scan and one without
* any filters to save power.
*/
bool use_interleaving = hci_is_adv_monitoring(hdev) &&
!(list_empty(&hdev->pend_le_conns) &&
list_empty(&hdev->pend_le_reports)) &&
hci_get_adv_monitor_offload_ext(hdev) ==
HCI_ADV_MONITOR_EXT_NONE;
bool is_interleaving = is_interleave_scanning(hdev);
if (use_interleaving && !is_interleaving) {
hci_start_interleave_scan(hdev);
bt_dev_dbg(hdev, "starting interleave scan");
return true;
}
if (!use_interleaving && is_interleaving)
cancel_interleave_scan(hdev);
return false;
}
/* Removes connection to resolve list if needed.*/
static int hci_le_del_resolve_list_sync(struct hci_dev *hdev,
bdaddr_t *bdaddr, u8 bdaddr_type)
{
struct hci_cp_le_del_from_resolv_list cp;
struct bdaddr_list_with_irk *entry;
if (!use_ll_privacy(hdev))
return 0;
/* Check if the IRK has been programmed */
entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr,
bdaddr_type);
if (!entry)
return 0;
cp.bdaddr_type = bdaddr_type;
bacpy(&cp.bdaddr, bdaddr);
return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_le_del_accept_list_sync(struct hci_dev *hdev,
bdaddr_t *bdaddr, u8 bdaddr_type)
{
struct hci_cp_le_del_from_accept_list cp;
int err;
/* Check if device is on accept list before removing it */
if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type))
return 0;
cp.bdaddr_type = bdaddr_type;
bacpy(&cp.bdaddr, bdaddr);
/* Ignore errors when removing from resolving list as that is likely
* that the device was never added.
*/
hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
if (err) {
bt_dev_err(hdev, "Unable to remove from allow list: %d", err);
return err;
}
bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr,
cp.bdaddr_type);
return 0;
}
/* Adds connection to resolve list if needed.
* Setting params to NULL programs local hdev->irk
*/
static int hci_le_add_resolve_list_sync(struct hci_dev *hdev,
struct hci_conn_params *params)
{
struct hci_cp_le_add_to_resolv_list cp;
struct smp_irk *irk;
struct bdaddr_list_with_irk *entry;
if (!use_ll_privacy(hdev))
return 0;
/* Attempt to program local identity address, type and irk if params is
* NULL.
*/
if (!params) {
if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
return 0;
hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type);
memcpy(cp.peer_irk, hdev->irk, 16);
goto done;
}
irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type);
if (!irk)
return 0;
/* Check if the IK has _not_ been programmed yet. */
entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list,
¶ms->addr,
params->addr_type);
if (entry)
return 0;
cp.bdaddr_type = params->addr_type;
bacpy(&cp.bdaddr, ¶ms->addr);
memcpy(cp.peer_irk, irk->val, 16);
/* Default privacy mode is always Network */
params->privacy_mode = HCI_NETWORK_PRIVACY;
done:
if (hci_dev_test_flag(hdev, HCI_PRIVACY))
memcpy(cp.local_irk, hdev->irk, 16);
else
memset(cp.local_irk, 0, 16);
return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
/* Set Device Privacy Mode. */
static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev,
struct hci_conn_params *params)
{
struct hci_cp_le_set_privacy_mode cp;
struct smp_irk *irk;
/* If device privacy mode has already been set there is nothing to do */
if (params->privacy_mode == HCI_DEVICE_PRIVACY)
return 0;
/* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also
* indicates that LL Privacy has been enabled and
* HCI_OP_LE_SET_PRIVACY_MODE is supported.
*/
if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY))
return 0;
irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type);
if (!irk)
return 0;
memset(&cp, 0, sizeof(cp));
cp.bdaddr_type = irk->addr_type;
bacpy(&cp.bdaddr, &irk->bdaddr);
cp.mode = HCI_DEVICE_PRIVACY;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
/* Adds connection to allow list if needed, if the device uses RPA (has IRK)
* this attempts to program the device in the resolving list as well and
* properly set the privacy mode.
*/
static int hci_le_add_accept_list_sync(struct hci_dev *hdev,
struct hci_conn_params *params,
u8 *num_entries)
{
struct hci_cp_le_add_to_accept_list cp;
int err;
/* During suspend, only wakeable devices can be in acceptlist */
if (hdev->suspended &&
!(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
return 0;
/* Select filter policy to accept all advertising */
if (*num_entries >= hdev->le_accept_list_size)
return -ENOSPC;
/* Accept list can not be used with RPAs */
if (!use_ll_privacy(hdev) &&
hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type))
return -EINVAL;
/* Attempt to program the device in the resolving list first to avoid
* having to rollback in case it fails since the resolving list is
* dynamic it can probably be smaller than the accept list.
*/
err = hci_le_add_resolve_list_sync(hdev, params);
if (err) {
bt_dev_err(hdev, "Unable to add to resolve list: %d", err);
return err;
}
/* Set Privacy Mode */
err = hci_le_set_privacy_mode_sync(hdev, params);
if (err) {
bt_dev_err(hdev, "Unable to set privacy mode: %d", err);
return err;
}
/* Check if already in accept list */
if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr,
params->addr_type))
return 0;
*num_entries += 1;
cp.bdaddr_type = params->addr_type;
bacpy(&cp.bdaddr, ¶ms->addr);
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
if (err) {
bt_dev_err(hdev, "Unable to add to allow list: %d", err);
/* Rollback the device from the resolving list */
hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
return err;
}
bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr,
cp.bdaddr_type);
return 0;
}
/* This function disables/pause all advertising instances */
static int hci_pause_advertising_sync(struct hci_dev *hdev)
{
int err;
int old_state;
/* If already been paused there is nothing to do. */
if (hdev->advertising_paused)
return 0;
bt_dev_dbg(hdev, "Pausing directed advertising");
/* Stop directed advertising */
old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
if (old_state) {
/* When discoverable timeout triggers, then just make sure
* the limited discoverable flag is cleared. Even in the case
* of a timeout triggered from general discoverable, it is
* safe to unconditionally clear the flag.
*/
hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
hdev->discov_timeout = 0;
}
bt_dev_dbg(hdev, "Pausing advertising instances");
/* Call to disable any advertisements active on the controller.
* This will succeed even if no advertisements are configured.
*/
err = hci_disable_advertising_sync(hdev);
if (err)
return err;
/* If we are using software rotation, pause the loop */
if (!ext_adv_capable(hdev))
cancel_adv_timeout(hdev);
hdev->advertising_paused = true;
hdev->advertising_old_state = old_state;
return 0;
}
/* This function enables all user advertising instances */
static int hci_resume_advertising_sync(struct hci_dev *hdev)
{
struct adv_info *adv, *tmp;
int err;
/* If advertising has not been paused there is nothing to do. */
if (!hdev->advertising_paused)
return 0;
/* Resume directed advertising */
hdev->advertising_paused = false;
if (hdev->advertising_old_state) {
hci_dev_set_flag(hdev, HCI_ADVERTISING);
hdev->advertising_old_state = 0;
}
bt_dev_dbg(hdev, "Resuming advertising instances");
if (ext_adv_capable(hdev)) {
/* Call for each tracked instance to be re-enabled */
list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) {
err = hci_enable_ext_advertising_sync(hdev,
adv->instance);
if (!err)
continue;
/* If the instance cannot be resumed remove it */
hci_remove_ext_adv_instance_sync(hdev, adv->instance,
NULL);
}
} else {
/* Schedule for most recent instance to be restarted and begin
* the software rotation loop
*/
err = hci_schedule_adv_instance_sync(hdev,
hdev->cur_adv_instance,
true);
}
hdev->advertising_paused = false;
return err;
}
struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev,
bool extended, struct sock *sk)
{
u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA :
HCI_OP_READ_LOCAL_OOB_DATA;
return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
}
/* Device must not be scanning when updating the accept list.
*
* Update is done using the following sequence:
*
* use_ll_privacy((Disable Advertising) -> Disable Resolving List) ->
* Remove Devices From Accept List ->
* (has IRK && use_ll_privacy(Remove Devices From Resolving List))->
* Add Devices to Accept List ->
* (has IRK && use_ll_privacy(Remove Devices From Resolving List)) ->
* use_ll_privacy(Enable Resolving List -> (Enable Advertising)) ->
* Enable Scanning
*
* In case of failure advertising shall be restored to its original state and
* return would disable accept list since either accept or resolving list could
* not be programmed.
*
*/
static u8 hci_update_accept_list_sync(struct hci_dev *hdev)
{
struct hci_conn_params *params;
struct bdaddr_list *b, *t;
u8 num_entries = 0;
bool pend_conn, pend_report;
u8 filter_policy;
int err;
/* Pause advertising if resolving list can be used as controllers are
* cannot accept resolving list modifications while advertising.
*/
if (use_ll_privacy(hdev)) {
err = hci_pause_advertising_sync(hdev);
if (err) {
bt_dev_err(hdev, "pause advertising failed: %d", err);
return 0x00;
}
}
/* Disable address resolution while reprogramming accept list since
* devices that do have an IRK will be programmed in the resolving list
* when LL Privacy is enabled.
*/
err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
if (err) {
bt_dev_err(hdev, "Unable to disable LL privacy: %d", err);
goto done;
}
/* Go through the current accept list programmed into the
* controller one by one and check if that address is connected or is
* still in the list of pending connections or list of devices to
* report. If not present in either list, then remove it from
* the controller.
*/
list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) {
if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type))
continue;
pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
&b->bdaddr,
b->bdaddr_type);
pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
&b->bdaddr,
b->bdaddr_type);
/* If the device is not likely to connect or report,
* remove it from the acceptlist.
*/
if (!pend_conn && !pend_report) {
hci_le_del_accept_list_sync(hdev, &b->bdaddr,
b->bdaddr_type);
continue;
}
num_entries++;
}
/* Since all no longer valid accept list entries have been
* removed, walk through the list of pending connections
* and ensure that any new device gets programmed into
* the controller.
*
* If the list of the devices is larger than the list of
* available accept list entries in the controller, then
* just abort and return filer policy value to not use the
* accept list.
*/
list_for_each_entry(params, &hdev->pend_le_conns, action) {
err = hci_le_add_accept_list_sync(hdev, params, &num_entries);
if (err)
goto done;
}
/* After adding all new pending connections, walk through
* the list of pending reports and also add these to the
* accept list if there is still space. Abort if space runs out.
*/
list_for_each_entry(params, &hdev->pend_le_reports, action) {
err = hci_le_add_accept_list_sync(hdev, params, &num_entries);
if (err)
goto done;
}
/* Use the allowlist unless the following conditions are all true:
* - We are not currently suspending
* - There are 1 or more ADV monitors registered and it's not offloaded
* - Interleaved scanning is not currently using the allowlist
*/
if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
err = -EINVAL;
done:
filter_policy = err ? 0x00 : 0x01;
/* Enable address resolution when LL Privacy is enabled. */
err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
if (err)
bt_dev_err(hdev, "Unable to enable LL privacy: %d", err);
/* Resume advertising if it was paused */
if (use_ll_privacy(hdev))
hci_resume_advertising_sync(hdev);
/* Select filter policy to use accept list */
return filter_policy;
}
/* Returns true if an le connection is in the scanning state */
static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev)
{
struct hci_conn_hash *h = &hdev->conn_hash;
struct hci_conn *c;
rcu_read_lock();
list_for_each_entry_rcu(c, &h->list, list) {
if (c->type == LE_LINK && c->state == BT_CONNECT &&
test_bit(HCI_CONN_SCANNING, &c->flags)) {
rcu_read_unlock();
return true;
}
}
rcu_read_unlock();
return false;
}
static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type,
u16 interval, u16 window,
u8 own_addr_type, u8 filter_policy)
{
struct hci_cp_le_set_ext_scan_params *cp;
struct hci_cp_le_scan_phy_params *phy;
u8 data[sizeof(*cp) + sizeof(*phy) * 2];
u8 num_phy = 0;
cp = (void *)data;
phy = (void *)cp->data;
memset(data, 0, sizeof(data));
cp->own_addr_type = own_addr_type;
cp->filter_policy = filter_policy;
if (scan_1m(hdev) || scan_2m(hdev)) {
cp->scanning_phys |= LE_SCAN_PHY_1M;
phy->type = type;
phy->interval = cpu_to_le16(interval);
phy->window = cpu_to_le16(window);
num_phy++;
phy++;
}
if (scan_coded(hdev)) {
cp->scanning_phys |= LE_SCAN_PHY_CODED;
phy->type = type;
phy->interval = cpu_to_le16(interval);
phy->window = cpu_to_le16(window);
num_phy++;
phy++;
}
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
sizeof(*cp) + sizeof(*phy) * num_phy,
data, HCI_CMD_TIMEOUT);
}
static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type,
u16 interval, u16 window,
u8 own_addr_type, u8 filter_policy)
{
struct hci_cp_le_set_scan_param cp;
if (use_ext_scan(hdev))
return hci_le_set_ext_scan_param_sync(hdev, type, interval,
window, own_addr_type,
filter_policy);
memset(&cp, 0, sizeof(cp));
cp.type = type;
cp.interval = cpu_to_le16(interval);
cp.window = cpu_to_le16(window);
cp.own_address_type = own_addr_type;
cp.filter_policy = filter_policy;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval,
u16 window, u8 own_addr_type, u8 filter_policy,
u8 filter_dup)
{
int err;
if (hdev->scanning_paused) {
bt_dev_dbg(hdev, "Scanning is paused for suspend");
return 0;
}
err = hci_le_set_scan_param_sync(hdev, type, interval, window,
own_addr_type, filter_policy);
if (err)
return err;
return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup);
}
static int hci_passive_scan_sync(struct hci_dev *hdev)
{
u8 own_addr_type;
u8 filter_policy;
u16 window, interval;
u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE;
int err;
if (hdev->scanning_paused) {
bt_dev_dbg(hdev, "Scanning is paused for suspend");
return 0;
}
err = hci_scan_disable_sync(hdev);
if (err) {
bt_dev_err(hdev, "disable scanning failed: %d", err);
return err;
}
/* Set require_privacy to false since no SCAN_REQ are send
* during passive scanning. Not using an non-resolvable address
* here is important so that peer devices using direct
* advertising with our address will be correctly reported
* by the controller.
*/
if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev),
&own_addr_type))
return 0;
if (hdev->enable_advmon_interleave_scan &&
hci_update_interleaved_scan_sync(hdev))
return 0;
bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
/* Adding or removing entries from the accept list must
* happen before enabling scanning. The controller does
* not allow accept list modification while scanning.
*/
filter_policy = hci_update_accept_list_sync(hdev);
/* When the controller is using random resolvable addresses and
* with that having LE privacy enabled, then controllers with
* Extended Scanner Filter Policies support can now enable support
* for handling directed advertising.
*
* So instead of using filter polices 0x00 (no acceptlist)
* and 0x01 (acceptlist enabled) use the new filter policies
* 0x02 (no acceptlist) and 0x03 (acceptlist enabled).
*/
if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
(hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
filter_policy |= 0x02;
if (hdev->suspended) {
window = hdev->le_scan_window_suspend;
interval = hdev->le_scan_int_suspend;
} else if (hci_is_le_conn_scanning(hdev)) {
window = hdev->le_scan_window_connect;
interval = hdev->le_scan_int_connect;
} else if (hci_is_adv_monitoring(hdev)) {
window = hdev->le_scan_window_adv_monitor;
interval = hdev->le_scan_int_adv_monitor;
} else {
window = hdev->le_scan_window;
interval = hdev->le_scan_interval;
}
/* Disable all filtering for Mesh */
if (hci_dev_test_flag(hdev, HCI_MESH)) {
filter_policy = 0;
filter_dups = LE_SCAN_FILTER_DUP_DISABLE;
}
bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy);
return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window,
own_addr_type, filter_policy, filter_dups);
}
/* This function controls the passive scanning based on hdev->pend_le_conns
* list. If there are pending LE connection we start the background scanning,
* otherwise we stop it in the following sequence:
*
* If there are devices to scan:
*
* Disable Scanning -> Update Accept List ->
* use_ll_privacy((Disable Advertising) -> Disable Resolving List ->
* Update Resolving List -> Enable Resolving List -> (Enable Advertising)) ->
* Enable Scanning
*
* Otherwise:
*
* Disable Scanning
*/
int hci_update_passive_scan_sync(struct hci_dev *hdev)
{
int err;
if (!test_bit(HCI_UP, &hdev->flags) ||
test_bit(HCI_INIT, &hdev->flags) ||
hci_dev_test_flag(hdev, HCI_SETUP) ||
hci_dev_test_flag(hdev, HCI_CONFIG) ||
hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
hci_dev_test_flag(hdev, HCI_UNREGISTER))
return 0;
/* No point in doing scanning if LE support hasn't been enabled */
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
return 0;
/* If discovery is active don't interfere with it */
if (hdev->discovery.state != DISCOVERY_STOPPED)
return 0;
/* Reset RSSI and UUID filters when starting background scanning
* since these filters are meant for service discovery only.
*
* The Start Discovery and Start Service Discovery operations
* ensure to set proper values for RSSI threshold and UUID
* filter list. So it is safe to just reset them here.
*/
hci_discovery_filter_clear(hdev);
bt_dev_dbg(hdev, "ADV monitoring is %s",
hci_is_adv_monitoring(hdev) ? "on" : "off");
if (!hci_dev_test_flag(hdev, HCI_MESH) &&
list_empty(&hdev->pend_le_conns) &&
list_empty(&hdev->pend_le_reports) &&
!hci_is_adv_monitoring(hdev) &&
!hci_dev_test_flag(hdev, HCI_PA_SYNC)) {
/* If there is no pending LE connections or devices
* to be scanned for or no ADV monitors, we should stop the
* background scanning.
*/
bt_dev_dbg(hdev, "stopping background scanning");
err = hci_scan_disable_sync(hdev);
if (err)
bt_dev_err(hdev, "stop background scanning failed: %d",
err);
} else {
/* If there is at least one pending LE connection, we should
* keep the background scan running.
*/
/* If controller is connecting, we should not start scanning
* since some controllers are not able to scan and connect at
* the same time.
*/
if (hci_lookup_le_connect(hdev))
return 0;
bt_dev_dbg(hdev, "start background scanning");
err = hci_passive_scan_sync(hdev);
if (err)
bt_dev_err(hdev, "start background scanning failed: %d",
err);
}
return err;
}
static int update_scan_sync(struct hci_dev *hdev, void *data)
{
return hci_update_scan_sync(hdev);
}
int hci_update_scan(struct hci_dev *hdev)
{
return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL);
}
static int update_passive_scan_sync(struct hci_dev *hdev, void *data)
{
return hci_update_passive_scan_sync(hdev);
}
int hci_update_passive_scan(struct hci_dev *hdev)
{
/* Only queue if it would have any effect */
if (!test_bit(HCI_UP, &hdev->flags) ||
test_bit(HCI_INIT, &hdev->flags) ||
hci_dev_test_flag(hdev, HCI_SETUP) ||
hci_dev_test_flag(hdev, HCI_CONFIG) ||
hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
hci_dev_test_flag(hdev, HCI_UNREGISTER))
return 0;
return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL);
}
int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val)
{
int err;
if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev))
return 0;
err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
sizeof(val), &val, HCI_CMD_TIMEOUT);
if (!err) {
if (val) {
hdev->features[1][0] |= LMP_HOST_SC;
hci_dev_set_flag(hdev, HCI_SC_ENABLED);
} else {
hdev->features[1][0] &= ~LMP_HOST_SC;
hci_dev_clear_flag(hdev, HCI_SC_ENABLED);
}
}
return err;
}
int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode)
{
int err;
if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
lmp_host_ssp_capable(hdev))
return 0;
if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) {
__hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE,
sizeof(mode), &mode, HCI_CMD_TIMEOUT);
}
err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
sizeof(mode), &mode, HCI_CMD_TIMEOUT);
if (err)
return err;
return hci_write_sc_support_sync(hdev, 0x01);
}
int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul)
{
struct hci_cp_write_le_host_supported cp;
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) ||
!lmp_bredr_capable(hdev))
return 0;
/* Check first if we already have the right host state
* (host features set)
*/
if (le == lmp_host_le_capable(hdev) &&
simul == lmp_host_le_br_capable(hdev))
return 0;
memset(&cp, 0, sizeof(cp));
cp.le = le;
cp.simul = simul;
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_powered_update_adv_sync(struct hci_dev *hdev)
{
struct adv_info *adv, *tmp;
int err;
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
return 0;
/* If RPA Resolution has not been enable yet it means the
* resolving list is empty and we should attempt to program the
* local IRK in order to support using own_addr_type
* ADDR_LE_DEV_RANDOM_RESOLVED (0x03).
*/
if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) {
hci_le_add_resolve_list_sync(hdev, NULL);
hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
}
/* Make sure the controller has a good default for
* advertising data. This also applies to the case
* where BR/EDR was toggled during the AUTO_OFF phase.
*/
if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
list_empty(&hdev->adv_instances)) {
if (ext_adv_capable(hdev)) {
err = hci_setup_ext_adv_instance_sync(hdev, 0x00);
if (!err)
hci_update_scan_rsp_data_sync(hdev, 0x00);
} else {
err = hci_update_adv_data_sync(hdev, 0x00);
if (!err)
hci_update_scan_rsp_data_sync(hdev, 0x00);
}
if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
hci_enable_advertising_sync(hdev);
}
/* Call for each tracked instance to be scheduled */
list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list)
hci_schedule_adv_instance_sync(hdev, adv->instance, true);
return 0;
}
static int hci_write_auth_enable_sync(struct hci_dev *hdev)
{
u8 link_sec;
link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
if (link_sec == test_bit(HCI_AUTH, &hdev->flags))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
sizeof(link_sec), &link_sec,
HCI_CMD_TIMEOUT);
}
int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable)
{
struct hci_cp_write_page_scan_activity cp;
u8 type;
int err = 0;
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
return 0;
if (hdev->hci_ver < BLUETOOTH_VER_1_2)
return 0;
memset(&cp, 0, sizeof(cp));
if (enable) {
type = PAGE_SCAN_TYPE_INTERLACED;
/* 160 msec page scan interval */
cp.interval = cpu_to_le16(0x0100);
} else {
type = hdev->def_page_scan_type;
cp.interval = cpu_to_le16(hdev->def_page_scan_int);
}
cp.window = cpu_to_le16(hdev->def_page_scan_window);
if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval ||
__cpu_to_le16(hdev->page_scan_window) != cp.window) {
err = __hci_cmd_sync_status(hdev,
HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
if (err)
return err;
}
if (hdev->page_scan_type != type)
err = __hci_cmd_sync_status(hdev,
HCI_OP_WRITE_PAGE_SCAN_TYPE,
sizeof(type), &type,
HCI_CMD_TIMEOUT);
return err;
}
static bool disconnected_accept_list_entries(struct hci_dev *hdev)
{
struct bdaddr_list *b;
list_for_each_entry(b, &hdev->accept_list, list) {
struct hci_conn *conn;
conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
if (!conn)
return true;
if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
return true;
}
return false;
}
static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val)
{
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
sizeof(val), &val,
HCI_CMD_TIMEOUT);
}
int hci_update_scan_sync(struct hci_dev *hdev)
{
u8 scan;
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
return 0;
if (!hdev_is_powered(hdev))
return 0;
if (mgmt_powering_down(hdev))
return 0;
if (hdev->scanning_paused)
return 0;
if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
disconnected_accept_list_entries(hdev))
scan = SCAN_PAGE;
else
scan = SCAN_DISABLED;
if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
scan |= SCAN_INQUIRY;
if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
return 0;
return hci_write_scan_enable_sync(hdev, scan);
}
int hci_update_name_sync(struct hci_dev *hdev)
{
struct hci_cp_write_local_name cp;
memset(&cp, 0, sizeof(cp));
memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME,
sizeof(cp), &cp,
HCI_CMD_TIMEOUT);
}
/* This function perform powered update HCI command sequence after the HCI init
* sequence which end up resetting all states, the sequence is as follows:
*
* HCI_SSP_ENABLED(Enable SSP)
* HCI_LE_ENABLED(Enable LE)
* HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) ->
* Update adv data)
* Enable Authentication
* lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class ->
* Set Name -> Set EIR)
* HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address)
*/
int hci_powered_update_sync(struct hci_dev *hdev)
{
int err;
/* Register the available SMP channels (BR/EDR and LE) only when
* successfully powering on the controller. This late
* registration is required so that LE SMP can clearly decide if
* the public address or static address is used.
*/
smp_register(hdev);
err = hci_write_ssp_mode_sync(hdev, 0x01);
if (err)
return err;
err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00);
if (err)
return err;
err = hci_powered_update_adv_sync(hdev);
if (err)
return err;
err = hci_write_auth_enable_sync(hdev);
if (err)
return err;
if (lmp_bredr_capable(hdev)) {
if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
hci_write_fast_connectable_sync(hdev, true);
else
hci_write_fast_connectable_sync(hdev, false);
hci_update_scan_sync(hdev);
hci_update_class_sync(hdev);
hci_update_name_sync(hdev);
hci_update_eir_sync(hdev);
}
/* If forcing static address is in use or there is no public
* address use the static address as random address (but skip
* the HCI command if the current random address is already the
* static one.
*
* In case BR/EDR has been disabled on a dual-mode controller
* and a static address has been configured, then use that
* address instead of the public BR/EDR address.
*/
if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
(!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) {
if (bacmp(&hdev->static_addr, BDADDR_ANY))
return hci_set_random_addr_sync(hdev,
&hdev->static_addr);
}
return 0;
}
/**
* hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
* (BD_ADDR) for a HCI device from
* a firmware node property.
* @hdev: The HCI device
*
* Search the firmware node for 'local-bd-address'.
*
* All-zero BD addresses are rejected, because those could be properties
* that exist in the firmware tables, but were not updated by the firmware. For
* example, the DTS could define 'local-bd-address', with zero BD addresses.
*/
static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
{
struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
bdaddr_t ba;
int ret;
ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
(u8 *)&ba, sizeof(ba));
if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
return;
bacpy(&hdev->public_addr, &ba);
}
struct hci_init_stage {
int (*func)(struct hci_dev *hdev);
};
/* Run init stage NULL terminated function table */
static int hci_init_stage_sync(struct hci_dev *hdev,
const struct hci_init_stage *stage)
{
size_t i;
for (i = 0; stage[i].func; i++) {
int err;
err = stage[i].func(hdev);
if (err)
return err;
}
return 0;
}
/* Read Local Version */
static int hci_read_local_version_sync(struct hci_dev *hdev)
{
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Read BD Address */
static int hci_read_bd_addr_sync(struct hci_dev *hdev)
{
return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR,
0, NULL, HCI_CMD_TIMEOUT);
}
#define HCI_INIT(_func) \
{ \
.func = _func, \
}
static const struct hci_init_stage hci_init0[] = {
/* HCI_OP_READ_LOCAL_VERSION */
HCI_INIT(hci_read_local_version_sync),
/* HCI_OP_READ_BD_ADDR */
HCI_INIT(hci_read_bd_addr_sync),
{}
};
int hci_reset_sync(struct hci_dev *hdev)
{
int err;
set_bit(HCI_RESET, &hdev->flags);
err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL,
HCI_CMD_TIMEOUT);
if (err)
return err;
return 0;
}
static int hci_init0_sync(struct hci_dev *hdev)
{
int err;
bt_dev_dbg(hdev, "");
/* Reset */
if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
err = hci_reset_sync(hdev);
if (err)
return err;
}
return hci_init_stage_sync(hdev, hci_init0);
}
static int hci_unconf_init_sync(struct hci_dev *hdev)
{
int err;
if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
return 0;
err = hci_init0_sync(hdev);
if (err < 0)
return err;
if (hci_dev_test_flag(hdev, HCI_SETUP))
hci_debugfs_create_basic(hdev);
return 0;
}
/* Read Local Supported Features. */
static int hci_read_local_features_sync(struct hci_dev *hdev)
{
/* Not all AMP controllers support this command */
if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES,
0, NULL, HCI_CMD_TIMEOUT);
}
/* BR Controller init stage 1 command sequence */
static const struct hci_init_stage br_init1[] = {
/* HCI_OP_READ_LOCAL_FEATURES */
HCI_INIT(hci_read_local_features_sync),
/* HCI_OP_READ_LOCAL_VERSION */
HCI_INIT(hci_read_local_version_sync),
/* HCI_OP_READ_BD_ADDR */
HCI_INIT(hci_read_bd_addr_sync),
{}
};
/* Read Local Commands */
static int hci_read_local_cmds_sync(struct hci_dev *hdev)
{
/* All Bluetooth 1.2 and later controllers should support the
* HCI command for reading the local supported commands.
*
* Unfortunately some controllers indicate Bluetooth 1.2 support,
* but do not have support for this command. If that is the case,
* the driver can quirk the behavior and skip reading the local
* supported commands.
*/
if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
!test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS,
0, NULL, HCI_CMD_TIMEOUT);
return 0;
}
/* Read Local AMP Info */
static int hci_read_local_amp_info_sync(struct hci_dev *hdev)
{
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Read Data Blk size */
static int hci_read_data_block_size_sync(struct hci_dev *hdev)
{
return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Read Flow Control Mode */
static int hci_read_flow_control_mode_sync(struct hci_dev *hdev)
{
return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Read Location Data */
static int hci_read_location_data_sync(struct hci_dev *hdev)
{
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA,
0, NULL, HCI_CMD_TIMEOUT);
}
/* AMP Controller init stage 1 command sequence */
static const struct hci_init_stage amp_init1[] = {
/* HCI_OP_READ_LOCAL_VERSION */
HCI_INIT(hci_read_local_version_sync),
/* HCI_OP_READ_LOCAL_COMMANDS */
HCI_INIT(hci_read_local_cmds_sync),
/* HCI_OP_READ_LOCAL_AMP_INFO */
HCI_INIT(hci_read_local_amp_info_sync),
/* HCI_OP_READ_DATA_BLOCK_SIZE */
HCI_INIT(hci_read_data_block_size_sync),
/* HCI_OP_READ_FLOW_CONTROL_MODE */
HCI_INIT(hci_read_flow_control_mode_sync),
/* HCI_OP_READ_LOCATION_DATA */
HCI_INIT(hci_read_location_data_sync),
};
static int hci_init1_sync(struct hci_dev *hdev)
{
int err;
bt_dev_dbg(hdev, "");
/* Reset */
if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
err = hci_reset_sync(hdev);
if (err)
return err;
}
switch (hdev->dev_type) {
case HCI_PRIMARY:
hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
return hci_init_stage_sync(hdev, br_init1);
case HCI_AMP:
hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
return hci_init_stage_sync(hdev, amp_init1);
default:
bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
break;
}
return 0;
}
/* AMP Controller init stage 2 command sequence */
static const struct hci_init_stage amp_init2[] = {
/* HCI_OP_READ_LOCAL_FEATURES */
HCI_INIT(hci_read_local_features_sync),
};
/* Read Buffer Size (ACL mtu, max pkt, etc.) */
static int hci_read_buffer_size_sync(struct hci_dev *hdev)
{
return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Read Class of Device */
static int hci_read_dev_class_sync(struct hci_dev *hdev)
{
return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Read Local Name */
static int hci_read_local_name_sync(struct hci_dev *hdev)
{
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Read Voice Setting */
static int hci_read_voice_setting_sync(struct hci_dev *hdev)
{
return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Read Number of Supported IAC */
static int hci_read_num_supported_iac_sync(struct hci_dev *hdev)
{
return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Read Current IAC LAP */
static int hci_read_current_iac_lap_sync(struct hci_dev *hdev)
{
return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP,
0, NULL, HCI_CMD_TIMEOUT);
}
static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type,
u8 cond_type, bdaddr_t *bdaddr,
u8 auto_accept)
{
struct hci_cp_set_event_filter cp;
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
return 0;
if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
return 0;
memset(&cp, 0, sizeof(cp));
cp.flt_type = flt_type;
if (flt_type != HCI_FLT_CLEAR_ALL) {
cp.cond_type = cond_type;
bacpy(&cp.addr_conn_flt.bdaddr, bdaddr);
cp.addr_conn_flt.auto_accept = auto_accept;
}
return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT,
flt_type == HCI_FLT_CLEAR_ALL ?
sizeof(cp.flt_type) : sizeof(cp), &cp,
HCI_CMD_TIMEOUT);
}
static int hci_clear_event_filter_sync(struct hci_dev *hdev)
{
if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED))
return 0;
/* In theory the state machine should not reach here unless
* a hci_set_event_filter_sync() call succeeds, but we do
* the check both for parity and as a future reminder.
*/
if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
return 0;
return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00,
BDADDR_ANY, 0x00);
}
/* Connection accept timeout ~20 secs */
static int hci_write_ca_timeout_sync(struct hci_dev *hdev)
{
__le16 param = cpu_to_le16(0x7d00);
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT,
sizeof(param), ¶m, HCI_CMD_TIMEOUT);
}
/* BR Controller init stage 2 command sequence */
static const struct hci_init_stage br_init2[] = {
/* HCI_OP_READ_BUFFER_SIZE */
HCI_INIT(hci_read_buffer_size_sync),
/* HCI_OP_READ_CLASS_OF_DEV */
HCI_INIT(hci_read_dev_class_sync),
/* HCI_OP_READ_LOCAL_NAME */
HCI_INIT(hci_read_local_name_sync),
/* HCI_OP_READ_VOICE_SETTING */
HCI_INIT(hci_read_voice_setting_sync),
/* HCI_OP_READ_NUM_SUPPORTED_IAC */
HCI_INIT(hci_read_num_supported_iac_sync),
/* HCI_OP_READ_CURRENT_IAC_LAP */
HCI_INIT(hci_read_current_iac_lap_sync),
/* HCI_OP_SET_EVENT_FLT */
HCI_INIT(hci_clear_event_filter_sync),
/* HCI_OP_WRITE_CA_TIMEOUT */
HCI_INIT(hci_write_ca_timeout_sync),
{}
};
static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev)
{
u8 mode = 0x01;
if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
return 0;
/* When SSP is available, then the host features page
* should also be available as well. However some
* controllers list the max_page as 0 as long as SSP
* has not been enabled. To achieve proper debugging
* output, force the minimum max_page to 1 at least.
*/
hdev->max_page = 0x01;
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
sizeof(mode), &mode, HCI_CMD_TIMEOUT);
}
static int hci_write_eir_sync(struct hci_dev *hdev)
{
struct hci_cp_write_eir cp;
if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
return 0;
memset(hdev->eir, 0, sizeof(hdev->eir));
memset(&cp, 0, sizeof(cp));
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
HCI_CMD_TIMEOUT);
}
static int hci_write_inquiry_mode_sync(struct hci_dev *hdev)
{
u8 mode;
if (!lmp_inq_rssi_capable(hdev) &&
!test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
return 0;
/* If Extended Inquiry Result events are supported, then
* they are clearly preferred over Inquiry Result with RSSI
* events.
*/
mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE,
sizeof(mode), &mode, HCI_CMD_TIMEOUT);
}
static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev)
{
if (!lmp_inq_tx_pwr_capable(hdev))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER,
0, NULL, HCI_CMD_TIMEOUT);
}
static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page)
{
struct hci_cp_read_local_ext_features cp;
if (!lmp_ext_feat_capable(hdev))
return 0;
memset(&cp, 0, sizeof(cp));
cp.page = page;
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev)
{
return hci_read_local_ext_features_sync(hdev, 0x01);
}
/* HCI Controller init stage 2 command sequence */
static const struct hci_init_stage hci_init2[] = {
/* HCI_OP_READ_LOCAL_COMMANDS */
HCI_INIT(hci_read_local_cmds_sync),
/* HCI_OP_WRITE_SSP_MODE */
HCI_INIT(hci_write_ssp_mode_1_sync),
/* HCI_OP_WRITE_EIR */
HCI_INIT(hci_write_eir_sync),
/* HCI_OP_WRITE_INQUIRY_MODE */
HCI_INIT(hci_write_inquiry_mode_sync),
/* HCI_OP_READ_INQ_RSP_TX_POWER */
HCI_INIT(hci_read_inq_rsp_tx_power_sync),
/* HCI_OP_READ_LOCAL_EXT_FEATURES */
HCI_INIT(hci_read_local_ext_features_1_sync),
/* HCI_OP_WRITE_AUTH_ENABLE */
HCI_INIT(hci_write_auth_enable_sync),
{}
};
/* Read LE Buffer Size */
static int hci_le_read_buffer_size_sync(struct hci_dev *hdev)
{
/* Use Read LE Buffer Size V2 if supported */
if (iso_capable(hdev) && hdev->commands[41] & 0x20)
return __hci_cmd_sync_status(hdev,
HCI_OP_LE_READ_BUFFER_SIZE_V2,
0, NULL, HCI_CMD_TIMEOUT);
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Read LE Local Supported Features */
static int hci_le_read_local_features_sync(struct hci_dev *hdev)
{
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Read LE Supported States */
static int hci_le_read_supported_states_sync(struct hci_dev *hdev)
{
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES,
0, NULL, HCI_CMD_TIMEOUT);
}
/* LE Controller init stage 2 command sequence */
static const struct hci_init_stage le_init2[] = {
/* HCI_OP_LE_READ_LOCAL_FEATURES */
HCI_INIT(hci_le_read_local_features_sync),
/* HCI_OP_LE_READ_BUFFER_SIZE */
HCI_INIT(hci_le_read_buffer_size_sync),
/* HCI_OP_LE_READ_SUPPORTED_STATES */
HCI_INIT(hci_le_read_supported_states_sync),
{}
};
static int hci_init2_sync(struct hci_dev *hdev)
{
int err;
bt_dev_dbg(hdev, "");
if (hdev->dev_type == HCI_AMP)
return hci_init_stage_sync(hdev, amp_init2);
err = hci_init_stage_sync(hdev, hci_init2);
if (err)
return err;
if (lmp_bredr_capable(hdev)) {
err = hci_init_stage_sync(hdev, br_init2);
if (err)
return err;
} else {
hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
}
if (lmp_le_capable(hdev)) {
err = hci_init_stage_sync(hdev, le_init2);
if (err)
return err;
/* LE-only controllers have LE implicitly enabled */
if (!lmp_bredr_capable(hdev))
hci_dev_set_flag(hdev, HCI_LE_ENABLED);
}
return 0;
}
static int hci_set_event_mask_sync(struct hci_dev *hdev)
{
/* The second byte is 0xff instead of 0x9f (two reserved bits
* disabled) since a Broadcom 1.2 dongle doesn't respond to the
* command otherwise.
*/
u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
/* CSR 1.1 dongles does not accept any bitfield so don't try to set
* any event mask for pre 1.2 devices.
*/
if (hdev->hci_ver < BLUETOOTH_VER_1_2)
return 0;
if (lmp_bredr_capable(hdev)) {
events[4] |= 0x01; /* Flow Specification Complete */
/* Don't set Disconnect Complete when suspended as that
* would wakeup the host when disconnecting due to
* suspend.
*/
if (hdev->suspended)
events[0] &= 0xef;
} else {
/* Use a different default for LE-only devices */
memset(events, 0, sizeof(events));
events[1] |= 0x20; /* Command Complete */
events[1] |= 0x40; /* Command Status */
events[1] |= 0x80; /* Hardware Error */
/* If the controller supports the Disconnect command, enable
* the corresponding event. In addition enable packet flow
* control related events.
*/
if (hdev->commands[0] & 0x20) {
/* Don't set Disconnect Complete when suspended as that
* would wakeup the host when disconnecting due to
* suspend.
*/
if (!hdev->suspended)
events[0] |= 0x10; /* Disconnection Complete */
events[2] |= 0x04; /* Number of Completed Packets */
events[3] |= 0x02; /* Data Buffer Overflow */
}
/* If the controller supports the Read Remote Version
* Information command, enable the corresponding event.
*/
if (hdev->commands[2] & 0x80)
events[1] |= 0x08; /* Read Remote Version Information
* Complete
*/
if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
events[0] |= 0x80; /* Encryption Change */
events[5] |= 0x80; /* Encryption Key Refresh Complete */
}
}
if (lmp_inq_rssi_capable(hdev) ||
test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
events[4] |= 0x02; /* Inquiry Result with RSSI */
if (lmp_ext_feat_capable(hdev))
events[4] |= 0x04; /* Read Remote Extended Features Complete */
if (lmp_esco_capable(hdev)) {
events[5] |= 0x08; /* Synchronous Connection Complete */
events[5] |= 0x10; /* Synchronous Connection Changed */
}
if (lmp_sniffsubr_capable(hdev))
events[5] |= 0x20; /* Sniff Subrating */
if (lmp_pause_enc_capable(hdev))
events[5] |= 0x80; /* Encryption Key Refresh Complete */
if (lmp_ext_inq_capable(hdev))
events[5] |= 0x40; /* Extended Inquiry Result */
if (lmp_no_flush_capable(hdev))
events[7] |= 0x01; /* Enhanced Flush Complete */
if (lmp_lsto_capable(hdev))
events[6] |= 0x80; /* Link Supervision Timeout Changed */
if (lmp_ssp_capable(hdev)) {
events[6] |= 0x01; /* IO Capability Request */
events[6] |= 0x02; /* IO Capability Response */
events[6] |= 0x04; /* User Confirmation Request */
events[6] |= 0x08; /* User Passkey Request */
events[6] |= 0x10; /* Remote OOB Data Request */
events[6] |= 0x20; /* Simple Pairing Complete */
events[7] |= 0x04; /* User Passkey Notification */
events[7] |= 0x08; /* Keypress Notification */
events[7] |= 0x10; /* Remote Host Supported
* Features Notification
*/
}
if (lmp_le_capable(hdev))
events[7] |= 0x20; /* LE Meta-Event */
return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK,
sizeof(events), events, HCI_CMD_TIMEOUT);
}
static int hci_read_stored_link_key_sync(struct hci_dev *hdev)
{
struct hci_cp_read_stored_link_key cp;
if (!(hdev->commands[6] & 0x20) ||
test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
return 0;
memset(&cp, 0, sizeof(cp));
bacpy(&cp.bdaddr, BDADDR_ANY);
cp.read_all = 0x01;
return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_setup_link_policy_sync(struct hci_dev *hdev)
{
struct hci_cp_write_def_link_policy cp;
u16 link_policy = 0;
if (!(hdev->commands[5] & 0x10))
return 0;
memset(&cp, 0, sizeof(cp));
if (lmp_rswitch_capable(hdev))
link_policy |= HCI_LP_RSWITCH;
if (lmp_hold_capable(hdev))
link_policy |= HCI_LP_HOLD;
if (lmp_sniff_capable(hdev))
link_policy |= HCI_LP_SNIFF;
if (lmp_park_capable(hdev))
link_policy |= HCI_LP_PARK;
cp.policy = cpu_to_le16(link_policy);
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_read_page_scan_activity_sync(struct hci_dev *hdev)
{
if (!(hdev->commands[8] & 0x01))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY,
0, NULL, HCI_CMD_TIMEOUT);
}
static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev)
{
if (!(hdev->commands[18] & 0x04) ||
!(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING,
0, NULL, HCI_CMD_TIMEOUT);
}
static int hci_read_page_scan_type_sync(struct hci_dev *hdev)
{
/* Some older Broadcom based Bluetooth 1.2 controllers do not
* support the Read Page Scan Type command. Check support for
* this command in the bit mask of supported commands.
*/
if (!(hdev->commands[13] & 0x01))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Read features beyond page 1 if available */
static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev)
{
u8 page;
int err;
if (!lmp_ext_feat_capable(hdev))
return 0;
for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page;
page++) {
err = hci_read_local_ext_features_sync(hdev, page);
if (err)
return err;
}
return 0;
}
/* HCI Controller init stage 3 command sequence */
static const struct hci_init_stage hci_init3[] = {
/* HCI_OP_SET_EVENT_MASK */
HCI_INIT(hci_set_event_mask_sync),
/* HCI_OP_READ_STORED_LINK_KEY */
HCI_INIT(hci_read_stored_link_key_sync),
/* HCI_OP_WRITE_DEF_LINK_POLICY */
HCI_INIT(hci_setup_link_policy_sync),
/* HCI_OP_READ_PAGE_SCAN_ACTIVITY */
HCI_INIT(hci_read_page_scan_activity_sync),
/* HCI_OP_READ_DEF_ERR_DATA_REPORTING */
HCI_INIT(hci_read_def_err_data_reporting_sync),
/* HCI_OP_READ_PAGE_SCAN_TYPE */
HCI_INIT(hci_read_page_scan_type_sync),
/* HCI_OP_READ_LOCAL_EXT_FEATURES */
HCI_INIT(hci_read_local_ext_features_all_sync),
{}
};
static int hci_le_set_event_mask_sync(struct hci_dev *hdev)
{
u8 events[8];
if (!lmp_le_capable(hdev))
return 0;
memset(events, 0, sizeof(events));
if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
events[0] |= 0x10; /* LE Long Term Key Request */
/* If controller supports the Connection Parameters Request
* Link Layer Procedure, enable the corresponding event.
*/
if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
/* LE Remote Connection Parameter Request */
events[0] |= 0x20;
/* If the controller supports the Data Length Extension
* feature, enable the corresponding event.
*/
if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
events[0] |= 0x40; /* LE Data Length Change */
/* If the controller supports LL Privacy feature or LE Extended Adv,
* enable the corresponding event.
*/
if (use_enhanced_conn_complete(hdev))
events[1] |= 0x02; /* LE Enhanced Connection Complete */
/* If the controller supports Extended Scanner Filter
* Policies, enable the corresponding event.
*/
if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
events[1] |= 0x04; /* LE Direct Advertising Report */
/* If the controller supports Channel Selection Algorithm #2
* feature, enable the corresponding event.
*/
if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
events[2] |= 0x08; /* LE Channel Selection Algorithm */
/* If the controller supports the LE Set Scan Enable command,
* enable the corresponding advertising report event.
*/
if (hdev->commands[26] & 0x08)
events[0] |= 0x02; /* LE Advertising Report */
/* If the controller supports the LE Create Connection
* command, enable the corresponding event.
*/
if (hdev->commands[26] & 0x10)
events[0] |= 0x01; /* LE Connection Complete */
/* If the controller supports the LE Connection Update
* command, enable the corresponding event.
*/
if (hdev->commands[27] & 0x04)
events[0] |= 0x04; /* LE Connection Update Complete */
/* If the controller supports the LE Read Remote Used Features
* command, enable the corresponding event.
*/
if (hdev->commands[27] & 0x20)
/* LE Read Remote Used Features Complete */
events[0] |= 0x08;
/* If the controller supports the LE Read Local P-256
* Public Key command, enable the corresponding event.
*/
if (hdev->commands[34] & 0x02)
/* LE Read Local P-256 Public Key Complete */
events[0] |= 0x80;
/* If the controller supports the LE Generate DHKey
* command, enable the corresponding event.
*/
if (hdev->commands[34] & 0x04)
events[1] |= 0x01; /* LE Generate DHKey Complete */
/* If the controller supports the LE Set Default PHY or
* LE Set PHY commands, enable the corresponding event.
*/
if (hdev->commands[35] & (0x20 | 0x40))
events[1] |= 0x08; /* LE PHY Update Complete */
/* If the controller supports LE Set Extended Scan Parameters
* and LE Set Extended Scan Enable commands, enable the
* corresponding event.
*/
if (use_ext_scan(hdev))
events[1] |= 0x10; /* LE Extended Advertising Report */
/* If the controller supports the LE Extended Advertising
* command, enable the corresponding event.
*/
if (ext_adv_capable(hdev))
events[2] |= 0x02; /* LE Advertising Set Terminated */
if (cis_capable(hdev)) {
events[3] |= 0x01; /* LE CIS Established */
if (cis_peripheral_capable(hdev))
events[3] |= 0x02; /* LE CIS Request */
}
if (bis_capable(hdev)) {
events[3] |= 0x04; /* LE Create BIG Complete */
events[3] |= 0x08; /* LE Terminate BIG Complete */
events[3] |= 0x10; /* LE BIG Sync Established */
events[3] |= 0x20; /* LE BIG Sync Loss */
}
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK,
sizeof(events), events, HCI_CMD_TIMEOUT);
}
/* Read LE Advertising Channel TX Power */
static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev)
{
if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
/* HCI TS spec forbids mixing of legacy and extended
* advertising commands wherein READ_ADV_TX_POWER is
* also included. So do not call it if extended adv
* is supported otherwise controller will return
* COMMAND_DISALLOWED for extended commands.
*/
return __hci_cmd_sync_status(hdev,
HCI_OP_LE_READ_ADV_TX_POWER,
0, NULL, HCI_CMD_TIMEOUT);
}
return 0;
}
/* Read LE Min/Max Tx Power*/
static int hci_le_read_tx_power_sync(struct hci_dev *hdev)
{
if (!(hdev->commands[38] & 0x80) ||
test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Read LE Accept List Size */
static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev)
{
if (!(hdev->commands[26] & 0x40))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Clear LE Accept List */
static int hci_le_clear_accept_list_sync(struct hci_dev *hdev)
{
if (!(hdev->commands[26] & 0x80))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL,
HCI_CMD_TIMEOUT);
}
/* Read LE Resolving List Size */
static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev)
{
if (!(hdev->commands[34] & 0x40))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Clear LE Resolving List */
static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev)
{
if (!(hdev->commands[34] & 0x20))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL,
HCI_CMD_TIMEOUT);
}
/* Set RPA timeout */
static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev)
{
__le16 timeout = cpu_to_le16(hdev->rpa_timeout);
if (!(hdev->commands[35] & 0x04))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT,
sizeof(timeout), &timeout,
HCI_CMD_TIMEOUT);
}
/* Read LE Maximum Data Length */
static int hci_le_read_max_data_len_sync(struct hci_dev *hdev)
{
if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL,
HCI_CMD_TIMEOUT);
}
/* Read LE Suggested Default Data Length */
static int hci_le_read_def_data_len_sync(struct hci_dev *hdev)
{
if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL,
HCI_CMD_TIMEOUT);
}
/* Read LE Number of Supported Advertising Sets */
static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev)
{
if (!ext_adv_capable(hdev))
return 0;
return __hci_cmd_sync_status(hdev,
HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Write LE Host Supported */
static int hci_set_le_support_sync(struct hci_dev *hdev)
{
struct hci_cp_write_le_host_supported cp;
/* LE-only devices do not support explicit enablement */
if (!lmp_bredr_capable(hdev))
return 0;
memset(&cp, 0, sizeof(cp));
if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
cp.le = 0x01;
cp.simul = 0x00;
}
if (cp.le == lmp_host_le_capable(hdev))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
/* LE Set Host Feature */
static int hci_le_set_host_feature_sync(struct hci_dev *hdev)
{
struct hci_cp_le_set_host_feature cp;
if (!iso_capable(hdev))
return 0;
memset(&cp, 0, sizeof(cp));
/* Isochronous Channels (Host Support) */
cp.bit_number = 32;
cp.bit_value = 1;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
/* LE Controller init stage 3 command sequence */
static const struct hci_init_stage le_init3[] = {
/* HCI_OP_LE_SET_EVENT_MASK */
HCI_INIT(hci_le_set_event_mask_sync),
/* HCI_OP_LE_READ_ADV_TX_POWER */
HCI_INIT(hci_le_read_adv_tx_power_sync),
/* HCI_OP_LE_READ_TRANSMIT_POWER */
HCI_INIT(hci_le_read_tx_power_sync),
/* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */
HCI_INIT(hci_le_read_accept_list_size_sync),
/* HCI_OP_LE_CLEAR_ACCEPT_LIST */
HCI_INIT(hci_le_clear_accept_list_sync),
/* HCI_OP_LE_READ_RESOLV_LIST_SIZE */
HCI_INIT(hci_le_read_resolv_list_size_sync),
/* HCI_OP_LE_CLEAR_RESOLV_LIST */
HCI_INIT(hci_le_clear_resolv_list_sync),
/* HCI_OP_LE_SET_RPA_TIMEOUT */
HCI_INIT(hci_le_set_rpa_timeout_sync),
/* HCI_OP_LE_READ_MAX_DATA_LEN */
HCI_INIT(hci_le_read_max_data_len_sync),
/* HCI_OP_LE_READ_DEF_DATA_LEN */
HCI_INIT(hci_le_read_def_data_len_sync),
/* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */
HCI_INIT(hci_le_read_num_support_adv_sets_sync),
/* HCI_OP_WRITE_LE_HOST_SUPPORTED */
HCI_INIT(hci_set_le_support_sync),
/* HCI_OP_LE_SET_HOST_FEATURE */
HCI_INIT(hci_le_set_host_feature_sync),
{}
};
static int hci_init3_sync(struct hci_dev *hdev)
{
int err;
bt_dev_dbg(hdev, "");
err = hci_init_stage_sync(hdev, hci_init3);
if (err)
return err;
if (lmp_le_capable(hdev))
return hci_init_stage_sync(hdev, le_init3);
return 0;
}
static int hci_delete_stored_link_key_sync(struct hci_dev *hdev)
{
struct hci_cp_delete_stored_link_key cp;
/* Some Broadcom based Bluetooth controllers do not support the
* Delete Stored Link Key command. They are clearly indicating its
* absence in the bit mask of supported commands.
*
* Check the supported commands and only if the command is marked
* as supported send it. If not supported assume that the controller
* does not have actual support for stored link keys which makes this
* command redundant anyway.
*
* Some controllers indicate that they support handling deleting
* stored link keys, but they don't. The quirk lets a driver
* just disable this command.
*/
if (!(hdev->commands[6] & 0x80) ||
test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
return 0;
memset(&cp, 0, sizeof(cp));
bacpy(&cp.bdaddr, BDADDR_ANY);
cp.delete_all = 0x01;
return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev)
{
u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
bool changed = false;
/* Set event mask page 2 if the HCI command for it is supported */
if (!(hdev->commands[22] & 0x04))
return 0;
/* If Connectionless Peripheral Broadcast central role is supported
* enable all necessary events for it.
*/
if (lmp_cpb_central_capable(hdev)) {
events[1] |= 0x40; /* Triggered Clock Capture */
events[1] |= 0x80; /* Synchronization Train Complete */
events[2] |= 0x08; /* Truncated Page Complete */
events[2] |= 0x20; /* CPB Channel Map Change */
changed = true;
}
/* If Connectionless Peripheral Broadcast peripheral role is supported
* enable all necessary events for it.
*/
if (lmp_cpb_peripheral_capable(hdev)) {
events[2] |= 0x01; /* Synchronization Train Received */
events[2] |= 0x02; /* CPB Receive */
events[2] |= 0x04; /* CPB Timeout */
events[2] |= 0x10; /* Peripheral Page Response Timeout */
changed = true;
}
/* Enable Authenticated Payload Timeout Expired event if supported */
if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
events[2] |= 0x80;
changed = true;
}
/* Some Broadcom based controllers indicate support for Set Event
* Mask Page 2 command, but then actually do not support it. Since
* the default value is all bits set to zero, the command is only
* required if the event mask has to be changed. In case no change
* to the event mask is needed, skip this command.
*/
if (!changed)
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2,
sizeof(events), events, HCI_CMD_TIMEOUT);
}
/* Read local codec list if the HCI command is supported */
static int hci_read_local_codecs_sync(struct hci_dev *hdev)
{
if (hdev->commands[45] & 0x04)
hci_read_supported_codecs_v2(hdev);
else if (hdev->commands[29] & 0x20)
hci_read_supported_codecs(hdev);
return 0;
}
/* Read local pairing options if the HCI command is supported */
static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev)
{
if (!(hdev->commands[41] & 0x08))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Get MWS transport configuration if the HCI command is supported */
static int hci_get_mws_transport_config_sync(struct hci_dev *hdev)
{
if (!mws_transport_config_capable(hdev))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Check for Synchronization Train support */
static int hci_read_sync_train_params_sync(struct hci_dev *hdev)
{
if (!lmp_sync_train_capable(hdev))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Enable Secure Connections if supported and configured */
static int hci_write_sc_support_1_sync(struct hci_dev *hdev)
{
u8 support = 0x01;
if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
!bredr_sc_enabled(hdev))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
sizeof(support), &support,
HCI_CMD_TIMEOUT);
}
/* Set erroneous data reporting if supported to the wideband speech
* setting value
*/
static int hci_set_err_data_report_sync(struct hci_dev *hdev)
{
struct hci_cp_write_def_err_data_reporting cp;
bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED);
if (!(hdev->commands[18] & 0x08) ||
!(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
return 0;
if (enabled == hdev->err_data_reporting)
return 0;
memset(&cp, 0, sizeof(cp));
cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED :
ERR_DATA_REPORTING_DISABLED;
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static const struct hci_init_stage hci_init4[] = {
/* HCI_OP_DELETE_STORED_LINK_KEY */
HCI_INIT(hci_delete_stored_link_key_sync),
/* HCI_OP_SET_EVENT_MASK_PAGE_2 */
HCI_INIT(hci_set_event_mask_page_2_sync),
/* HCI_OP_READ_LOCAL_CODECS */
HCI_INIT(hci_read_local_codecs_sync),
/* HCI_OP_READ_LOCAL_PAIRING_OPTS */
HCI_INIT(hci_read_local_pairing_opts_sync),
/* HCI_OP_GET_MWS_TRANSPORT_CONFIG */
HCI_INIT(hci_get_mws_transport_config_sync),
/* HCI_OP_READ_SYNC_TRAIN_PARAMS */
HCI_INIT(hci_read_sync_train_params_sync),
/* HCI_OP_WRITE_SC_SUPPORT */
HCI_INIT(hci_write_sc_support_1_sync),
/* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */
HCI_INIT(hci_set_err_data_report_sync),
{}
};
/* Set Suggested Default Data Length to maximum if supported */
static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev)
{
struct hci_cp_le_write_def_data_len cp;
if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
return 0;
memset(&cp, 0, sizeof(cp));
cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
/* Set Default PHY parameters if command is supported */
static int hci_le_set_default_phy_sync(struct hci_dev *hdev)
{
struct hci_cp_le_set_default_phy cp;
if (!(hdev->commands[35] & 0x20))
return 0;
memset(&cp, 0, sizeof(cp));
cp.all_phys = 0x00;
cp.tx_phys = hdev->le_tx_def_phys;
cp.rx_phys = hdev->le_rx_def_phys;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static const struct hci_init_stage le_init4[] = {
/* HCI_OP_LE_WRITE_DEF_DATA_LEN */
HCI_INIT(hci_le_set_write_def_data_len_sync),
/* HCI_OP_LE_SET_DEFAULT_PHY */
HCI_INIT(hci_le_set_default_phy_sync),
{}
};
static int hci_init4_sync(struct hci_dev *hdev)
{
int err;
bt_dev_dbg(hdev, "");
err = hci_init_stage_sync(hdev, hci_init4);
if (err)
return err;
if (lmp_le_capable(hdev))
return hci_init_stage_sync(hdev, le_init4);
return 0;
}
static int hci_init_sync(struct hci_dev *hdev)
{
int err;
err = hci_init1_sync(hdev);
if (err < 0)
return err;
if (hci_dev_test_flag(hdev, HCI_SETUP))
hci_debugfs_create_basic(hdev);
err = hci_init2_sync(hdev);
if (err < 0)
return err;
/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
* BR/EDR/LE type controllers. AMP controllers only need the
* first two stages of init.
*/
if (hdev->dev_type != HCI_PRIMARY)
return 0;
err = hci_init3_sync(hdev);
if (err < 0)
return err;
err = hci_init4_sync(hdev);
if (err < 0)
return err;
/* This function is only called when the controller is actually in
* configured state. When the controller is marked as unconfigured,
* this initialization procedure is not run.
*
* It means that it is possible that a controller runs through its
* setup phase and then discovers missing settings. If that is the
* case, then this function will not be called. It then will only
* be called during the config phase.
*
* So only when in setup phase or config phase, create the debugfs
* entries and register the SMP channels.
*/
if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
!hci_dev_test_flag(hdev, HCI_CONFIG))
return 0;
hci_debugfs_create_common(hdev);
if (lmp_bredr_capable(hdev))
hci_debugfs_create_bredr(hdev);
if (lmp_le_capable(hdev))
hci_debugfs_create_le(hdev);
return 0;
}
#define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc }
static const struct {
unsigned long quirk;
const char *desc;
} hci_broken_table[] = {
HCI_QUIRK_BROKEN(LOCAL_COMMANDS,
"HCI Read Local Supported Commands not supported"),
HCI_QUIRK_BROKEN(STORED_LINK_KEY,
"HCI Delete Stored Link Key command is advertised, "
"but not supported."),
HCI_QUIRK_BROKEN(ERR_DATA_REPORTING,
"HCI Read Default Erroneous Data Reporting command is "
"advertised, but not supported."),
HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER,
"HCI Read Transmit Power Level command is advertised, "
"but not supported."),
HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL,
"HCI Set Event Filter command not supported."),
HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN,
"HCI Enhanced Setup Synchronous Connection command is "
"advertised, but not supported.")
};
/* This function handles hdev setup stage:
*
* Calls hdev->setup
* Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set.
*/
static int hci_dev_setup_sync(struct hci_dev *hdev)
{
int ret = 0;
bool invalid_bdaddr;
size_t i;
if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
!test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks))
return 0;
bt_dev_dbg(hdev, "");
hci_sock_dev_event(hdev, HCI_DEV_SETUP);
if (hdev->setup)
ret = hdev->setup(hdev);
for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) {
if (test_bit(hci_broken_table[i].quirk, &hdev->quirks))
bt_dev_warn(hdev, "%s", hci_broken_table[i].desc);
}
/* The transport driver can set the quirk to mark the
* BD_ADDR invalid before creating the HCI device or in
* its setup callback.
*/
invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
if (!ret) {
if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
if (!bacmp(&hdev->public_addr, BDADDR_ANY))
hci_dev_get_bd_addr_from_property(hdev);
if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
hdev->set_bdaddr) {
ret = hdev->set_bdaddr(hdev,
&hdev->public_addr);
/* If setting of the BD_ADDR from the device
* property succeeds, then treat the address
* as valid even if the invalid BD_ADDR
* quirk indicates otherwise.
*/
if (!ret)
invalid_bdaddr = false;
}
}
}
/* The transport driver can set these quirks before
* creating the HCI device or in its setup callback.
*
* For the invalid BD_ADDR quirk it is possible that
* it becomes a valid address if the bootloader does
* provide it (see above).
*
* In case any of them is set, the controller has to
* start up as unconfigured.
*/
if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
invalid_bdaddr)
hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
/* For an unconfigured controller it is required to
* read at least the version information provided by
* the Read Local Version Information command.
*
* If the set_bdaddr driver callback is provided, then
* also the original Bluetooth public device address
* will be read using the Read BD Address command.
*/
if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
return hci_unconf_init_sync(hdev);
return ret;
}
/* This function handles hdev init stage:
*
* Calls hci_dev_setup_sync to perform setup stage
* Calls hci_init_sync to perform HCI command init sequence
*/
static int hci_dev_init_sync(struct hci_dev *hdev)
{
int ret;
bt_dev_dbg(hdev, "");
atomic_set(&hdev->cmd_cnt, 1);
set_bit(HCI_INIT, &hdev->flags);
ret = hci_dev_setup_sync(hdev);
if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
/* If public address change is configured, ensure that
* the address gets programmed. If the driver does not
* support changing the public address, fail the power
* on procedure.
*/
if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
hdev->set_bdaddr)
ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
else
ret = -EADDRNOTAVAIL;
}
if (!ret) {
if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
ret = hci_init_sync(hdev);
if (!ret && hdev->post_init)
ret = hdev->post_init(hdev);
}
}
/* If the HCI Reset command is clearing all diagnostic settings,
* then they need to be reprogrammed after the init procedure
* completed.
*/
if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
ret = hdev->set_diag(hdev, true);
if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
msft_do_open(hdev);
aosp_do_open(hdev);
}
clear_bit(HCI_INIT, &hdev->flags);
return ret;
}
int hci_dev_open_sync(struct hci_dev *hdev)
{
int ret;
bt_dev_dbg(hdev, "");
if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
ret = -ENODEV;
goto done;
}
if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
!hci_dev_test_flag(hdev, HCI_CONFIG)) {
/* Check for rfkill but allow the HCI setup stage to
* proceed (which in itself doesn't cause any RF activity).
*/
if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
ret = -ERFKILL;
goto done;
}
/* Check for valid public address or a configured static
* random address, but let the HCI setup proceed to
* be able to determine if there is a public address
* or not.
*
* In case of user channel usage, it is not important
* if a public address or static random address is
* available.
*
* This check is only valid for BR/EDR controllers
* since AMP controllers do not have an address.
*/
if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
hdev->dev_type == HCI_PRIMARY &&
!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
!bacmp(&hdev->static_addr, BDADDR_ANY)) {
ret = -EADDRNOTAVAIL;
goto done;
}
}
if (test_bit(HCI_UP, &hdev->flags)) {
ret = -EALREADY;
goto done;
}
if (hdev->open(hdev)) {
ret = -EIO;
goto done;
}
set_bit(HCI_RUNNING, &hdev->flags);
hci_sock_dev_event(hdev, HCI_DEV_OPEN);
ret = hci_dev_init_sync(hdev);
if (!ret) {
hci_dev_hold(hdev);
hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
hci_adv_instances_set_rpa_expired(hdev, true);
set_bit(HCI_UP, &hdev->flags);
hci_sock_dev_event(hdev, HCI_DEV_UP);
hci_leds_update_powered(hdev, true);
if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
!hci_dev_test_flag(hdev, HCI_CONFIG) &&
!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
hci_dev_test_flag(hdev, HCI_MGMT) &&
hdev->dev_type == HCI_PRIMARY) {
ret = hci_powered_update_sync(hdev);
mgmt_power_on(hdev, ret);
}
} else {
/* Init failed, cleanup */
flush_work(&hdev->tx_work);
/* Since hci_rx_work() is possible to awake new cmd_work
* it should be flushed first to avoid unexpected call of
* hci_cmd_work()
*/
flush_work(&hdev->rx_work);
flush_work(&hdev->cmd_work);
skb_queue_purge(&hdev->cmd_q);
skb_queue_purge(&hdev->rx_q);
if (hdev->flush)
hdev->flush(hdev);
if (hdev->sent_cmd) {
cancel_delayed_work_sync(&hdev->cmd_timer);
kfree_skb(hdev->sent_cmd);
hdev->sent_cmd = NULL;
}
clear_bit(HCI_RUNNING, &hdev->flags);
hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
hdev->close(hdev);
hdev->flags &= BIT(HCI_RAW);
}
done:
return ret;
}
/* This function requires the caller holds hdev->lock */
static void hci_pend_le_actions_clear(struct hci_dev *hdev)
{
struct hci_conn_params *p;
list_for_each_entry(p, &hdev->le_conn_params, list) {
if (p->conn) {
hci_conn_drop(p->conn);
hci_conn_put(p->conn);
p->conn = NULL;
}
list_del_init(&p->action);
}
BT_DBG("All LE pending actions cleared");
}
static int hci_dev_shutdown(struct hci_dev *hdev)
{
int err = 0;
/* Similar to how we first do setup and then set the exclusive access
* bit for userspace, we must first unset userchannel and then clean up.
* Otherwise, the kernel can't properly use the hci channel to clean up
* the controller (some shutdown routines require sending additional
* commands to the controller for example).
*/
bool was_userchannel =
hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL);
if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
test_bit(HCI_UP, &hdev->flags)) {
/* Execute vendor specific shutdown routine */
if (hdev->shutdown)
err = hdev->shutdown(hdev);
}
if (was_userchannel)
hci_dev_set_flag(hdev, HCI_USER_CHANNEL);
return err;
}
int hci_dev_close_sync(struct hci_dev *hdev)
{
bool auto_off;
int err = 0;
bt_dev_dbg(hdev, "");
cancel_delayed_work(&hdev->power_off);
cancel_delayed_work(&hdev->ncmd_timer);
cancel_delayed_work(&hdev->le_scan_disable);
cancel_delayed_work(&hdev->le_scan_restart);
hci_request_cancel_all(hdev);
if (hdev->adv_instance_timeout) {
cancel_delayed_work_sync(&hdev->adv_instance_expire);
hdev->adv_instance_timeout = 0;
}
err = hci_dev_shutdown(hdev);
if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
cancel_delayed_work_sync(&hdev->cmd_timer);
return err;
}
hci_leds_update_powered(hdev, false);
/* Flush RX and TX works */
flush_work(&hdev->tx_work);
flush_work(&hdev->rx_work);
if (hdev->discov_timeout > 0) {
hdev->discov_timeout = 0;
hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
}
if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
cancel_delayed_work(&hdev->service_cache);
if (hci_dev_test_flag(hdev, HCI_MGMT)) {
struct adv_info *adv_instance;
cancel_delayed_work_sync(&hdev->rpa_expired);
list_for_each_entry(adv_instance, &hdev->adv_instances, list)
cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
}
/* Avoid potential lockdep warnings from the *_flush() calls by
* ensuring the workqueue is empty up front.
*/
drain_workqueue(hdev->workqueue);
hci_dev_lock(hdev);
hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
hci_dev_test_flag(hdev, HCI_MGMT))
__mgmt_power_off(hdev);
hci_inquiry_cache_flush(hdev);
hci_pend_le_actions_clear(hdev);
hci_conn_hash_flush(hdev);
/* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */
smp_unregister(hdev);
hci_dev_unlock(hdev);
hci_sock_dev_event(hdev, HCI_DEV_DOWN);
if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
aosp_do_close(hdev);
msft_do_close(hdev);
}
if (hdev->flush)
hdev->flush(hdev);
/* Reset device */
skb_queue_purge(&hdev->cmd_q);
atomic_set(&hdev->cmd_cnt, 1);
if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
!auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
set_bit(HCI_INIT, &hdev->flags);
hci_reset_sync(hdev);
clear_bit(HCI_INIT, &hdev->flags);
}
/* flush cmd work */
flush_work(&hdev->cmd_work);
/* Drop queues */
skb_queue_purge(&hdev->rx_q);
skb_queue_purge(&hdev->cmd_q);
skb_queue_purge(&hdev->raw_q);
/* Drop last sent command */
if (hdev->sent_cmd) {
cancel_delayed_work_sync(&hdev->cmd_timer);
kfree_skb(hdev->sent_cmd);
hdev->sent_cmd = NULL;
}
clear_bit(HCI_RUNNING, &hdev->flags);
hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
/* After this point our queues are empty and no tasks are scheduled. */
hdev->close(hdev);
/* Clear flags */
hdev->flags &= BIT(HCI_RAW);
hci_dev_clear_volatile_flags(hdev);
/* Controller radio is available but is currently powered down */
hdev->amp_status = AMP_STATUS_POWERED_DOWN;
memset(hdev->eir, 0, sizeof(hdev->eir));
memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
bacpy(&hdev->random_addr, BDADDR_ANY);
hci_dev_put(hdev);
return err;
}
/* This function perform power on HCI command sequence as follows:
*
* If controller is already up (HCI_UP) performs hci_powered_update_sync
* sequence otherwise run hci_dev_open_sync which will follow with
* hci_powered_update_sync after the init sequence is completed.
*/
static int hci_power_on_sync(struct hci_dev *hdev)
{
int err;
if (test_bit(HCI_UP, &hdev->flags) &&
hci_dev_test_flag(hdev, HCI_MGMT) &&
hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
cancel_delayed_work(&hdev->power_off);
return hci_powered_update_sync(hdev);
}
err = hci_dev_open_sync(hdev);
if (err < 0)
return err;
/* During the HCI setup phase, a few error conditions are
* ignored and they need to be checked now. If they are still
* valid, it is important to return the device back off.
*/
if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
(hdev->dev_type == HCI_PRIMARY &&
!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
!bacmp(&hdev->static_addr, BDADDR_ANY))) {
hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
hci_dev_close_sync(hdev);
} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
HCI_AUTO_OFF_TIMEOUT);
}
if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
/* For unconfigured devices, set the HCI_RAW flag
* so that userspace can easily identify them.
*/
if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
set_bit(HCI_RAW, &hdev->flags);
/* For fully configured devices, this will send
* the Index Added event. For unconfigured devices,
* it will send Unconfigued Index Added event.
*
* Devices with HCI_QUIRK_RAW_DEVICE are ignored
* and no event will be send.
*/
mgmt_index_added(hdev);
} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
/* When the controller is now configured, then it
* is important to clear the HCI_RAW flag.
*/
if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
clear_bit(HCI_RAW, &hdev->flags);
/* Powering on the controller with HCI_CONFIG set only
* happens with the transition from unconfigured to
* configured. This will send the Index Added event.
*/
mgmt_index_added(hdev);
}
return 0;
}
static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr)
{
struct hci_cp_remote_name_req_cancel cp;
memset(&cp, 0, sizeof(cp));
bacpy(&cp.bdaddr, addr);
return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
int hci_stop_discovery_sync(struct hci_dev *hdev)
{
struct discovery_state *d = &hdev->discovery;
struct inquiry_entry *e;
int err;
bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
if (test_bit(HCI_INQUIRY, &hdev->flags)) {
err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL,
0, NULL, HCI_CMD_TIMEOUT);
if (err)
return err;
}
if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
cancel_delayed_work(&hdev->le_scan_disable);
cancel_delayed_work(&hdev->le_scan_restart);
err = hci_scan_disable_sync(hdev);
if (err)
return err;
}
} else {
err = hci_scan_disable_sync(hdev);
if (err)
return err;
}
/* Resume advertising if it was paused */
if (use_ll_privacy(hdev))
hci_resume_advertising_sync(hdev);
/* No further actions needed for LE-only discovery */
if (d->type == DISCOV_TYPE_LE)
return 0;
if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
NAME_PENDING);
if (!e)
return 0;
return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr);
}
return 0;
}
static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle,
u8 reason)
{
struct hci_cp_disconn_phy_link cp;
memset(&cp, 0, sizeof(cp));
cp.phy_handle = HCI_PHY_HANDLE(handle);
cp.reason = reason;
return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn,
u8 reason)
{
struct hci_cp_disconnect cp;
if (conn->type == AMP_LINK)
return hci_disconnect_phy_link_sync(hdev, conn->handle, reason);
memset(&cp, 0, sizeof(cp));
cp.handle = cpu_to_le16(conn->handle);
cp.reason = reason;
/* Wait for HCI_EV_DISCONN_COMPLETE not HCI_EV_CMD_STATUS when not
* suspending.
*/
if (!hdev->suspended)
return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT,
sizeof(cp), &cp,
HCI_EV_DISCONN_COMPLETE,
HCI_CMD_TIMEOUT, NULL);
return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp,
HCI_CMD_TIMEOUT);
}
static int hci_le_connect_cancel_sync(struct hci_dev *hdev,
struct hci_conn *conn)
{
if (test_bit(HCI_CONN_SCANNING, &conn->flags))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL,
6, &conn->dst, HCI_CMD_TIMEOUT);
}
static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn)
{
if (conn->type == LE_LINK)
return hci_le_connect_cancel_sync(hdev, conn);
if (hdev->hci_ver < BLUETOOTH_VER_1_2)
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL,
6, &conn->dst, HCI_CMD_TIMEOUT);
}
static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn,
u8 reason)
{
struct hci_cp_reject_sync_conn_req cp;
memset(&cp, 0, sizeof(cp));
bacpy(&cp.bdaddr, &conn->dst);
cp.reason = reason;
/* SCO rejection has its own limited set of
* allowed error values (0x0D-0x0F).
*/
if (reason < 0x0d || reason > 0x0f)
cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
u8 reason)
{
struct hci_cp_reject_conn_req cp;
if (conn->type == SCO_LINK || conn->type == ESCO_LINK)
return hci_reject_sco_sync(hdev, conn, reason);
memset(&cp, 0, sizeof(cp));
bacpy(&cp.bdaddr, &conn->dst);
cp.reason = reason;
return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason)
{
int err;
switch (conn->state) {
case BT_CONNECTED:
case BT_CONFIG:
return hci_disconnect_sync(hdev, conn, reason);
case BT_CONNECT:
err = hci_connect_cancel_sync(hdev, conn);
/* Cleanup hci_conn object if it cannot be cancelled as it
* likelly means the controller and host stack are out of sync.
*/
if (err) {
hci_dev_lock(hdev);
hci_conn_failed(conn, err);
hci_dev_unlock(hdev);
}
return err;
case BT_CONNECT2:
return hci_reject_conn_sync(hdev, conn, reason);
default:
conn->state = BT_CLOSED;
break;
}
return 0;
}
static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason)
{
struct hci_conn *conn, *tmp;
int err;
list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) {
err = hci_abort_conn_sync(hdev, conn, reason);
if (err)
return err;
}
return 0;
}
/* This function perform power off HCI command sequence as follows:
*
* Clear Advertising
* Stop Discovery
* Disconnect all connections
* hci_dev_close_sync
*/
static int hci_power_off_sync(struct hci_dev *hdev)
{
int err;
/* If controller is already down there is nothing to do */
if (!test_bit(HCI_UP, &hdev->flags))
return 0;
if (test_bit(HCI_ISCAN, &hdev->flags) ||
test_bit(HCI_PSCAN, &hdev->flags)) {
err = hci_write_scan_enable_sync(hdev, 0x00);
if (err)
return err;
}
err = hci_clear_adv_sync(hdev, NULL, false);
if (err)
return err;
err = hci_stop_discovery_sync(hdev);
if (err)
return err;
/* Terminated due to Power Off */
err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
if (err)
return err;
return hci_dev_close_sync(hdev);
}
int hci_set_powered_sync(struct hci_dev *hdev, u8 val)
{
if (val)
return hci_power_on_sync(hdev);
return hci_power_off_sync(hdev);
}
static int hci_write_iac_sync(struct hci_dev *hdev)
{
struct hci_cp_write_current_iac_lap cp;
if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
return 0;
memset(&cp, 0, sizeof(cp));
if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
/* Limited discoverable mode */
cp.num_iac = min_t(u8, hdev->num_iac, 2);
cp.iac_lap[0] = 0x00; /* LIAC */
cp.iac_lap[1] = 0x8b;
cp.iac_lap[2] = 0x9e;
cp.iac_lap[3] = 0x33; /* GIAC */
cp.iac_lap[4] = 0x8b;
cp.iac_lap[5] = 0x9e;
} else {
/* General discoverable mode */
cp.num_iac = 1;
cp.iac_lap[0] = 0x33; /* GIAC */
cp.iac_lap[1] = 0x8b;
cp.iac_lap[2] = 0x9e;
}
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP,
(cp.num_iac * 3) + 1, &cp,
HCI_CMD_TIMEOUT);
}
int hci_update_discoverable_sync(struct hci_dev *hdev)
{
int err = 0;
if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
err = hci_write_iac_sync(hdev);
if (err)
return err;
err = hci_update_scan_sync(hdev);
if (err)
return err;
err = hci_update_class_sync(hdev);
if (err)
return err;
}
/* Advertising instances don't use the global discoverable setting, so
* only update AD if advertising was enabled using Set Advertising.
*/
if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
err = hci_update_adv_data_sync(hdev, 0x00);
if (err)
return err;
/* Discoverable mode affects the local advertising
* address in limited privacy mode.
*/
if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
if (ext_adv_capable(hdev))
err = hci_start_ext_adv_sync(hdev, 0x00);
else
err = hci_enable_advertising_sync(hdev);
}
}
return err;
}
static int update_discoverable_sync(struct hci_dev *hdev, void *data)
{
return hci_update_discoverable_sync(hdev);
}
int hci_update_discoverable(struct hci_dev *hdev)
{
/* Only queue if it would have any effect */
if (hdev_is_powered(hdev) &&
hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
hci_dev_test_flag(hdev, HCI_DISCOVERABLE) &&
hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL,
NULL);
return 0;
}
int hci_update_connectable_sync(struct hci_dev *hdev)
{
int err;
err = hci_update_scan_sync(hdev);
if (err)
return err;
/* If BR/EDR is not enabled and we disable advertising as a
* by-product of disabling connectable, we need to update the
* advertising flags.
*/
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance);
/* Update the advertising parameters if necessary */
if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
!list_empty(&hdev->adv_instances)) {
if (ext_adv_capable(hdev))
err = hci_start_ext_adv_sync(hdev,
hdev->cur_adv_instance);
else
err = hci_enable_advertising_sync(hdev);
if (err)
return err;
}
return hci_update_passive_scan_sync(hdev);
}
static int hci_inquiry_sync(struct hci_dev *hdev, u8 length)
{
const u8 giac[3] = { 0x33, 0x8b, 0x9e };
const u8 liac[3] = { 0x00, 0x8b, 0x9e };
struct hci_cp_inquiry cp;
bt_dev_dbg(hdev, "");
if (hci_dev_test_flag(hdev, HCI_INQUIRY))
return 0;
hci_dev_lock(hdev);
hci_inquiry_cache_flush(hdev);
hci_dev_unlock(hdev);
memset(&cp, 0, sizeof(cp));
if (hdev->discovery.limited)
memcpy(&cp.lap, liac, sizeof(cp.lap));
else
memcpy(&cp.lap, giac, sizeof(cp.lap));
cp.length = length;
return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval)
{
u8 own_addr_type;
/* Accept list is not used for discovery */
u8 filter_policy = 0x00;
/* Default is to enable duplicates filter */
u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
int err;
bt_dev_dbg(hdev, "");
/* If controller is scanning, it means the passive scanning is
* running. Thus, we should temporarily stop it in order to set the
* discovery scanning parameters.
*/
err = hci_scan_disable_sync(hdev);
if (err) {
bt_dev_err(hdev, "Unable to disable scanning: %d", err);
return err;
}
cancel_interleave_scan(hdev);
/* Pause advertising since active scanning disables address resolution
* which advertising depend on in order to generate its RPAs.
*/
if (use_ll_privacy(hdev) && hci_dev_test_flag(hdev, HCI_PRIVACY)) {
err = hci_pause_advertising_sync(hdev);
if (err) {
bt_dev_err(hdev, "pause advertising failed: %d", err);
goto failed;
}
}
/* Disable address resolution while doing active scanning since the
* accept list shall not be used and all reports shall reach the host
* anyway.
*/
err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
if (err) {
bt_dev_err(hdev, "Unable to disable Address Resolution: %d",
err);
goto failed;
}
/* All active scans will be done with either a resolvable private
* address (when privacy feature has been enabled) or non-resolvable
* private address.
*/
err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev),
&own_addr_type);
if (err < 0)
own_addr_type = ADDR_LE_DEV_PUBLIC;
if (hci_is_adv_monitoring(hdev)) {
/* Duplicate filter should be disabled when some advertisement
* monitor is activated, otherwise AdvMon can only receive one
* advertisement for one peer(*) during active scanning, and
* might report loss to these peers.
*
* Note that different controllers have different meanings of
* |duplicate|. Some of them consider packets with the same
* address as duplicate, and others consider packets with the
* same address and the same RSSI as duplicate. Although in the
* latter case we don't need to disable duplicate filter, but
* it is common to have active scanning for a short period of
* time, the power impact should be neglectable.
*/
filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
}
err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval,
hdev->le_scan_window_discovery,
own_addr_type, filter_policy, filter_dup);
if (!err)
return err;
failed:
/* Resume advertising if it was paused */
if (use_ll_privacy(hdev))
hci_resume_advertising_sync(hdev);
/* Resume passive scanning */
hci_update_passive_scan_sync(hdev);
return err;
}
static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev)
{
int err;
bt_dev_dbg(hdev, "");
err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2);
if (err)
return err;
return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
}
int hci_start_discovery_sync(struct hci_dev *hdev)
{
unsigned long timeout;
int err;
bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
switch (hdev->discovery.type) {
case DISCOV_TYPE_BREDR:
return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
case DISCOV_TYPE_INTERLEAVED:
/* When running simultaneous discovery, the LE scanning time
* should occupy the whole discovery time sine BR/EDR inquiry
* and LE scanning are scheduled by the controller.
*
* For interleaving discovery in comparison, BR/EDR inquiry
* and LE scanning are done sequentially with separate
* timeouts.
*/
if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
&hdev->quirks)) {
timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
/* During simultaneous discovery, we double LE scan
* interval. We must leave some time for the controller
* to do BR/EDR inquiry.
*/
err = hci_start_interleaved_discovery_sync(hdev);
break;
}
timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
break;
case DISCOV_TYPE_LE:
timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
break;
default:
return -EINVAL;
}
if (err)
return err;
bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
/* When service discovery is used and the controller has a
* strict duplicate filter, it is important to remember the
* start and duration of the scan. This is required for
* restarting scanning during the discovery phase.
*/
if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
hdev->discovery.result_filtering) {
hdev->discovery.scan_start = jiffies;
hdev->discovery.scan_duration = timeout;
}
queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
timeout);
return 0;
}
static void hci_suspend_monitor_sync(struct hci_dev *hdev)
{
switch (hci_get_adv_monitor_offload_ext(hdev)) {
case HCI_ADV_MONITOR_EXT_MSFT:
msft_suspend_sync(hdev);
break;
default:
return;
}
}
/* This function disables discovery and mark it as paused */
static int hci_pause_discovery_sync(struct hci_dev *hdev)
{
int old_state = hdev->discovery.state;
int err;
/* If discovery already stopped/stopping/paused there nothing to do */
if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING ||
hdev->discovery_paused)
return 0;
hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
err = hci_stop_discovery_sync(hdev);
if (err)
return err;
hdev->discovery_paused = true;
hdev->discovery_old_state = old_state;
hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
return 0;
}
static int hci_update_event_filter_sync(struct hci_dev *hdev)
{
struct bdaddr_list_with_flags *b;
u8 scan = SCAN_DISABLED;
bool scanning = test_bit(HCI_PSCAN, &hdev->flags);
int err;
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
return 0;
/* Some fake CSR controllers lock up after setting this type of
* filter, so avoid sending the request altogether.
*/
if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
return 0;
/* Always clear event filter when starting */
hci_clear_event_filter_sync(hdev);
list_for_each_entry(b, &hdev->accept_list, list) {
if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
continue;
bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP,
HCI_CONN_SETUP_ALLOW_BDADDR,
&b->bdaddr,
HCI_CONN_SETUP_AUTO_ON);
if (err)
bt_dev_dbg(hdev, "Failed to set event filter for %pMR",
&b->bdaddr);
else
scan = SCAN_PAGE;
}
if (scan && !scanning)
hci_write_scan_enable_sync(hdev, scan);
else if (!scan && scanning)
hci_write_scan_enable_sync(hdev, scan);
return 0;
}
/* This function disables scan (BR and LE) and mark it as paused */
static int hci_pause_scan_sync(struct hci_dev *hdev)
{
if (hdev->scanning_paused)
return 0;
/* Disable page scan if enabled */
if (test_bit(HCI_PSCAN, &hdev->flags))
hci_write_scan_enable_sync(hdev, SCAN_DISABLED);
hci_scan_disable_sync(hdev);
hdev->scanning_paused = true;
return 0;
}
/* This function performs the HCI suspend procedures in the follow order:
*
* Pause discovery (active scanning/inquiry)
* Pause Directed Advertising/Advertising
* Pause Scanning (passive scanning in case discovery was not active)
* Disconnect all connections
* Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup
* otherwise:
* Update event mask (only set events that are allowed to wake up the host)
* Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP)
* Update passive scanning (lower duty cycle)
* Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE
*/
int hci_suspend_sync(struct hci_dev *hdev)
{
int err;
/* If marked as suspended there nothing to do */
if (hdev->suspended)
return 0;
/* Mark device as suspended */
hdev->suspended = true;
/* Pause discovery if not already stopped */
hci_pause_discovery_sync(hdev);
/* Pause other advertisements */
hci_pause_advertising_sync(hdev);
/* Suspend monitor filters */
hci_suspend_monitor_sync(hdev);
/* Prevent disconnects from causing scanning to be re-enabled */
hci_pause_scan_sync(hdev);
if (hci_conn_count(hdev)) {
/* Soft disconnect everything (power off) */
err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
if (err) {
/* Set state to BT_RUNNING so resume doesn't notify */
hdev->suspend_state = BT_RUNNING;
hci_resume_sync(hdev);
return err;
}
/* Update event mask so only the allowed event can wakeup the
* host.
*/
hci_set_event_mask_sync(hdev);
}
/* Only configure accept list if disconnect succeeded and wake
* isn't being prevented.
*/
if (!hdev->wakeup || !hdev->wakeup(hdev)) {
hdev->suspend_state = BT_SUSPEND_DISCONNECT;
return 0;
}
/* Unpause to take care of updating scanning params */
hdev->scanning_paused = false;
/* Enable event filter for paired devices */
hci_update_event_filter_sync(hdev);
/* Update LE passive scan if enabled */
hci_update_passive_scan_sync(hdev);
/* Pause scan changes again. */
hdev->scanning_paused = true;
hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE;
return 0;
}
/* This function resumes discovery */
static int hci_resume_discovery_sync(struct hci_dev *hdev)
{
int err;
/* If discovery not paused there nothing to do */
if (!hdev->discovery_paused)
return 0;
hdev->discovery_paused = false;
hci_discovery_set_state(hdev, DISCOVERY_STARTING);
err = hci_start_discovery_sync(hdev);
hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED :
DISCOVERY_FINDING);
return err;
}
static void hci_resume_monitor_sync(struct hci_dev *hdev)
{
switch (hci_get_adv_monitor_offload_ext(hdev)) {
case HCI_ADV_MONITOR_EXT_MSFT:
msft_resume_sync(hdev);
break;
default:
return;
}
}
/* This function resume scan and reset paused flag */
static int hci_resume_scan_sync(struct hci_dev *hdev)
{
if (!hdev->scanning_paused)
return 0;
hdev->scanning_paused = false;
hci_update_scan_sync(hdev);
/* Reset passive scanning to normal */
hci_update_passive_scan_sync(hdev);
return 0;
}
/* This function performs the HCI suspend procedures in the follow order:
*
* Restore event mask
* Clear event filter
* Update passive scanning (normal duty cycle)
* Resume Directed Advertising/Advertising
* Resume discovery (active scanning/inquiry)
*/
int hci_resume_sync(struct hci_dev *hdev)
{
/* If not marked as suspended there nothing to do */
if (!hdev->suspended)
return 0;
hdev->suspended = false;
/* Restore event mask */
hci_set_event_mask_sync(hdev);
/* Clear any event filters and restore scan state */
hci_clear_event_filter_sync(hdev);
/* Resume scanning */
hci_resume_scan_sync(hdev);
/* Resume monitor filters */
hci_resume_monitor_sync(hdev);
/* Resume other advertisements */
hci_resume_advertising_sync(hdev);
/* Resume discovery */
hci_resume_discovery_sync(hdev);
return 0;
}
static bool conn_use_rpa(struct hci_conn *conn)
{
struct hci_dev *hdev = conn->hdev;
return hci_dev_test_flag(hdev, HCI_PRIVACY);
}
static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev,
struct hci_conn *conn)
{
struct hci_cp_le_set_ext_adv_params cp;
int err;
bdaddr_t random_addr;
u8 own_addr_type;
err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
&own_addr_type);
if (err)
return err;
/* Set require_privacy to false so that the remote device has a
* chance of identifying us.
*/
err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
&own_addr_type, &random_addr);
if (err)
return err;
memset(&cp, 0, sizeof(cp));
cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
cp.own_addr_type = own_addr_type;
cp.channel_map = hdev->le_adv_channel_map;
cp.tx_power = HCI_TX_POWER_INVALID;
cp.primary_phy = HCI_ADV_PHY_1M;
cp.secondary_phy = HCI_ADV_PHY_1M;
cp.handle = 0x00; /* Use instance 0 for directed adv */
cp.own_addr_type = own_addr_type;
cp.peer_addr_type = conn->dst_type;
bacpy(&cp.peer_addr, &conn->dst);
/* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
* advertising_event_property LE_LEGACY_ADV_DIRECT_IND
* does not supports advertising data when the advertising set already
* contains some, the controller shall return erroc code 'Invalid
* HCI Command Parameters(0x12).
* So it is required to remove adv set for handle 0x00. since we use
* instance 0 for directed adv.
*/
err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL);
if (err)
return err;
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
if (err)
return err;
/* Check if random address need to be updated */
if (own_addr_type == ADDR_LE_DEV_RANDOM &&
bacmp(&random_addr, BDADDR_ANY) &&
bacmp(&random_addr, &hdev->random_addr)) {
err = hci_set_adv_set_random_addr_sync(hdev, 0x00,
&random_addr);
if (err)
return err;
}
return hci_enable_ext_advertising_sync(hdev, 0x00);
}
static int hci_le_directed_advertising_sync(struct hci_dev *hdev,
struct hci_conn *conn)
{
struct hci_cp_le_set_adv_param cp;
u8 status;
u8 own_addr_type;
u8 enable;
if (ext_adv_capable(hdev))
return hci_le_ext_directed_advertising_sync(hdev, conn);
/* Clear the HCI_LE_ADV bit temporarily so that the
* hci_update_random_address knows that it's safe to go ahead
* and write a new random address. The flag will be set back on
* as soon as the SET_ADV_ENABLE HCI command completes.
*/
hci_dev_clear_flag(hdev, HCI_LE_ADV);
/* Set require_privacy to false so that the remote device has a
* chance of identifying us.
*/
status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
&own_addr_type);
if (status)
return status;
memset(&cp, 0, sizeof(cp));
/* Some controllers might reject command if intervals are not
* within range for undirected advertising.
* BCM20702A0 is known to be affected by this.
*/
cp.min_interval = cpu_to_le16(0x0020);
cp.max_interval = cpu_to_le16(0x0020);
cp.type = LE_ADV_DIRECT_IND;
cp.own_address_type = own_addr_type;
cp.direct_addr_type = conn->dst_type;
bacpy(&cp.direct_addr, &conn->dst);
cp.channel_map = hdev->le_adv_channel_map;
status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
if (status)
return status;
enable = 0x01;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
sizeof(enable), &enable, HCI_CMD_TIMEOUT);
}
static void set_ext_conn_params(struct hci_conn *conn,
struct hci_cp_le_ext_conn_param *p)
{
struct hci_dev *hdev = conn->hdev;
memset(p, 0, sizeof(*p));
p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
p->conn_latency = cpu_to_le16(conn->le_conn_latency);
p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
p->min_ce_len = cpu_to_le16(0x0000);
p->max_ce_len = cpu_to_le16(0x0000);
}
static int hci_le_ext_create_conn_sync(struct hci_dev *hdev,
struct hci_conn *conn, u8 own_addr_type)
{
struct hci_cp_le_ext_create_conn *cp;
struct hci_cp_le_ext_conn_param *p;
u8 data[sizeof(*cp) + sizeof(*p) * 3];
u32 plen;
cp = (void *)data;
p = (void *)cp->data;
memset(cp, 0, sizeof(*cp));
bacpy(&cp->peer_addr, &conn->dst);
cp->peer_addr_type = conn->dst_type;
cp->own_addr_type = own_addr_type;
plen = sizeof(*cp);
if (scan_1m(hdev)) {
cp->phys |= LE_SCAN_PHY_1M;
set_ext_conn_params(conn, p);
p++;
plen += sizeof(*p);
}
if (scan_2m(hdev)) {
cp->phys |= LE_SCAN_PHY_2M;
set_ext_conn_params(conn, p);
p++;
plen += sizeof(*p);
}
if (scan_coded(hdev)) {
cp->phys |= LE_SCAN_PHY_CODED;
set_ext_conn_params(conn, p);
plen += sizeof(*p);
}
return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN,
plen, data,
HCI_EV_LE_ENHANCED_CONN_COMPLETE,
conn->conn_timeout, NULL);
}
int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn)
{
struct hci_cp_le_create_conn cp;
struct hci_conn_params *params;
u8 own_addr_type;
int err;
/* If requested to connect as peripheral use directed advertising */
if (conn->role == HCI_ROLE_SLAVE) {
/* If we're active scanning and simultaneous roles is not
* enabled simply reject the attempt.
*/
if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
hdev->le_scan_type == LE_SCAN_ACTIVE &&
!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) {
hci_conn_del(conn);
return -EBUSY;
}
/* Pause advertising while doing directed advertising. */
hci_pause_advertising_sync(hdev);
err = hci_le_directed_advertising_sync(hdev, conn);
goto done;
}
/* Disable advertising if simultaneous roles is not in use. */
if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES))
hci_pause_advertising_sync(hdev);
params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
if (params) {
conn->le_conn_min_interval = params->conn_min_interval;
conn->le_conn_max_interval = params->conn_max_interval;
conn->le_conn_latency = params->conn_latency;
conn->le_supv_timeout = params->supervision_timeout;
} else {
conn->le_conn_min_interval = hdev->le_conn_min_interval;
conn->le_conn_max_interval = hdev->le_conn_max_interval;
conn->le_conn_latency = hdev->le_conn_latency;
conn->le_supv_timeout = hdev->le_supv_timeout;
}
/* If controller is scanning, we stop it since some controllers are
* not able to scan and connect at the same time. Also set the
* HCI_LE_SCAN_INTERRUPTED flag so that the command complete
* handler for scan disabling knows to set the correct discovery
* state.
*/
if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
hci_scan_disable_sync(hdev);
hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
}
/* Update random address, but set require_privacy to false so
* that we never connect with an non-resolvable address.
*/
err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
&own_addr_type);
if (err)
goto done;
if (use_ext_conn(hdev)) {
err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type);
goto done;
}
memset(&cp, 0, sizeof(cp));
cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
bacpy(&cp.peer_addr, &conn->dst);
cp.peer_addr_type = conn->dst_type;
cp.own_address_type = own_addr_type;
cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
cp.min_ce_len = cpu_to_le16(0x0000);
cp.max_ce_len = cpu_to_le16(0x0000);
/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261:
*
* If this event is unmasked and the HCI_LE_Connection_Complete event
* is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is
* sent when a new connection has been created.
*/
err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN,
sizeof(cp), &cp,
use_enhanced_conn_complete(hdev) ?
HCI_EV_LE_ENHANCED_CONN_COMPLETE :
HCI_EV_LE_CONN_COMPLETE,
conn->conn_timeout, NULL);
done:
/* Re-enable advertising after the connection attempt is finished. */
hci_resume_advertising_sync(hdev);
return err;
}
int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle)
{
struct hci_cp_le_remove_cig cp;
memset(&cp, 0, sizeof(cp));
cp.cig_id = handle;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp),
&cp, HCI_CMD_TIMEOUT);
}
int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle)
{
struct hci_cp_le_big_term_sync cp;
memset(&cp, 0, sizeof(cp));
cp.handle = handle;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle)
{
struct hci_cp_le_pa_term_sync cp;
memset(&cp, 0, sizeof(cp));
cp.handle = cpu_to_le16(handle);
return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
bool use_rpa, struct adv_info *adv_instance,
u8 *own_addr_type, bdaddr_t *rand_addr)
{
int err;
bacpy(rand_addr, BDADDR_ANY);
/* If privacy is enabled use a resolvable private address. If
* current RPA has expired then generate a new one.
*/
if (use_rpa) {
/* If Controller supports LL Privacy use own address type is
* 0x03
*/
if (use_ll_privacy(hdev))
*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
else
*own_addr_type = ADDR_LE_DEV_RANDOM;
if (adv_instance) {
if (adv_rpa_valid(adv_instance))
return 0;
} else {
if (rpa_valid(hdev))
return 0;
}
err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
if (err < 0) {
bt_dev_err(hdev, "failed to generate new RPA");
return err;
}
bacpy(rand_addr, &hdev->rpa);
return 0;
}
/* In case of required privacy without resolvable private address,
* use an non-resolvable private address. This is useful for
* non-connectable advertising.
*/
if (require_privacy) {
bdaddr_t nrpa;
while (true) {
/* The non-resolvable private address is generated
* from random six bytes with the two most significant
* bits cleared.
*/
get_random_bytes(&nrpa, 6);
nrpa.b[5] &= 0x3f;
/* The non-resolvable private address shall not be
* equal to the public address.
*/
if (bacmp(&hdev->bdaddr, &nrpa))
break;
}
*own_addr_type = ADDR_LE_DEV_RANDOM;
bacpy(rand_addr, &nrpa);
return 0;
}
/* No privacy so use a public address. */
*own_addr_type = ADDR_LE_DEV_PUBLIC;
return 0;
}
static int _update_adv_data_sync(struct hci_dev *hdev, void *data)
{
u8 instance = PTR_ERR(data);
return hci_update_adv_data_sync(hdev, instance);
}
int hci_update_adv_data(struct hci_dev *hdev, u8 instance)
{
return hci_cmd_sync_queue(hdev, _update_adv_data_sync,
ERR_PTR(instance), NULL);
}