summaryrefslogblamecommitdiff
path: root/mm/slub.c
blob: ed2846240f962bed0a694a64cf19113975f01fdf (plain) (tree)
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894


































































































                                                                               
































                                                                       



                                                                     

                     






                                                              











                                                                           
                                                             


                          
                                                          


















































































































































                                                                              











































































































































































































































































































































































                                                                                      


                                                  
                                                                  
 


















                                                                
































































































































































































































































































                                                                                      
                                                                          
 




                                               
 

                                                                     


































































































                                                                          
                                                              
































                                                                            

                                                                   
                          
 
                                   


                                                                         
                                  
 
                













                                                                               

































































                                                                             

                                                                     








































































                                                                               
                                                        




                                                            
                                                                        





                                                                           
                                                                          









                                                                          

                                                              






























                                                               
                                                                  








                                 
                                            








                                        

                                            

                                                 


                                                  



                                                   
                          
 
                                    
 
                                                           





                                                        
                                                 




































































































































                                                                             
                                 































                                                                                  
                             











































































































































































































































































































































                                                                             
                                                              









































































































































                                                                             
                   












































                                                                           
                                                                             









                                                        
                                                                               











































                                                                 
                                    

                       
                                                                   


                     















































































                                                                             

























                                                                    
                                    

















































































































































































                                                                                     
                                                                  













































                                                                          





















































































































































                                                                                      



                            
                                                   





                                                               



                            
                                                     



                   




























































































                                                                              


































































































































































                                                                                  
































































































































                                                                             












































































































































































































                                                                          















                                                             


















                                                           















                                                                






































                                                                 
                            
                          

                               

































































































































































































































                                                                               
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
 * The allocator synchronizes using per slab locks and only
 * uses a centralized lock to manage a pool of partial slabs.
 *
 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
#include <linux/kallsyms.h>

/*
 * Lock order:
 *   1. slab_lock(page)
 *   2. slab->list_lock
 *
 *   The slab_lock protects operations on the object of a particular
 *   slab and its metadata in the page struct. If the slab lock
 *   has been taken then no allocations nor frees can be performed
 *   on the objects in the slab nor can the slab be added or removed
 *   from the partial or full lists since this would mean modifying
 *   the page_struct of the slab.
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *
 *   The lock order is sometimes inverted when we are trying to get a slab
 *   off a list. We take the list_lock and then look for a page on the list
 *   to use. While we do that objects in the slabs may be freed. We can
 *   only operate on the slab if we have also taken the slab_lock. So we use
 *   a slab_trylock() on the slab. If trylock was successful then no frees
 *   can occur anymore and we can use the slab for allocations etc. If the
 *   slab_trylock() does not succeed then frees are in progress in the slab and
 *   we must stay away from it for a while since we may cause a bouncing
 *   cacheline if we try to acquire the lock. So go onto the next slab.
 *   If all pages are busy then we may allocate a new slab instead of reusing
 *   a partial slab. A new slab has noone operating on it and thus there is
 *   no danger of cacheline contention.
 *
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
 * Slabs with free elements are kept on a partial list.
 * There is no list for full slabs. If an object in a full slab is
 * freed then the slab will show up again on the partial lists.
 * Otherwise there is no need to track full slabs unless we have to
 * track full slabs for debugging purposes.
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
 * PageActive 		The slab is used as a cpu cache. Allocations
 * 			may be performed from the slab. The slab is not
 * 			on any slab list and cannot be moved onto one.
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
 * 			the fast path.
 */

/*
 * Issues still to be resolved:
 *
 * - The per cpu array is updated for each new slab and and is a remote
 *   cacheline for most nodes. This could become a bouncing cacheline given
 *   enough frequent updates. There are 16 pointers in a cacheline.so at
 *   max 16 cpus could compete. Likely okay.
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - SLAB_DEBUG_INITIAL is not supported but I have never seen a use of
 *   it.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

#if PAGE_SHIFT <= 12

/*
 * Small page size. Make sure that we do not fragment memory
 */
#define DEFAULT_MAX_ORDER 1
#define DEFAULT_MIN_OBJECTS 4

#else

/*
 * Large page machines are customarily able to handle larger
 * page orders.
 */
#define DEFAULT_MAX_ORDER 2
#define DEFAULT_MIN_OBJECTS 8

#endif

/*
 * Flags from the regular SLAB that SLUB does not support:
 */
#define SLUB_UNIMPLEMENTED (SLAB_DEBUG_INITIAL)

/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
#define MIN_PARTIAL 2

/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
 * sort the partial list by the number of objects in the.
 */
#define MAX_PARTIAL 10

#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
		SLAB_TRACE | SLAB_DESTROY_BY_RCU)

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
		SLAB_CACHE_DMA)

#ifndef ARCH_KMALLOC_MINALIGN
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
#endif

#ifndef ARCH_SLAB_MINALIGN
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
#endif

/* Internal SLUB flags */
#define __OBJECT_POISON 0x80000000	/* Poison object */

static int kmem_size = sizeof(struct kmem_cache);

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

static enum {
	DOWN,		/* No slab functionality available */
	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
	UP,		/* Everything works */
	SYSFS		/* Sysfs up */
} slab_state = DOWN;

/* A list of all slab caches on the system */
static DECLARE_RWSEM(slub_lock);
LIST_HEAD(slab_caches);

#ifdef CONFIG_SYSFS
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
#else
static int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; }
static void sysfs_slab_remove(struct kmem_cache *s) {}
#endif

/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

int slab_is_available(void)
{
	return slab_state >= UP;
}

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
#ifdef CONFIG_NUMA
	return s->node[node];
#else
	return &s->local_node;
#endif
}

/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
	int i, offset;
	int newline = 1;
	char ascii[17];

	ascii[16] = 0;

	for (i = 0; i < length; i++) {
		if (newline) {
			printk(KERN_ERR "%10s 0x%p: ", text, addr + i);
			newline = 0;
		}
		printk(" %02x", addr[i]);
		offset = i % 16;
		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
		if (offset == 15) {
			printk(" %s\n",ascii);
			newline = 1;
		}
	}
	if (!newline) {
		i %= 16;
		while (i < 16) {
			printk("   ");
			ascii[i] = ' ';
			i++;
		}
		printk(" %s\n", ascii);
	}
}

/*
 * Slow version of get and set free pointer.
 *
 * This requires touching the cache lines of kmem_cache.
 * The offset can also be obtained from the page. In that
 * case it is in the cacheline that we already need to touch.
 */
static void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

static void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/*
 * Tracking user of a slab.
 */
struct track {
	void *addr;		/* Called from address */
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
				enum track_item alloc, void *addr)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	p += alloc;
	if (addr) {
		p->addr = addr;
		p->cpu = smp_processor_id();
		p->pid = current ? current->pid : -1;
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
	if (s->flags & SLAB_STORE_USER) {
		set_track(s, object, TRACK_FREE, NULL);
		set_track(s, object, TRACK_ALLOC, NULL);
	}
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

	printk(KERN_ERR "%s: ", s);
	__print_symbol("%s", (unsigned long)t->addr);
	printk(" jiffies_ago=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
}

static void print_trailer(struct kmem_cache *s, u8 *p)
{
	unsigned int off;	/* Offset of last byte */

	if (s->flags & SLAB_RED_ZONE)
		print_section("Redzone", p + s->objsize,
			s->inuse - s->objsize);

	printk(KERN_ERR "FreePointer 0x%p -> 0x%p\n",
			p + s->offset,
			get_freepointer(s, p));

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

	if (s->flags & SLAB_STORE_USER) {
		print_track("Last alloc", get_track(s, p, TRACK_ALLOC));
		print_track("Last free ", get_track(s, p, TRACK_FREE));
		off += 2 * sizeof(struct track);
	}

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
		print_section("Filler", p + off, s->size - off);
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
	u8 *addr = page_address(page);

	printk(KERN_ERR "*** SLUB %s: %s@0x%p slab 0x%p\n",
			s->name, reason, object, page);
	printk(KERN_ERR "    offset=%tu flags=0x%04lx inuse=%u freelist=0x%p\n",
		object - addr, page->flags, page->inuse, page->freelist);
	if (object > addr + 16)
		print_section("Bytes b4", object - 16, 16);
	print_section("Object", object, min(s->objsize, 128));
	print_trailer(s, object);
	dump_stack();
}

static void slab_err(struct kmem_cache *s, struct page *page, char *reason, ...)
{
	va_list args;
	char buf[100];

	va_start(args, reason);
	vsnprintf(buf, sizeof(buf), reason, args);
	va_end(args);
	printk(KERN_ERR "*** SLUB %s: %s in slab @0x%p\n", s->name, buf,
		page);
	dump_stack();
}

static void init_object(struct kmem_cache *s, void *object, int active)
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
		memset(p, POISON_FREE, s->objsize - 1);
		p[s->objsize -1] = POISON_END;
	}

	if (s->flags & SLAB_RED_ZONE)
		memset(p + s->objsize,
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
			s->inuse - s->objsize);
}

static int check_bytes(u8 *start, unsigned int value, unsigned int bytes)
{
	while (bytes) {
		if (*start != (u8)value)
			return 0;
		start++;
		bytes--;
	}
	return 1;
}


static int check_valid_pointer(struct kmem_cache *s, struct page *page,
					 void *object)
{
	void *base;

	if (!object)
		return 1;

	base = page_address(page);
	if (object < base || object >= base + s->objects * s->size ||
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
 * object + s->objsize
 * 	Padding to reach word boundary. This is also used for Redzoning.
 * 	Padding is extended to word size if Redzoning is enabled
 * 	and objsize == inuse.
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
 * 	C. Padding to reach required alignment boundary
 * 		Padding is done using 0x5a (POISON_INUSE)
 *
 * object + s->size
 *
 * If slabcaches are merged then the objsize and inuse boundaries are to
 * be ignored. And therefore no slab options that rely on these boundaries
 * may be used with merged slabcaches.
 */

static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	printk(KERN_ERR "@@@ SLUB: %s Restoring %s (0x%x) from 0x%p-0x%p\n",
		s->name, message, data, from, to - 1);
	memset(from, data, to - from);
}

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

	if (check_bytes(p + off, POISON_INUSE, s->size - off))
		return 1;

	object_err(s, page, p, "Object padding check fails");

	/*
	 * Restore padding
	 */
	restore_bytes(s, "object padding", POISON_INUSE, p + off, p + s->size);
	return 0;
}

static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
	u8 *p;
	int length, remainder;

	if (!(s->flags & SLAB_POISON))
		return 1;

	p = page_address(page);
	length = s->objects * s->size;
	remainder = (PAGE_SIZE << s->order) - length;
	if (!remainder)
		return 1;

	if (!check_bytes(p + length, POISON_INUSE, remainder)) {
		printk(KERN_ERR "SLUB: %s slab 0x%p: Padding fails check\n",
			s->name, p);
		dump_stack();
		restore_bytes(s, "slab padding", POISON_INUSE, p + length,
			p + length + remainder);
		return 0;
	}
	return 1;
}

static int check_object(struct kmem_cache *s, struct page *page,
					void *object, int active)
{
	u8 *p = object;
	u8 *endobject = object + s->objsize;

	if (s->flags & SLAB_RED_ZONE) {
		unsigned int red =
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;

		if (!check_bytes(endobject, red, s->inuse - s->objsize)) {
			object_err(s, page, object,
			active ? "Redzone Active" : "Redzone Inactive");
			restore_bytes(s, "redzone", red,
				endobject, object + s->inuse);
			return 0;
		}
	} else {
		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse &&
			!check_bytes(endobject, POISON_INUSE,
					s->inuse - s->objsize)) {
		object_err(s, page, p, "Alignment padding check fails");
		/*
		 * Fix it so that there will not be another report.
		 *
		 * Hmmm... We may be corrupting an object that now expects
		 * to be longer than allowed.
		 */
		restore_bytes(s, "alignment padding", POISON_INUSE,
			endobject, object + s->inuse);
		}
	}

	if (s->flags & SLAB_POISON) {
		if (!active && (s->flags & __OBJECT_POISON) &&
			(!check_bytes(p, POISON_FREE, s->objsize - 1) ||
				p[s->objsize - 1] != POISON_END)) {

			object_err(s, page, p, "Poison check failed");
			restore_bytes(s, "Poison", POISON_FREE,
						p, p + s->objsize -1);
			restore_bytes(s, "Poison", POISON_END,
					p + s->objsize - 1, p + s->objsize);
			return 0;
		}
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

	if (!s->offset && active)
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
		 * No choice but to zap it and thus loose the remainder
		 * of the free objects in this slab. May cause
		 * another error because the object count maybe
		 * wrong now.
		 */
		set_freepointer(s, p, NULL);
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
		printk(KERN_ERR "SLUB: %s Not a valid slab page @0x%p "
			"flags=%lx mapping=0x%p count=%d \n",
			s->name, page, page->flags, page->mapping,
			page_count(page));
		return 0;
	}
	if (page->offset * sizeof(void *) != s->offset) {
		printk(KERN_ERR "SLUB: %s Corrupted offset %lu in slab @0x%p"
			" flags=0x%lx mapping=0x%p count=%d\n",
			s->name,
			(unsigned long)(page->offset * sizeof(void *)),
			page,
			page->flags,
			page->mapping,
			page_count(page));
		dump_stack();
		return 0;
	}
	if (page->inuse > s->objects) {
		printk(KERN_ERR "SLUB: %s Inuse %u > max %u in slab "
			"page @0x%p flags=%lx mapping=0x%p count=%d\n",
			s->name, page->inuse, s->objects, page, page->flags,
			page->mapping, page_count(page));
		dump_stack();
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
 * Determine if a certain object on a page is on the freelist and
 * therefore free. Must hold the slab lock for cpu slabs to
 * guarantee that the chains are consistent.
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
	void *fp = page->freelist;
	void *object = NULL;

	while (fp && nr <= s->objects) {
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
				set_freepointer(s, object, NULL);
				break;
			} else {
				printk(KERN_ERR "SLUB: %s slab 0x%p "
					"freepointer 0x%p corrupted.\n",
					s->name, page, fp);
				dump_stack();
				page->freelist = NULL;
				page->inuse = s->objects;
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

	if (page->inuse != s->objects - nr) {
		printk(KERN_ERR "slab %s: page 0x%p wrong object count."
			" counter is %d but counted were %d\n",
			s->name, page, page->inuse,
			s->objects - nr);
		page->inuse = s->objects - nr;
	}
	return search == NULL;
}

/*
 * Tracking of fully allocated slabs for debugging
 */
static void add_full(struct kmem_cache_node *n, struct page *page)
{
	spin_lock(&n->list_lock);
	list_add(&page->lru, &n->full);
	spin_unlock(&n->list_lock);
}

static void remove_full(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n;

	if (!(s->flags & SLAB_STORE_USER))
		return;

	n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	spin_unlock(&n->list_lock);
}

static int alloc_object_checks(struct kmem_cache *s, struct page *page,
							void *object)
{
	if (!check_slab(s, page))
		goto bad;

	if (object && !on_freelist(s, page, object)) {
		printk(KERN_ERR "SLUB: %s Object 0x%p@0x%p "
			"already allocated.\n",
			s->name, object, page);
		goto dump;
	}

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
		goto dump;
	}

	if (!object)
		return 1;

	if (!check_object(s, page, object, 0))
		goto bad;
	init_object(s, object, 1);

	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s alloc 0x%p inuse=%d fp=0x%p\n",
			s->name, object, page->inuse,
			page->freelist);
		dump_stack();
	}
	return 1;
dump:
	dump_stack();
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
		 * as used avoids touching the remainder.
		 */
		printk(KERN_ERR "@@@ SLUB: %s slab 0x%p. Marking all objects used.\n",
			s->name, page);
		page->inuse = s->objects;
		page->freelist = NULL;
		/* Fix up fields that may be corrupted */
		page->offset = s->offset / sizeof(void *);
	}
	return 0;
}

static int free_object_checks(struct kmem_cache *s, struct page *page,
							void *object)
{
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
		printk(KERN_ERR "SLUB: %s slab 0x%p invalid "
			"object pointer 0x%p\n",
			s->name, page, object);
		goto fail;
	}

	if (on_freelist(s, page, object)) {
		printk(KERN_ERR "SLUB: %s slab 0x%p object "
			"0x%p already free.\n", s->name, page, object);
		goto fail;
	}

	if (!check_object(s, page, object, 1))
		return 0;

	if (unlikely(s != page->slab)) {
		if (!PageSlab(page))
			printk(KERN_ERR "slab_free %s size %d: attempt to"
				"free object(0x%p) outside of slab.\n",
				s->name, s->size, object);
		else
		if (!page->slab)
			printk(KERN_ERR
				"slab_free : no slab(NULL) for object 0x%p.\n",
						object);
		else
		printk(KERN_ERR "slab_free %s(%d): object at 0x%p"
				" belongs to slab %s(%d)\n",
				s->name, s->size, object,
				page->slab->name, page->slab->size);
		goto fail;
	}
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s free 0x%p inuse=%d fp=0x%p\n",
			s->name, object, page->inuse,
			page->freelist);
		print_section("Object", object, s->objsize);
		dump_stack();
	}
	init_object(s, object, 0);
	return 1;
fail:
	dump_stack();
	printk(KERN_ERR "@@@ SLUB: %s slab 0x%p object at 0x%p not freed.\n",
		s->name, page, object);
	return 0;
}

/*
 * Slab allocation and freeing
 */
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page * page;
	int pages = 1 << s->order;

	if (s->order)
		flags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
		flags |= SLUB_DMA;

	if (node == -1)
		page = alloc_pages(flags, s->order);
	else
		page = alloc_pages_node(node, flags, s->order);

	if (!page)
		return NULL;

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		pages);

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
	if (PageError(page)) {
		init_object(s, object, 0);
		init_tracking(s, object);
	}

	if (unlikely(s->ctor)) {
		int mode = SLAB_CTOR_CONSTRUCTOR;

		if (!(s->flags & __GFP_WAIT))
			mode |= SLAB_CTOR_ATOMIC;

		s->ctor(object, s, mode);
	}
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	struct kmem_cache_node *n;
	void *start;
	void *end;
	void *last;
	void *p;

	if (flags & __GFP_NO_GROW)
		return NULL;

	BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));

	if (flags & __GFP_WAIT)
		local_irq_enable();

	page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
	if (!page)
		goto out;

	n = get_node(s, page_to_nid(page));
	if (n)
		atomic_long_inc(&n->nr_slabs);
	page->offset = s->offset / sizeof(void *);
	page->slab = s;
	page->flags |= 1 << PG_slab;
	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
			SLAB_STORE_USER | SLAB_TRACE))
		page->flags |= 1 << PG_error;

	start = page_address(page);
	end = start + s->objects * s->size;

	if (unlikely(s->flags & SLAB_POISON))
		memset(start, POISON_INUSE, PAGE_SIZE << s->order);

	last = start;
	for (p = start + s->size; p < end; p += s->size) {
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
	set_freepointer(s, last, NULL);

	page->freelist = start;
	page->inuse = 0;
out:
	if (flags & __GFP_WAIT)
		local_irq_disable();
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
	int pages = 1 << s->order;

	if (unlikely(PageError(page) || s->dtor)) {
		void *start = page_address(page);
		void *end = start + (pages << PAGE_SHIFT);
		void *p;

		slab_pad_check(s, page);
		for (p = start; p <= end - s->size; p += s->size) {
			if (s->dtor)
				s->dtor(p, s, 0);
			check_object(s, page, p, 0);
		}
	}

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		- pages);

	page->mapping = NULL;
	__free_pages(page, s->order);
}

static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

	page = container_of((struct list_head *)h, struct page, lru);
	__free_slab(page->slab, page);
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
		/*
		 * RCU free overloads the RCU head over the LRU
		 */
		struct rcu_head *head = (void *)&page->lru;

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	atomic_long_dec(&n->nr_slabs);
	reset_page_mapcount(page);
	page->flags &= ~(1 << PG_slab | 1 << PG_error);
	free_slab(s, page);
}

/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	bit_spin_unlock(PG_locked, &page->flags);
}

static __always_inline int slab_trylock(struct page *page)
{
	int rc = 1;

	rc = bit_spin_trylock(PG_locked, &page->flags);
	return rc;
}

/*
 * Management of partially allocated slabs
 */
static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
{
	spin_lock(&n->list_lock);
	n->nr_partial++;
	list_add_tail(&page->lru, &n->partial);
	spin_unlock(&n->list_lock);
}

static void add_partial(struct kmem_cache_node *n, struct page *page)
{
	spin_lock(&n->list_lock);
	n->nr_partial++;
	list_add(&page->lru, &n->partial);
	spin_unlock(&n->list_lock);
}

static void remove_partial(struct kmem_cache *s,
						struct page *page)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	n->nr_partial--;
	spin_unlock(&n->list_lock);
}

/*
 * Lock page and remove it from the partial list
 *
 * Must hold list_lock
 */
static int lock_and_del_slab(struct kmem_cache_node *n, struct page *page)
{
	if (slab_trylock(page)) {
		list_del(&page->lru);
		n->nr_partial--;
		return 1;
	}
	return 0;
}

/*
 * Try to get a partial slab from a specific node
 */
static struct page *get_partial_node(struct kmem_cache_node *n)
{
	struct page *page;

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
	 * partial slab then get_partials() will return NULL.
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
	list_for_each_entry(page, &n->partial, lru)
		if (lock_and_del_slab(n, page))
			goto out;
	page = NULL;
out:
	spin_unlock(&n->list_lock);
	return page;
}

/*
 * Get a page from somewhere. Search in increasing NUMA
 * distances.
 */
static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
	struct zone **z;
	struct page *page;

	/*
	 * The defrag ratio allows to configure the tradeoffs between
	 * inter node defragmentation and node local allocations.
	 * A lower defrag_ratio increases the tendency to do local
	 * allocations instead of scanning throught the partial
	 * lists on other nodes.
	 *
	 * If defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If its higher then kmalloc()
	 * may return off node objects in order to avoid fragmentation.
	 *
	 * A higher ratio means slabs may be taken from other nodes
	 * thus reducing the number of partial slabs on those nodes.
	 *
	 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
	 * defrag_ratio = 1000) then every (well almost) allocation
	 * will first attempt to defrag slab caches on other nodes. This
	 * means scanning over all nodes to look for partial slabs which
	 * may be a bit expensive to do on every slab allocation.
	 */
	if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
		return NULL;

	zonelist = &NODE_DATA(slab_node(current->mempolicy))
					->node_zonelists[gfp_zone(flags)];
	for (z = zonelist->zones; *z; z++) {
		struct kmem_cache_node *n;

		n = get_node(s, zone_to_nid(*z));

		if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
				n->nr_partial > MIN_PARTIAL) {
			page = get_partial_node(n);
			if (page)
				return page;
		}
	}
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	int searchnode = (node == -1) ? numa_node_id() : node;

	page = get_partial_node(get_node(s, searchnode));
	if (page || (flags & __GFP_THISNODE))
		return page;

	return get_any_partial(s, flags);
}

/*
 * Move a page back to the lists.
 *
 * Must be called with the slab lock held.
 *
 * On exit the slab lock will have been dropped.
 */
static void putback_slab(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	if (page->inuse) {

		if (page->freelist)
			add_partial(n, page);
		else if (PageError(page) && (s->flags & SLAB_STORE_USER))
			add_full(n, page);
		slab_unlock(page);

	} else {
		if (n->nr_partial < MIN_PARTIAL) {
			/*
			 * Adding an empty page to the partial slabs in order
			 * to avoid page allocator overhead. This page needs to
			 * come after all the others that are not fully empty
			 * in order to make sure that we do maximum
			 * defragmentation.
			 */
			add_partial_tail(n, page);
			slab_unlock(page);
		} else {
			slab_unlock(page);
			discard_slab(s, page);
		}
	}
}

/*
 * Remove the cpu slab
 */
static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
{
	s->cpu_slab[cpu] = NULL;
	ClearPageActive(page);

	putback_slab(s, page);
}

static void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
{
	slab_lock(page);
	deactivate_slab(s, page, cpu);
}

/*
 * Flush cpu slab.
 * Called from IPI handler with interrupts disabled.
 */
static void __flush_cpu_slab(struct kmem_cache *s, int cpu)
{
	struct page *page = s->cpu_slab[cpu];

	if (likely(page))
		flush_slab(s, page, cpu);
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;
	int cpu = smp_processor_id();

	__flush_cpu_slab(s, cpu);
}

static void flush_all(struct kmem_cache *s)
{
#ifdef CONFIG_SMP
	on_each_cpu(flush_cpu_slab, s, 1, 1);
#else
	unsigned long flags;

	local_irq_save(flags);
	flush_cpu_slab(s);
	local_irq_restore(flags);
#endif
}

/*
 * slab_alloc is optimized to only modify two cachelines on the fast path
 * (aside from the stack):
 *
 * 1. The page struct
 * 2. The first cacheline of the object to be allocated.
 *
 * The only cache lines that are read (apart from code) is the
 * per cpu array in the kmem_cache struct.
 *
 * Fastpath is not possible if we need to get a new slab or have
 * debugging enabled (which means all slabs are marked with PageError)
 */
static void *slab_alloc(struct kmem_cache *s,
				gfp_t gfpflags, int node, void *addr)
{
	struct page *page;
	void **object;
	unsigned long flags;
	int cpu;

	local_irq_save(flags);
	cpu = smp_processor_id();
	page = s->cpu_slab[cpu];
	if (!page)
		goto new_slab;

	slab_lock(page);
	if (unlikely(node != -1 && page_to_nid(page) != node))
		goto another_slab;
redo:
	object = page->freelist;
	if (unlikely(!object))
		goto another_slab;
	if (unlikely(PageError(page)))
		goto debug;

have_object:
	page->inuse++;
	page->freelist = object[page->offset];
	slab_unlock(page);
	local_irq_restore(flags);
	return object;

another_slab:
	deactivate_slab(s, page, cpu);

new_slab:
	page = get_partial(s, gfpflags, node);
	if (likely(page)) {
have_slab:
		s->cpu_slab[cpu] = page;
		SetPageActive(page);
		goto redo;
	}

	page = new_slab(s, gfpflags, node);
	if (page) {
		cpu = smp_processor_id();
		if (s->cpu_slab[cpu]) {
			/*
			 * Someone else populated the cpu_slab while we enabled
			 * interrupts, or we have got scheduled on another cpu.
			 * The page may not be on the requested node.
			 */
			if (node == -1 ||
				page_to_nid(s->cpu_slab[cpu]) == node) {
				/*
				 * Current cpuslab is acceptable and we
				 * want the current one since its cache hot
				 */
				discard_slab(s, page);
				page = s->cpu_slab[cpu];
				slab_lock(page);
				goto redo;
			}
			/* Dump the current slab */
			flush_slab(s, s->cpu_slab[cpu], cpu);
		}
		slab_lock(page);
		goto have_slab;
	}
	local_irq_restore(flags);
	return NULL;
debug:
	if (!alloc_object_checks(s, page, object))
		goto another_slab;
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	goto have_object;
}

void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
}
EXPORT_SYMBOL(kmem_cache_alloc);

#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
}
EXPORT_SYMBOL(kmem_cache_alloc_node);
#endif

/*
 * The fastpath only writes the cacheline of the page struct and the first
 * cacheline of the object.
 *
 * No special cachelines need to be read
 */
static void slab_free(struct kmem_cache *s, struct page *page,
					void *x, void *addr)
{
	void *prior;
	void **object = (void *)x;
	unsigned long flags;

	local_irq_save(flags);
	slab_lock(page);

	if (unlikely(PageError(page)))
		goto debug;
checks_ok:
	prior = object[page->offset] = page->freelist;
	page->freelist = object;
	page->inuse--;

	if (unlikely(PageActive(page)))
		/*
		 * Cpu slabs are never on partial lists and are
		 * never freed.
		 */
		goto out_unlock;

	if (unlikely(!page->inuse))
		goto slab_empty;

	/*
	 * Objects left in the slab. If it
	 * was not on the partial list before
	 * then add it.
	 */
	if (unlikely(!prior))
		add_partial(get_node(s, page_to_nid(page)), page);

out_unlock:
	slab_unlock(page);
	local_irq_restore(flags);
	return;

slab_empty:
	if (prior)
		/*
		 * Slab on the partial list.
		 */
		remove_partial(s, page);

	slab_unlock(page);
	discard_slab(s, page);
	local_irq_restore(flags);
	return;

debug:
	if (!free_object_checks(s, page, x))
		goto out_unlock;
	if (!PageActive(page) && !page->freelist)
		remove_full(s, page);
	if (s->flags & SLAB_STORE_USER)
		set_track(s, x, TRACK_FREE, addr);
	goto checks_ok;
}

void kmem_cache_free(struct kmem_cache *s, void *x)
{
	struct page *page;

	page = virt_to_head_page(x);

	slab_free(s, page, x, __builtin_return_address(0));
}
EXPORT_SYMBOL(kmem_cache_free);

/* Figure out on which slab object the object resides */
static struct page *get_object_page(const void *x)
{
	struct page *page = virt_to_head_page(x);

	if (!PageSlab(page))
		return NULL;

	return page;
}

/*
 * kmem_cache_open produces objects aligned at "size" and the first object
 * is placed at offset 0 in the slab (We have no metainformation on the
 * slab, all slabs are in essence "off slab").
 *
 * In order to get the desired alignment one just needs to align the
 * size.
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
 * must be moved on and off the partial lists and therefore may influence
 * locking overhead.
 *
 * The offset is used to relocate the free list link in each object. It is
 * therefore possible to move the free list link behind the object. This
 * is necessary for RCU to work properly and also useful for debugging.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
static int slub_max_order = DEFAULT_MAX_ORDER;

/*
 * Minimum number of objects per slab. This is necessary in order to
 * reduce locking overhead. Similar to the queue size in SLAB.
 */
static int slub_min_objects = DEFAULT_MIN_OBJECTS;

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 */
static int slub_nomerge;

/*
 * Debug settings:
 */
static int slub_debug;

static char *slub_debug_slabs;

/*
 * Calculate the order of allocation given an slab object size.
 *
 * The order of allocation has significant impact on other elements
 * of the system. Generally order 0 allocations should be preferred
 * since they do not cause fragmentation in the page allocator. Larger
 * objects may have problems with order 0 because there may be too much
 * space left unused in a slab. We go to a higher order if more than 1/8th
 * of the slab would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that
 * a minimum number of objects is in one slab. Otherwise we may
 * generate too much activity on the partial lists. This is less a
 * concern for large slabs though. slub_max_order specifies the order
 * where we begin to stop considering the number of objects in a slab.
 *
 * Higher order allocations also allow the placement of more objects
 * in a slab and thereby reduce object handling overhead. If the user
 * has requested a higher mininum order then we start with that one
 * instead of zero.
 */
static int calculate_order(int size)
{
	int order;
	int rem;

	for (order = max(slub_min_order, fls(size - 1) - PAGE_SHIFT);
			order < MAX_ORDER; order++) {
		unsigned long slab_size = PAGE_SIZE << order;

		if (slub_max_order > order &&
				slab_size < slub_min_objects * size)
			continue;

		if (slab_size < size)
			continue;

		rem = slab_size % size;

		if (rem <= (PAGE_SIZE << order) / 8)
			break;

	}
	if (order >= MAX_ORDER)
		return -E2BIG;
	return order;
}

/*
 * Function to figure out which alignment to use from the
 * various ways of specifying it.
 */
static unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then
	 * follow that suggestion if the object is sufficiently
	 * large.
	 *
	 * The hardware cache alignment cannot override the
	 * specified alignment though. If that is greater
	 * then use it.
	 */
	if ((flags & (SLAB_MUST_HWCACHE_ALIGN | SLAB_HWCACHE_ALIGN)) &&
			size > L1_CACHE_BYTES / 2)
		return max_t(unsigned long, align, L1_CACHE_BYTES);

	if (align < ARCH_SLAB_MINALIGN)
		return ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

static void init_kmem_cache_node(struct kmem_cache_node *n)
{
	n->nr_partial = 0;
	atomic_long_set(&n->nr_slabs, 0);
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
	INIT_LIST_HEAD(&n->full);
}

#ifdef CONFIG_NUMA
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
 * Note that this function only works on the kmalloc_node_cache
 * when allocating for the kmalloc_node_cache.
 */
static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
								int node)
{
	struct page *page;
	struct kmem_cache_node *n;

	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));

	page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
	/* new_slab() disables interupts */
	local_irq_enable();

	BUG_ON(!page);
	n = page->freelist;
	BUG_ON(!n);
	page->freelist = get_freepointer(kmalloc_caches, n);
	page->inuse++;
	kmalloc_caches->node[node] = n;
	init_object(kmalloc_caches, n, 1);
	init_kmem_cache_node(n);
	atomic_long_inc(&n->nr_slabs);
	add_partial(n, page);
	return n;
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

	for_each_online_node(node) {
		struct kmem_cache_node *n = s->node[node];
		if (n && n != &s->local_node)
			kmem_cache_free(kmalloc_caches, n);
		s->node[node] = NULL;
	}
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	int node;
	int local_node;

	if (slab_state >= UP)
		local_node = page_to_nid(virt_to_page(s));
	else
		local_node = 0;

	for_each_online_node(node) {
		struct kmem_cache_node *n;

		if (local_node == node)
			n = &s->local_node;
		else {
			if (slab_state == DOWN) {
				n = early_kmem_cache_node_alloc(gfpflags,
								node);
				continue;
			}
			n = kmem_cache_alloc_node(kmalloc_caches,
							gfpflags, node);

			if (!n) {
				free_kmem_cache_nodes(s);
				return 0;
			}

		}
		s->node[node] = n;
		init_kmem_cache_node(n);
	}
	return 1;
}
#else
static void free_kmem_cache_nodes(struct kmem_cache *s)
{
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	init_kmem_cache_node(&s->local_node);
	return 1;
}
#endif

/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
static int calculate_sizes(struct kmem_cache *s)
{
	unsigned long flags = s->flags;
	unsigned long size = s->objsize;
	unsigned long align = s->align;

	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
			!s->ctor && !s->dtor)
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;

	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

	/*
	 * If we are redzoning then check if there is some space between the
	 * end of the object and the free pointer. If not then add an
	 * additional word, so that we can establish a redzone between
	 * the object and the freepointer to be able to check for overwrites.
	 */
	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
		size += sizeof(void *);

	/*
	 * With that we have determined how much of the slab is in actual
	 * use by the object. This is the potential offset to the free
	 * pointer.
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
		s->ctor || s->dtor)) {
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

	if (flags & DEBUG_DEFAULT_FLAGS)
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
		 * corrupted if an user writes before the start
		 * of the object.
		 */
		size += sizeof(void *);
	/*
	 * Determine the alignment based on various parameters that the
	 * user specified (this is unecessarily complex due to the attempt
	 * to be compatible with SLAB. Should be cleaned up some day).
	 */
	align = calculate_alignment(flags, align, s->objsize);

	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
	size = ALIGN(size, align);
	s->size = size;

	s->order = calculate_order(size);
	if (s->order < 0)
		return 0;

	/*
	 * Determine the number of objects per slab
	 */
	s->objects = (PAGE_SIZE << s->order) / size;

	/*
	 * Verify that the number of objects is within permitted limits.
	 * The page->inuse field is only 16 bit wide! So we cannot have
	 * more than 64k objects per slab.
	 */
	if (!s->objects || s->objects > 65535)
		return 0;
	return 1;

}

static int __init finish_bootstrap(void)
{
	struct list_head *h;
	int err;

	slab_state = SYSFS;

	list_for_each(h, &slab_caches) {
		struct kmem_cache *s =
			container_of(h, struct kmem_cache, list);

		err = sysfs_slab_add(s);
		BUG_ON(err);
	}
	return 0;
}

static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
		const char *name, size_t size,
		size_t align, unsigned long flags,
		void (*ctor)(void *, struct kmem_cache *, unsigned long),
		void (*dtor)(void *, struct kmem_cache *, unsigned long))
{
	memset(s, 0, kmem_size);
	s->name = name;
	s->ctor = ctor;
	s->dtor = dtor;
	s->objsize = size;
	s->flags = flags;
	s->align = align;

	BUG_ON(flags & SLUB_UNIMPLEMENTED);

	/*
	 * The page->offset field is only 16 bit wide. This is an offset
	 * in units of words from the beginning of an object. If the slab
	 * size is bigger then we cannot move the free pointer behind the
	 * object anymore.
	 *
	 * On 32 bit platforms the limit is 256k. On 64bit platforms
	 * the limit is 512k.
	 *
	 * Debugging or ctor/dtors may create a need to move the free
	 * pointer. Fail if this happens.
	 */
	if (s->size >= 65535 * sizeof(void *)) {
		BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
				SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
		BUG_ON(ctor || dtor);
	}
	else
		/*
		 * Enable debugging if selected on the kernel commandline.
		 */
		if (slub_debug && (!slub_debug_slabs ||
		    strncmp(slub_debug_slabs, name,
		    	strlen(slub_debug_slabs)) == 0))
				s->flags |= slub_debug;

	if (!calculate_sizes(s))
		goto error;

	s->refcount = 1;
#ifdef CONFIG_NUMA
	s->defrag_ratio = 100;
#endif

	if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
		return 1;
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
			s->name, (unsigned long)size, s->size, s->order,
			s->offset, flags);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_open);

/*
 * Check if a given pointer is valid
 */
int kmem_ptr_validate(struct kmem_cache *s, const void *object)
{
	struct page * page;
	void *addr;

	page = get_object_page(object);

	if (!page || s != page->slab)
		/* No slab or wrong slab */
		return 0;

	addr = page_address(page);
	if (object < addr || object >= addr + s->objects * s->size)
		/* Out of bounds */
		return 0;

	if ((object - addr) % s->size)
		/* Improperly aligned */
		return 0;

	/*
	 * We could also check if the object is on the slabs freelist.
	 * But this would be too expensive and it seems that the main
	 * purpose of kmem_ptr_valid is to check if the object belongs
	 * to a certain slab.
	 */
	return 1;
}
EXPORT_SYMBOL(kmem_ptr_validate);

/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->objsize;
}
EXPORT_SYMBOL(kmem_cache_size);

const char *kmem_cache_name(struct kmem_cache *s)
{
	return s->name;
}
EXPORT_SYMBOL(kmem_cache_name);

/*
 * Attempt to free all slabs on a node
 */
static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
			struct list_head *list)
{
	int slabs_inuse = 0;
	unsigned long flags;
	struct page *page, *h;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry_safe(page, h, list, lru)
		if (!page->inuse) {
			list_del(&page->lru);
			discard_slab(s, page);
		} else
			slabs_inuse++;
	spin_unlock_irqrestore(&n->list_lock, flags);
	return slabs_inuse;
}

/*
 * Release all resources used by slab cache
 */
static int kmem_cache_close(struct kmem_cache *s)
{
	int node;

	flush_all(s);

	/* Attempt to free all objects */
	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		n->nr_partial -= free_list(s, n, &n->partial);
		if (atomic_long_read(&n->nr_slabs))
			return 1;
	}
	free_kmem_cache_nodes(s);
	return 0;
}

/*
 * Close a cache and release the kmem_cache structure
 * (must be used for caches created using kmem_cache_create)
 */
void kmem_cache_destroy(struct kmem_cache *s)
{
	down_write(&slub_lock);
	s->refcount--;
	if (!s->refcount) {
		list_del(&s->list);
		if (kmem_cache_close(s))
			WARN_ON(1);
		sysfs_slab_remove(s);
		kfree(s);
	}
	up_write(&slub_lock);
}
EXPORT_SYMBOL(kmem_cache_destroy);

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
#endif

static int __init setup_slub_min_order(char *str)
{
	get_option (&str, &slub_min_order);

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
	get_option (&str, &slub_max_order);

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
	get_option (&str, &slub_min_objects);

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

static int __init setup_slub_debug(char *str)
{
	if (!str || *str != '=')
		slub_debug = DEBUG_DEFAULT_FLAGS;
	else {
		str++;
		if (*str == 0 || *str == ',')
			slub_debug = DEBUG_DEFAULT_FLAGS;
		else
		for( ;*str && *str != ','; str++)
			switch (*str) {
			case 'f' : case 'F' :
				slub_debug |= SLAB_DEBUG_FREE;
				break;
			case 'z' : case 'Z' :
				slub_debug |= SLAB_RED_ZONE;
				break;
			case 'p' : case 'P' :
				slub_debug |= SLAB_POISON;
				break;
			case 'u' : case 'U' :
				slub_debug |= SLAB_STORE_USER;
				break;
			case 't' : case 'T' :
				slub_debug |= SLAB_TRACE;
				break;
			default:
				printk(KERN_ERR "slub_debug option '%c' "
					"unknown. skipped\n",*str);
			}
	}

	if (*str == ',')
		slub_debug_slabs = str + 1;
	return 1;
}

__setup("slub_debug", setup_slub_debug);

static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
		const char *name, int size, gfp_t gfp_flags)
{
	unsigned int flags = 0;

	if (gfp_flags & SLUB_DMA)
		flags = SLAB_CACHE_DMA;

	down_write(&slub_lock);
	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
			flags, NULL, NULL))
		goto panic;

	list_add(&s->list, &slab_caches);
	up_write(&slub_lock);
	if (sysfs_slab_add(s))
		goto panic;
	return s;

panic:
	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
}

static struct kmem_cache *get_slab(size_t size, gfp_t flags)
{
	int index = kmalloc_index(size);

	if (!index)
		return NULL;

	/* Allocation too large? */
	BUG_ON(index < 0);

#ifdef CONFIG_ZONE_DMA
	if ((flags & SLUB_DMA)) {
		struct kmem_cache *s;
		struct kmem_cache *x;
		char *text;
		size_t realsize;

		s = kmalloc_caches_dma[index];
		if (s)
			return s;

		/* Dynamically create dma cache */
		x = kmalloc(kmem_size, flags & ~SLUB_DMA);
		if (!x)
			panic("Unable to allocate memory for dma cache\n");

		if (index <= KMALLOC_SHIFT_HIGH)
			realsize = 1 << index;
		else {
			if (index == 1)
				realsize = 96;
			else
				realsize = 192;
		}

		text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
				(unsigned int)realsize);
		s = create_kmalloc_cache(x, text, realsize, flags);
		kmalloc_caches_dma[index] = s;
		return s;
	}
#endif
	return &kmalloc_caches[index];
}

void *__kmalloc(size_t size, gfp_t flags)
{
	struct kmem_cache *s = get_slab(size, flags);

	if (s)
		return slab_alloc(s, flags, -1, __builtin_return_address(0));
	return NULL;
}
EXPORT_SYMBOL(__kmalloc);

#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	struct kmem_cache *s = get_slab(size, flags);

	if (s)
		return slab_alloc(s, flags, node, __builtin_return_address(0));
	return NULL;
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
	struct page *page = get_object_page(object);
	struct kmem_cache *s;

	BUG_ON(!page);
	s = page->slab;
	BUG_ON(!s);

	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
		return s->objsize;

	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;

	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}
EXPORT_SYMBOL(ksize);

void kfree(const void *x)
{
	struct kmem_cache *s;
	struct page *page;

	if (!x)
		return;

	page = virt_to_head_page(x);
	s = page->slab;

	slab_free(s, page, (void *)x, __builtin_return_address(0));
}
EXPORT_SYMBOL(kfree);

/*
 *  kmem_cache_shrink removes empty slabs from the partial lists
 *  and then sorts the partially allocated slabs by the number
 *  of items in use. The slabs with the most items in use
 *  come first. New allocations will remove these from the
 *  partial list because they are full. The slabs with the
 *  least items are placed last. If it happens that the objects
 *  are freed then the page can be returned to the page allocator.
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
	struct list_head *slabs_by_inuse =
		kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
	for_each_online_node(node) {
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

		for (i = 0; i < s->objects; i++)
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
		 * Build lists indexed by the items in use in
		 * each slab or free slabs if empty.
		 *
		 * Note that concurrent frees may occur while
		 * we hold the list_lock. page->inuse here is
		 * the upper limit.
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
			if (!page->inuse && slab_trylock(page)) {
				/*
				 * Must hold slab lock here because slab_free
				 * may have freed the last object and be
				 * waiting to release the slab.
				 */
				list_del(&page->lru);
				n->nr_partial--;
				slab_unlock(page);
				discard_slab(s, page);
			} else {
				if (n->nr_partial > MAX_PARTIAL)
					list_move(&page->lru,
					slabs_by_inuse + page->inuse);
			}
		}

		if (n->nr_partial <= MAX_PARTIAL)
			goto out;

		/*
		 * Rebuild the partial list with the slabs filled up
		 * most first and the least used slabs at the end.
		 */
		for (i = s->objects - 1; i >= 0; i--)
			list_splice(slabs_by_inuse + i, n->partial.prev);

	out:
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 *
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	struct kmem_cache *new_cache;
	void *ret;
	struct page *page;

	if (unlikely(!p))
		return kmalloc(new_size, flags);

	if (unlikely(!new_size)) {
		kfree(p);
		return NULL;
	}

	page = virt_to_head_page(p);

	new_cache = get_slab(new_size, flags);

	/*
 	 * If new size fits in the current cache, bail out.
 	 */
	if (likely(page->slab == new_cache))
		return (void *)p;

	ret = kmalloc(new_size, flags);
	if (ret) {
		memcpy(ret, p, min(new_size, ksize(p)));
		kfree(p);
	}
	return ret;
}
EXPORT_SYMBOL(krealloc);

/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

void __init kmem_cache_init(void)
{
	int i;

#ifdef CONFIG_NUMA
	/*
	 * Must first have the slab cache available for the allocations of the
	 * struct kmalloc_cache_node's. There is special bootstrap code in
	 * kmem_cache_open for slab_state == DOWN.
	 */
	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
		sizeof(struct kmem_cache_node), GFP_KERNEL);
#endif

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

	/* Caches that are not of the two-to-the-power-of size */
	create_kmalloc_cache(&kmalloc_caches[1],
				"kmalloc-96", 96, GFP_KERNEL);
	create_kmalloc_cache(&kmalloc_caches[2],
				"kmalloc-192", 192, GFP_KERNEL);

	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
		create_kmalloc_cache(&kmalloc_caches[i],
			"kmalloc", 1 << i, GFP_KERNEL);

	slab_state = UP;

	/* Provide the correct kmalloc names now that the caches are up */
	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
		kmalloc_caches[i]. name =
			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
#endif

	if (nr_cpu_ids)	/* Remove when nr_cpu_ids is fixed upstream ! */
		kmem_size = offsetof(struct kmem_cache, cpu_slab)
			 + nr_cpu_ids * sizeof(struct page *);

	printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
		" Processors=%d, Nodes=%d\n",
		KMALLOC_SHIFT_HIGH, L1_CACHE_BYTES,
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

	if (s->ctor || s->dtor)
		return 1;

	return 0;
}

static struct kmem_cache *find_mergeable(size_t size,
		size_t align, unsigned long flags,
		void (*ctor)(void *, struct kmem_cache *, unsigned long),
		void (*dtor)(void *, struct kmem_cache *, unsigned long))
{
	struct list_head *h;

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

	if (ctor || dtor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);

	list_for_each(h, &slab_caches) {
		struct kmem_cache *s =
			container_of(h, struct kmem_cache, list);

		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
			(s->flags & SLUB_MERGE_SAME))
				continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align -1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

		return s;
	}
	return NULL;
}

struct kmem_cache *kmem_cache_create(const char *name, size_t size,
		size_t align, unsigned long flags,
		void (*ctor)(void *, struct kmem_cache *, unsigned long),
		void (*dtor)(void *, struct kmem_cache *, unsigned long))
{
	struct kmem_cache *s;

	down_write(&slub_lock);
	s = find_mergeable(size, align, flags, dtor, ctor);
	if (s) {
		s->refcount++;
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		s->objsize = max(s->objsize, (int)size);
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
		if (sysfs_slab_alias(s, name))
			goto err;
	} else {
		s = kmalloc(kmem_size, GFP_KERNEL);
		if (s && kmem_cache_open(s, GFP_KERNEL, name,
				size, align, flags, ctor, dtor)) {
			if (sysfs_slab_add(s)) {
				kfree(s);
				goto err;
			}
			list_add(&s->list, &slab_caches);
		} else
			kfree(s);
	}
	up_write(&slub_lock);
	return s;

err:
	up_write(&slub_lock);
	if (flags & SLAB_PANIC)
		panic("Cannot create slabcache %s\n", name);
	else
		s = NULL;
	return s;
}
EXPORT_SYMBOL(kmem_cache_create);

void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags)
{
	void *x;

	x = slab_alloc(s, flags, -1, __builtin_return_address(0));
	if (x)
		memset(x, 0, s->objsize);
	return x;
}
EXPORT_SYMBOL(kmem_cache_zalloc);

#ifdef CONFIG_SMP
static void for_all_slabs(void (*func)(struct kmem_cache *, int), int cpu)
{
	struct list_head *h;

	down_read(&slub_lock);
	list_for_each(h, &slab_caches) {
		struct kmem_cache *s =
			container_of(h, struct kmem_cache, list);

		func(s, cpu);
	}
	up_read(&slub_lock);
}

/*
 * Use the cpu notifier to insure that the slab are flushed
 * when necessary.
 */
static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_DEAD:
		for_all_slabs(__flush_cpu_slab, cpu);
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata slab_notifier =
	{ &slab_cpuup_callback, NULL, 0 };

#endif

#ifdef CONFIG_NUMA

/*****************************************************************
 * Generic reaper used to support the page allocator
 * (the cpu slabs are reaped by a per slab workqueue).
 *
 * Maybe move this to the page allocator?
 ****************************************************************/

static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
		node = first_node(node_online_map);

	__get_cpu_var(reap_node) = node;
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	/*
	 * Also drain per cpu pages on remote zones
	 */
	if (node != numa_node_id())
		drain_node_pages(node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}
#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

#define REAPTIMEOUT_CPUC	(2*HZ)

#ifdef CONFIG_SMP
static DEFINE_PER_CPU(struct delayed_work, reap_work);

static void cache_reap(struct work_struct *unused)
{
	next_reap_node();
	refresh_cpu_vm_stats(smp_processor_id());
	schedule_delayed_work(&__get_cpu_var(reap_work),
				      REAPTIMEOUT_CPUC);
}

static void __devinit start_cpu_timer(int cpu)
{
	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
	if (keventd_up() && reap_work->work.func == NULL) {
		init_reap_node(cpu);
		INIT_DELAYED_WORK(reap_work, cache_reap);
		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
	}
}

static int __init cpucache_init(void)
{
	int cpu;

	/*
	 * Register the timers that drain pcp pages and update vm statistics
	 */
	for_each_online_cpu(cpu)
		start_cpu_timer(cpu);
	return 0;
}
__initcall(cpucache_init);
#endif

#ifdef SLUB_RESILIENCY_TEST
static unsigned long validate_slab_cache(struct kmem_cache *s);

static void resiliency_test(void)
{
	u8 *p;

	printk(KERN_ERR "SLUB resiliency testing\n");
	printk(KERN_ERR "-----------------------\n");
	printk(KERN_ERR "A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
			" 0x12->0x%p\n\n", p + 16);

	validate_slab_cache(kmalloc_caches + 4);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
		 	" 0x34 -> -0x%p\n", p);
	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");

	validate_slab_cache(kmalloc_caches + 5);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
									p);
	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
	validate_slab_cache(kmalloc_caches + 6);

	printk(KERN_ERR "\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 7);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 8);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 9);
}
#else
static void resiliency_test(void) {};
#endif

/*
 * These are not as efficient as kmalloc for the non debug case.
 * We do not have the page struct available so we have to touch one
 * cacheline in struct kmem_cache to check slab flags.
 */
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
{
	struct kmem_cache *s = get_slab(size, gfpflags);

	if (!s)
		return NULL;

	return slab_alloc(s, gfpflags, -1, caller);
}

void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
					int node, void *caller)
{
	struct kmem_cache *s = get_slab(size, gfpflags);

	if (!s)
		return NULL;

	return slab_alloc(s, gfpflags, node, caller);
}

#ifdef CONFIG_SYSFS

static int validate_slab(struct kmem_cache *s, struct page *page)
{
	void *p;
	void *addr = page_address(page);
	unsigned long map[BITS_TO_LONGS(s->objects)];

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
	bitmap_zero(map, s->objects);

	for(p = page->freelist; p; p = get_freepointer(s, p)) {
		set_bit((p - addr) / s->size, map);
		if (!check_object(s, page, p, 0))
			return 0;
	}

	for(p = addr; p < addr + s->objects * s->size; p += s->size)
		if (!test_bit((p - addr) / s->size, map))
			if (!check_object(s, page, p, 1))
				return 0;
	return 1;
}

static void validate_slab_slab(struct kmem_cache *s, struct page *page)
{
	if (slab_trylock(page)) {
		validate_slab(s, page);
		slab_unlock(page);
	} else
		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
			s->name, page);

	if (s->flags & DEBUG_DEFAULT_FLAGS) {
		if (!PageError(page))
			printk(KERN_ERR "SLUB %s: PageError not set "
				"on slab 0x%p\n", s->name, page);
	} else {
		if (PageError(page))
			printk(KERN_ERR "SLUB %s: PageError set on "
				"slab 0x%p\n", s->name, page);
	}
}

static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
		validate_slab_slab(s, page);
		count++;
	}
	if (count != n->nr_partial)
		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
			"counter=%ld\n", s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
		validate_slab_slab(s, page);
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
			"counter=%ld\n", s->name, count,
			atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

static unsigned long validate_slab_cache(struct kmem_cache *s)
{
	int node;
	unsigned long count = 0;

	flush_all(s);
	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		count += validate_slab_node(s, n);
	}
	return count;
}

/*
 * Generate lists of locations where slabcache objects are allocated
 * and freed.
 */

struct location {
	unsigned long count;
	void *addr;
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

static int alloc_loc_track(struct loc_track *t, unsigned long max)
{
	struct location *l;
	int order;

	if (!max)
		max = PAGE_SIZE / sizeof(struct location);

	order = get_order(sizeof(struct location) * max);

	l = (void *)__get_free_pages(GFP_KERNEL, order);

	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
						void *addr)
{
	long start, end, pos;
	struct location *l;
	void *caddr;

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
		if (addr == caddr) {
			t->loc[pos].count++;
			return 1;
		}

		if (addr < caddr)
			end = pos;
		else
			start = pos;
	}

	/*
	 * Not found. Insert new tracking element
	 */
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max))
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
	l->addr = addr;
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
		struct page *page, enum track_item alloc)
{
	void *addr = page_address(page);
	unsigned long map[BITS_TO_LONGS(s->objects)];
	void *p;

	bitmap_zero(map, s->objects);
	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit((p - addr) / s->size, map);

	for (p = addr; p < addr + s->objects * s->size; p += s->size)
		if (!test_bit((p - addr) / s->size, map)) {
			void *addr = get_track(s, p, alloc)->addr;

			add_location(t, s, addr);
		}
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
	int n = 0;
	unsigned long i;
	struct loc_track t;
	int node;

	t.count = 0;
	t.max = 0;

	/* Push back cpu slabs */
	flush_all(s);

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

		if (!atomic_read(&n->nr_slabs))
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
			process_slab(&t, s, page, alloc);
		list_for_each_entry(page, &n->full, lru)
			process_slab(&t, s, page, alloc);
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
		void *addr = t.loc[i].addr;

		if (n > PAGE_SIZE - 100)
			break;
		n += sprintf(buf + n, "%7ld ", t.loc[i].count);
		if (addr)
			n += sprint_symbol(buf + n, (unsigned long)t.loc[i].addr);
		else
			n += sprintf(buf + n, "<not-available>");
		n += sprintf(buf + n, "\n");
	}

	free_loc_track(&t);
	if (!t.count)
		n += sprintf(buf, "No data\n");
	return n;
}

static unsigned long count_partial(struct kmem_cache_node *n)
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += page->inuse;
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}

enum slab_stat_type {
	SL_FULL,
	SL_PARTIAL,
	SL_CPU,
	SL_OBJECTS
};

#define SO_FULL		(1 << SL_FULL)
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)

static unsigned long slab_objects(struct kmem_cache *s,
			char *buf, unsigned long flags)
{
	unsigned long total = 0;
	int cpu;
	int node;
	int x;
	unsigned long *nodes;
	unsigned long *per_cpu;

	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
	per_cpu = nodes + nr_node_ids;

	for_each_possible_cpu(cpu) {
		struct page *page = s->cpu_slab[cpu];
		int node;

		if (page) {
			node = page_to_nid(page);
			if (flags & SO_CPU) {
				int x = 0;

				if (flags & SO_OBJECTS)
					x = page->inuse;
				else
					x = 1;
				total += x;
				nodes[node] += x;
			}
			per_cpu[node]++;
		}
	}

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (flags & SO_PARTIAL) {
			if (flags & SO_OBJECTS)
				x = count_partial(n);
			else
				x = n->nr_partial;
			total += x;
			nodes[node] += x;
		}

		if (flags & SO_FULL) {
			int full_slabs = atomic_read(&n->nr_slabs)
					- per_cpu[node]
					- n->nr_partial;

			if (flags & SO_OBJECTS)
				x = full_slabs * s->objects;
			else
				x = full_slabs;
			total += x;
			nodes[node] += x;
		}
	}

	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
	for_each_online_node(node)
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

static int any_slab_objects(struct kmem_cache *s)
{
	int node;
	int cpu;

	for_each_possible_cpu(cpu)
		if (s->cpu_slab[cpu])
			return 1;

	for_each_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (n->nr_partial || atomic_read(&n->nr_slabs))
			return 1;
	}
	return 0;
}

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
#define to_slab(n) container_of(n, struct kmem_cache, kobj);

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
	static struct slab_attribute _name##_attr = __ATTR_RO(_name)

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
	__ATTR(_name, 0644, _name##_show, _name##_store)

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->objsize);
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->objects);
}
SLAB_ATTR_RO(objs_per_slab);

static ssize_t order_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->order);
}
SLAB_ATTR_RO(order);

static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
	if (s->ctor) {
		int n = sprint_symbol(buf, (unsigned long)s->ctor);

		return n + sprintf(buf + n, "\n");
	}
	return 0;
}
SLAB_ATTR_RO(ctor);

static ssize_t dtor_show(struct kmem_cache *s, char *buf)
{
	if (s->dtor) {
		int n = sprint_symbol(buf, (unsigned long)s->dtor);

		return n + sprintf(buf + n, "\n");
	}
	return 0;
}
SLAB_ATTR_RO(dtor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
}
SLAB_ATTR_RO(slabs);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_PARTIAL);
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_CPU);
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
}
SLAB_ATTR_RO(objects);

static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
	if (buf[0] == '1')
		s->flags |= SLAB_DEBUG_FREE;
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
	if (buf[0] == '1')
		s->flags |= SLAB_TRACE;
	return length;
}
SLAB_ATTR(trace);

static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags &
		(SLAB_HWCACHE_ALIGN|SLAB_MUST_HWCACHE_ALIGN)));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
	if (buf[0] == '1')
		s->flags |= SLAB_RED_ZONE;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
	if (buf[0] == '1')
		s->flags |= SLAB_POISON;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
	if (buf[0] == '1')
		s->flags |= SLAB_STORE_USER;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(store_user);

static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1')
		validate_slab_cache(s);
	else
		return -EINVAL;
	return length;
}
SLAB_ATTR(validate);

static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);

#ifdef CONFIG_NUMA
static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->defrag_ratio / 10);
}

static ssize_t defrag_ratio_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	int n = simple_strtoul(buf, NULL, 10);

	if (n < 100)
		s->defrag_ratio = n * 10;
	return length;
}
SLAB_ATTR(defrag_ratio);
#endif

static struct attribute * slab_attrs[] = {
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
	&objects_attr.attr,
	&slabs_attr.attr,
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&dtor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
	&validate_attr.attr,
	&shrink_attr.attr,
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
	&defrag_ratio_attr.attr,
#endif
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);

	return err;
}

static struct sysfs_ops slab_sysfs_ops = {
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

static struct kset_uevent_ops slab_uevent_ops = {
	.filter = uevent_filter,
};

decl_subsys(slab, &slab_ktype, &slab_uevent_ops);

#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
 * format
 * :[flags-]size:[memory address of kmemcache]
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
	int unmergeable;

	if (slab_state < SYSFS)
		/* Defer until later */
		return 0;

	unmergeable = slab_unmergeable(s);
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
		sysfs_remove_link(&slab_subsys.kset.kobj, s->name);
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

	kobj_set_kset_s(s, slab_subsys);
	kobject_set_name(&s->kobj, name);
	kobject_init(&s->kobj);
	err = kobject_add(&s->kobj);
	if (err)
		return err;

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
	if (err)
		return err;
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
		kfree(name);
	}
	return 0;
}

static void sysfs_slab_remove(struct kmem_cache *s)
{
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
 * available lest we loose that information.
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

struct saved_alias *alias_list;

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

	if (slab_state == SYSFS) {
		/*
		 * If we have a leftover link then remove it.
		 */
		sysfs_remove_link(&slab_subsys.kset.kobj, name);
		return sysfs_create_link(&slab_subsys.kset.kobj,
						&s->kobj, name);
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
	int err;

	err = subsystem_register(&slab_subsys);
	if (err) {
		printk(KERN_ERR "Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

	finish_bootstrap();

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
		BUG_ON(err);
		kfree(al);
	}

	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
#else
__initcall(finish_bootstrap);
#endif