// SPDX-License-Identifier: GPL-2.0
/*
* Slab allocator functions that are independent of the allocator strategy
*
* (C) 2012 Christoph Lameter <cl@linux.com>
*/
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
#include <linux/cache.h>
#include <linux/compiler.h>
#include <linux/kfence.h>
#include <linux/module.h>
#include <linux/cpu.h>
#include <linux/uaccess.h>
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
#include <linux/debugfs.h>
#include <linux/kasan.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
#include <linux/memcontrol.h>
#include <linux/stackdepot.h>
#include "internal.h"
#include "slab.h"
#define CREATE_TRACE_POINTS
#include <trace/events/kmem.h>
enum slab_state slab_state;
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
struct kmem_cache *kmem_cache;
static LIST_HEAD(slab_caches_to_rcu_destroy);
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
slab_caches_to_rcu_destroy_workfn);
/*
* Set of flags that will prevent slab merging
*/
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
SLAB_FAILSLAB | kasan_never_merge())
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
/*
* Merge control. If this is set then no merging of slab caches will occur.
*/
static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
static int __init setup_slab_nomerge(char *str)
{
slab_nomerge = true;
return 1;
}
static int __init setup_slab_merge(char *str)
{
slab_nomerge = false;
return 1;
}
#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
__setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
#endif
__setup("slab_nomerge", setup_slab_nomerge);
__setup("slab_merge", setup_slab_merge);
/*
* Determine the size of a slab object
*/
unsigned int kmem_cache_size(struct kmem_cache *s)
{
return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);
#ifdef CONFIG_DEBUG_VM
static int kmem_cache_sanity_check(const char *name, unsigned int size)
{
if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
pr_err("kmem_cache_create(%s) integrity check failed\n", name);
return -EINVAL;
}
WARN_ON(strchr(name, ' ')); /* It confuses parsers */
return 0;
}
#else
static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
{
return 0;
}
#endif
/*
* Figure out what the alignment of the objects will be given a set of
* flags, a user specified alignment and the size of the objects.
*/
static unsigned int calculate_alignment(slab_flags_t flags,
unsigned int align, unsigned int size)
{
/*
* If the user wants hardware cache aligned objects then follow that
* suggestion if the object is sufficiently large.
*
* The hardware cache alignment cannot override the specified
* alignment though. If that is greater then use it.
*/
if (flags & SLAB_HWCACHE_ALIGN) {
unsigned int ralign;
ralign = cache_line_size();
while (size <= ralign / 2)
ralign /= 2;
align = max(align, ralign);
}
align = max(align, arch_slab_minalign());
return ALIGN(align, sizeof(void *));
}
/*
* Find a mergeable slab cache
*/
int slab_unmergeable(struct kmem_cache *s)
{
if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
return 1;
if (s->ctor)
return 1;
if (s->usersize)
return 1;
/*
* We may have set a slab to be unmergeable during bootstrap.
*/
if (s->refcount < 0)
return 1;
return 0;
}
struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
slab_flags_t flags, const char *name, void (*ctor)(void *))
{
struct kmem_cache *s;
if (slab_nomerge)
return NULL;
if (ctor)
return NULL;
size = ALIGN(size, sizeof(void *));
align = calculate_alignment(flags, align, size);
size = ALIGN(size, align);
flags = kmem_cache_flags(size, flags, name);
if (flags & SLAB_NEVER_MERGE)
return NULL;
list_for_each_entry_reverse(s, &slab_caches, list) {
if (slab_unmergeable(s))
continue;
if (size > s->size)
continue;
if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
continue;
/*
* Check if alignment is compatible.
* Courtesy of Adrian Drzewiecki
*/
if ((s->size & ~(align - 1)) != s->size)
continue;
if (s->size - size >= sizeof(void *))
continue;
if (IS_ENABLED(CONFIG_SLAB) && align &&
(align > s->align || s->align % align))
continue;
return s;
}
return NULL;
}
static struct kmem_cache *create_cache(const char *name,
unsigned int object_size, unsigned int align,
slab_flags_t flags, unsigned int useroffset,
unsigned int usersize, void (*ctor)(void *),
struct kmem_cache *root_cache)
{
struct kmem_cache *s;
int err;
if (WARN_ON(useroffset + usersize > object_size))
useroffset = usersize = 0;
err = -ENOMEM;
s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
if (!s)
goto out;
s->name = name;
s->size = s->object_size = object_size;
s->align = align;
s->ctor = ctor;
s->useroffset = useroffset;
s->usersize = usersize;
err = __kmem_cache_create(s, flags);
if (err)
goto out_free_cache;
s->refcount = 1;
list_add(&s->list, &slab_caches);
out:
if (err)
return ERR_PTR(err);
return s;
out_free_cache:
kmem_cache_free(kmem_cache, s);
goto out;
}
/**
* kmem_cache_create_usercopy - Create a cache with a region suitable
* for copying to userspace
* @name: A string which is used in /proc/slabinfo to identify this cache.
* @size: The size of objects to be created in this cache.
* @align: The required alignment for the objects.
* @flags: SLAB flags
* @useroffset: Usercopy region offset
* @usersize: Usercopy region size
* @ctor: A constructor for the objects.
*
* Cannot be called within a interrupt, but can be interrupted.
* The @ctor is run when new pages are allocated by the cache.
*
* The flags are
*
* %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
* to catch references to uninitialised memory.
*
* %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
* for buffer overruns.
*
* %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
* cacheline. This can be beneficial if you're counting cycles as closely
* as davem.
*
* Return: a pointer to the cache on success, NULL on failure.
*/
struct kmem_cache *
kmem_cache_create_usercopy(const char *name,
unsigned int size, unsigned int align,
slab_flags_t flags,
unsigned int useroffset, unsigned int usersize,
void (*ctor)(void *))
{
struct kmem_cache *s = NULL;
const char *cache_name;
int err;
#ifdef CONFIG_SLUB_DEBUG
/*
* If no slub_debug was enabled globally, the static key is not yet
* enabled by setup_slub_debug(). Enable it if the cache is being
* created with any of the debugging flags passed explicitly.
* It's also possible that this is the first cache created with
* SLAB_STORE_USER and we should init stack_depot for it.
*/
if (flags & SLAB_DEBUG_FLAGS)
static_branch_enable(&slub_debug_enabled);
if (flags & SLAB_STORE_USER)
stack_depot_init();
#endif
mutex_lock(&slab_mutex);
err = kmem_cache_sanity_check(name, size);
if (err) {
goto out_unlock;
}
/* Refuse requests with allocator specific flags */
if (flags & ~SLAB_FLAGS_PERMITTED) {
err = -EINVAL;
goto out_unlock;
}
/*
* Some allocators will constraint the set of valid flags to a subset
* of all flags. We expect them to define CACHE_CREATE_MASK in this
* case, and we'll just provide them with a sanitized version of the
* passed flags.
*/
flags &= CACHE_CREATE_MASK;
/* Fail closed on bad usersize of useroffset values. */
if (WARN_ON(!usersize && useroffset) ||
WARN_ON(size < usersize || size - usersize < useroffset))
usersize = useroffset = 0;
if (!usersize)
s = __kmem_cache_alias(name, size, align, flags, ctor);
if (s)
goto out_unlock;
cache_name = kstrdup_const(name, GFP_KERNEL);
if (!cache_name) {
err = -ENOMEM;
goto out_unlock;
}
s = create_cache(cache_name, size,
calculate_alignment(flags, align, size),
flags, useroffset, usersize, ctor, NULL);
if (IS_ERR(s)) {
err = PTR_ERR(s);
kfree_const(cache_name);
}
out_unlock:
mutex_unlock(&slab_mutex);
if (err) {
if (flags & SLAB_PANIC)
panic("%s: Failed to create slab '%s'. Error %d\n",
__func__, name, err);
else {
pr_warn("%s(%s) failed with error %d\n",
__func__, name, err);
dump_stack();
}
return NULL;
}
return s;
}
EXPORT_SYMBOL(kmem_cache_create_usercopy);
/**
* kmem_cache_create - Create a cache.
* @name: A string which is used in /proc/slabinfo to identify this cache.
* @size: The size of objects to be created in this cache.
* @align: The required alignment for the objects.
* @flags: SLAB flags
* @ctor: A constructor for the objects.
*
* Cannot be called within a interrupt, but can be interrupted.
* The @ctor is run when new pages are allocated by the cache.
*
* The flags are
*
* %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
* to catch references to uninitialised memory.
*
* %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
* for buffer overruns.
*
* %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
* cacheline. This can be beneficial if you're counting cycles as closely
* as davem.
*
* Return: a pointer to the cache on success, NULL on failure.
*/
struct kmem_cache *
kmem_cache_create(const char *name, unsigned int size, unsigned int align,
slab_flags_t flags, void (*ctor)(void *))
{
return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
ctor);
}
EXPORT_SYMBOL(kmem_cache_create);
#ifdef SLAB_SUPPORTS_SYSFS
/*
* For a given kmem_cache, kmem_cache_destroy() should only be called
* once or there will be a use-after-free problem. The actual deletion
* and release of the kobject does not need slab_mutex or cpu_hotplug_lock
* protection. So they are now done without holding those locks.
*
* Note that there will be a slight delay in the deletion of sysfs files
* if kmem_cache_release() is called indrectly from a work function.
*/
static void kmem_cache_release(struct kmem_cache *s)
{
sysfs_slab_unlink(s);
sysfs_slab_release(s);
}
#else
static void kmem_cache_release(struct kmem_cache *s)
{
slab_kmem_cache_release(s);
}
#endif
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
{
LIST_HEAD(to_destroy);
struct kmem_cache *s, *s2;
/*
* On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
* @slab_caches_to_rcu_destroy list. The slab pages are freed
* through RCU and the associated kmem_cache are dereferenced
* while freeing the pages, so the kmem_caches should be freed only
* after the pending RCU operations are finished. As rcu_barrier()
* is a pretty slow operation, we batch all pending destructions
* asynchronously.
*/
mutex_lock(&slab_mutex);
list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
mutex_unlock(&slab_mutex);
if (list_empty(&to_destroy))
return;
rcu_barrier();
list_for_each_entry_safe(s, s2, &to_destroy, list) {
debugfs_slab_release(s);
kfence_shutdown_cache(s);
kmem_cache_release(s);
}
}
static int shutdown_cache(struct kmem_cache *s)
{
/* free asan quarantined objects */
kasan_cache_shutdown(s);
if (__kmem_cache_shutdown(s) != 0)
return -EBUSY;
list_del(&s->list);
if (s->flags & SLAB_TYPESAFE_BY_RCU) {
list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
schedule_work(&slab_caches_to_rcu_destroy_work);
} else {
kfence_shutdown_cache(s);
debugfs_slab_release(s);
}
return 0;
}
void slab_kmem_cache_release(struct kmem_cache *s)
{
__kmem_cache_release(s);
kfree_const(s->name);
kmem_cache_free(kmem_cache, s);
}
void kmem_cache_destroy(struct kmem_cache *s)
{
int refcnt;
bool rcu_set;
if (unlikely(!s) || !kasan_check_byte(s))
return;
cpus_read_lock();
mutex_lock(&slab_mutex);
rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU;
refcnt = --s->refcount;
if (refcnt)
goto out_unlock;
WARN(shutdown_cache(s),
"%s %s: Slab cache still has objects when called from %pS",
__func__, s->name, (void *)_RET_IP_);
out_unlock:
mutex_unlock(&slab_mutex);
cpus_read_unlock();
if (!refcnt && !rcu_set)
kmem_cache_release(s);
}
EXPORT_SYMBOL(kmem_cache_destroy);
/**
* kmem_cache_shrink - Shrink a cache.
* @cachep: The cache to shrink.
*
* Releases as many slabs as possible for a cache.
* To help debugging, a zero exit status indicates all slabs were released.
*
* Return: %0 if all slabs were released, non-zero otherwise
*/
int kmem_cache_shrink(struct kmem_cache *cachep)
{
kasan_cache_shrink(cachep);
return __kmem_cache_shrink(cachep);
}
EXPORT_SYMBOL(kmem_cache_shrink);
bool slab_is_available(void)
{
return slab_state >= UP;
}
#ifdef CONFIG_PRINTK
/**
* kmem_valid_obj - does the pointer reference a valid slab object?
* @object: pointer to query.
*
* Return: %true if the pointer is to a not-yet-freed object from
* kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
* is to an already-freed object, and %false otherwise.
*/
bool kmem_valid_obj(void *object)
{
struct folio *folio;
/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
return false;
folio = virt_to_folio(object);
return folio_test_slab(folio);
}
EXPORT_SYMBOL_GPL(kmem_valid_obj);
static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
{
if (__kfence_obj_info(kpp, object, slab))
return;
__kmem_obj_info(kpp, object, slab);
}
/**
* kmem_dump_obj - Print available slab provenance information
* @object: slab object for which to find provenance information.
*
* This function uses pr_cont(), so that the caller is expected to have
* printed out whatever preamble is appropriate. The provenance information
* depends on the type of object and on how much debugging is enabled.
* For a slab-cache object, the fact that it is a slab object is printed,
* and, if available, the slab name, return address, and stack trace from
* the allocation and last free path of that object.
*
* This function will splat if passed a pointer to a non-slab object.
* If you are not sure what type of object you have, you should instead
* use mem_dump_obj().
*/
void kmem_dump_obj(void *object)
{
char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
int i;
struct slab *slab;
unsigned long ptroffset;
struct kmem_obj_info kp = { };
if (WARN_ON_ONCE(!virt_addr_valid(object)))
return;
slab = virt_to_slab(object);
if (WARN_ON_ONCE(!slab)) {
pr_cont(" non-slab memory.\n");
return;
}
kmem_obj_info(&kp, object, slab);
if (kp.kp_slab_cache)
pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
else
pr_cont(" slab%s", cp);
if (is_kfence_address(object))
pr_cont(" (kfence)");
if (kp.kp_objp)
pr_cont(" start %px", kp.kp_objp);
if (kp.kp_data_offset)
pr_cont(" data offset %lu", kp.kp_data_offset);
if (kp.kp_objp) {
ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
pr_cont(" pointer offset %lu", ptroffset);
}
if (kp.kp_slab_cache && kp.kp_slab_cache->usersize)
pr_cont(" size %u", kp.kp_slab_cache->usersize);
if (kp.kp_ret)
pr_cont(" allocated at %pS\n", kp.kp_ret);
else
pr_cont("\n");
for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
if (!kp.kp_stack[i])
break;
pr_info(" %pS\n", kp.kp_stack[i]);
}
if (kp.kp_free_stack[0])
pr_cont(" Free path:\n");
for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
if (!kp.kp_free_stack[i])
break;
pr_info(" %pS\n", kp.kp_free_stack[i]);
}
}
EXPORT_SYMBOL_GPL(kmem_dump_obj);
#endif
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
void __init create_boot_cache(struct kmem_cache *s, const char *name,
unsigned int size, slab_flags_t flags,
unsigned int useroffset, unsigned int usersize)
{
int err;
unsigned int align = ARCH_KMALLOC_MINALIGN;
s->name = name;
s->size = s->object_size = size;
/*
* For power of two sizes, guarantee natural alignment for kmalloc
* caches, regardless of SL*B debugging options.
*/
if (is_power_of_2(size))
align = max(align, size);
s->align = calculate_alignment(flags, align, size);
s->useroffset = useroffset;
s->usersize = usersize;
err = __kmem_cache_create(s, flags);
if (err)
panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
name, size, err);
s->refcount = -1; /* Exempt from merging for now */
}
struct kmem_cache *__init create_kmalloc_cache(const char *name,
unsigned int size, slab_flags_t flags,
unsigned int useroffset, unsigned int usersize)
{
struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
if (!s)
panic("Out of memory when creating slab %s\n", name);
create_boot_cache(s, name, size, flags | SLAB_KMALLOC, useroffset,
usersize);
kasan_cache_create_kmalloc(s);
list_add(&s->list, &slab_caches);
s->refcount = 1;
return s;
}
struct kmem_cache *
kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
EXPORT_SYMBOL(kmalloc_caches);
/*
* Conversion table for small slabs sizes / 8 to the index in the
* kmalloc array. This is necessary for slabs < 192 since we have non power
* of two cache sizes there. The size of larger slabs can be determined using
* fls.
*/
static u8 size_index[24] __ro_after_init = {
3, /* 8 */
4, /* 16 */
5, /* 24 */
5, /* 32 */
6, /* 40 */
6, /* 48 */
6, /* 56 */
6, /* 64 */
1, /* 72 */
1, /* 80 */
1, /* 88 */
1, /* 96 */
7, /* 104 */
7, /* 112 */
7, /* 120 */
7, /* 128 */
2, /* 136 */
2, /* 144 */
2, /* 152 */
2, /* 160 */
2, /* 168 */
2, /* 176 */
2, /* 184 */
2 /* 192 */
};
static inline unsigned int size_index_elem(unsigned int bytes)
{
return (bytes - 1) / 8;
}
/*
* Find the kmem_cache structure that serves a given size of
* allocation
*/
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
unsigned int index;
if (size <= 192) {
if (!size)
return ZERO_SIZE_PTR;
index = size_index[size_index_elem(size)];
} else {
if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
return NULL;
index = fls(size - 1);
}
return kmalloc_caches[kmalloc_type(flags)][index];
}
size_t kmalloc_size_roundup(size_t size)
{
struct kmem_cache *c;
/* Short-circuit the 0 size case. */
if (unlikely(size == 0))
return 0;
/* Short-circuit saturated "too-large" case. */
if (unlikely(size == SIZE_MAX))
return SIZE_MAX;
/* Above the smaller buckets, size is a multiple of page size. */
if (size > KMALLOC_MAX_CACHE_SIZE)
return PAGE_SIZE << get_order(size);
/* The flags don't matter since size_index is common to all. */
c = kmalloc_slab(size, GFP_KERNEL);
return c ? c->object_size : 0;
}
EXPORT_SYMBOL(kmalloc_size_roundup);
#ifdef CONFIG_ZONE_DMA
#define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
#else
#define KMALLOC_DMA_NAME(sz)
#endif
#ifdef CONFIG_MEMCG_KMEM
#define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
#else
#define KMALLOC_CGROUP_NAME(sz)
#endif
#define INIT_KMALLOC_INFO(__size, __short_size) \
{ \
.name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
KMALLOC_CGROUP_NAME(__short_size) \
KMALLOC_DMA_NAME(__short_size) \
.size = __size, \
}
/*
* kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
* kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
* kmalloc-2M.
*/
const struct kmalloc_info_struct kmalloc_info[] __initconst = {
INIT_KMALLOC_INFO(0, 0),
INIT_KMALLOC_INFO(96, 96),
INIT_KMALLOC_INFO(192, 192),
INIT_KMALLOC_INFO(8, 8),
INIT_KMALLOC_INFO(16, 16),
INIT_KMALLOC_INFO(32, 32),
INIT_KMALLOC_INFO(64, 64),
INIT_KMALLOC_INFO(128, 128),
INIT_KMALLOC_INFO(256, 256),
INIT_KMALLOC_INFO(512, 512),
INIT_KMALLOC_INFO(1024, 1k),
INIT_KMALLOC_INFO(2048, 2k),
INIT_KMALLOC_INFO(4096, 4k),
INIT_KMALLOC_INFO(8192, 8k),
INIT_KMALLOC_INFO(16384, 16k),
INIT_KMALLOC_INFO(32768, 32k),
INIT_KMALLOC_INFO(65536, 64k),
INIT_KMALLOC_INFO(131072, 128k),
INIT_KMALLOC_INFO(262144, 256k),
INIT_KMALLOC_INFO(524288, 512k),
INIT_KMALLOC_INFO(1048576, 1M),
INIT_KMALLOC_INFO(2097152, 2M)
};
/*
* Patch up the size_index table if we have strange large alignment
* requirements for the kmalloc array. This is only the case for
* MIPS it seems. The standard arches will not generate any code here.
*
* Largest permitted alignment is 256 bytes due to the way we
* handle the index determination for the smaller caches.
*
* Make sure that nothing crazy happens if someone starts tinkering
* around with ARCH_KMALLOC_MINALIGN
*/
void __init setup_kmalloc_cache_index_table(void)
{
unsigned int i;
BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
!is_power_of_2(KMALLOC_MIN_SIZE));
for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
unsigned int elem = size_index_elem(i);
if (elem >= ARRAY_SIZE(size_index))
break;
size_index[elem] = KMALLOC_SHIFT_LOW;
}
if (KMALLOC_MIN_SIZE >= 64) {
/*
* The 96 byte sized cache is not used if the alignment
* is 64 byte.
*/
for (i = 64 + 8; i <= 96; i += 8)
size_index[size_index_elem(i)] = 7;
}
if (KMALLOC_MIN_SIZE >= 128) {
/*
* The 192 byte sized cache is not used if the alignment
* is 128 byte. Redirect kmalloc to use the 256 byte cache
* instead.
*/
for (i = 128 + 8; i <= 192; i += 8)
size_index[size_index_elem(i)] = 8;
}
}
static void __init
new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
{
if (type == KMALLOC_RECLAIM) {
flags |= SLAB_RECLAIM_ACCOUNT;
} else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
if (mem_cgroup_kmem_disabled()) {
kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
return;
}
flags |= SLAB_ACCOUNT;
} else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
flags |= SLAB_CACHE_DMA;
}
kmalloc_caches[type][idx] = create_kmalloc_cache(
kmalloc_info[idx].name[type],
kmalloc_info[idx].size, flags, 0,
kmalloc_info[idx].size);
/*
* If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
* KMALLOC_NORMAL caches.
*/
if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
kmalloc_caches[type][idx]->refcount = -1;
}
/*
* Create the kmalloc array. Some of the regular kmalloc arrays
* may already have been created because they were needed to
* enable allocations for slab creation.
*/
void __init create_kmalloc_caches(slab_flags_t flags)
{
int i;
enum kmalloc_cache_type type;
/*
* Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
*/
for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
if (!kmalloc_caches[type][i])
new_kmalloc_cache(i, type, flags);
/*
* Caches that are not of the two-to-the-power-of size.
* These have to be created immediately after the
* earlier power of two caches
*/
if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
!kmalloc_caches[type][1])
new_kmalloc_cache(1, type, flags);
if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
!kmalloc_caches[type][2])
new_kmalloc_cache(2, type, flags);
}
}
/* Kmalloc array is now usable */
slab_state = UP;
}
void free_large_kmalloc(struct folio *folio, void *object)
{
unsigned int order = folio_order(folio);
if (WARN_ON_ONCE(order == 0))
pr_warn_once("object pointer: 0x%p\n", object);
kmemleak_free(object);
kasan_kfree_large(object);
mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B,
-(PAGE_SIZE << order));
__free_pages(folio_page(folio, 0), order);
}
static void *__kmalloc_large_node(size_t size, gfp_t flags, int node);
static __always_inline
void *__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
{
struct kmem_cache *s;
void *ret;
if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
ret = __kmalloc_large_node(size, flags, node);
trace_kmalloc(_RET_IP_, ret, size,
PAGE_SIZE << get_order(size), flags, node);
return ret;
}
s = kmalloc_slab(size, flags);
if (unlikely(ZERO_OR_NULL_PTR(s)))
return s;
ret = __kmem_cache_alloc_node(s, flags, node, size, caller);
ret = kasan_kmalloc(s, ret, size, flags);
trace_kmalloc(_RET_IP_, ret, size, s->size, flags, node);
return ret;
}
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
return __do_kmalloc_node(size, flags, node, _RET_IP_);
}
EXPORT_SYMBOL(__kmalloc_node);
void *__kmalloc(size_t size, gfp_t flags)
{
return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
}
EXPORT_SYMBOL(__kmalloc);
void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
int node, unsigned long caller)
{
return __do_kmalloc_node(size, flags, node, caller);
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
/**
* kfree - free previously allocated memory
* @object: pointer returned by kmalloc.
*
* If @object is NULL, no operation is performed.
*
* Don't free memory not originally allocated by kmalloc()
* or you will run into trouble.
*/
void kfree(const void *object)
{
struct folio *folio;
struct slab *slab;
struct kmem_cache *s;
trace_kfree(_RET_IP_, object);
if (unlikely(ZERO_OR_NULL_PTR(object)))
return;
folio = virt_to_folio(object);
if (unlikely(!folio_test_slab(folio))) {
free_large_kmalloc(folio, (void *)object);
return;
}
slab = folio_slab(folio);
s = slab->slab_cache;
__kmem_cache_free(s, (void *)object, _RET_IP_);
}
EXPORT_SYMBOL(kfree);
/**
* __ksize -- Report full size of underlying allocation
* @objp: pointer to the object
*
* This should only be used internally to query the true size of allocations.
* It is not meant to be a way to discover the usable size of an allocation
* after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond
* the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS,
* and/or FORTIFY_SOURCE.
*
* Return: size of the actual memory used by @objp in bytes
*/
size_t __ksize(const void *object)
{
struct folio *folio;
if (unlikely(object == ZERO_SIZE_PTR))
return 0;
folio = virt_to_folio(object);
if (unlikely(!folio_test_slab(folio))) {
if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE))
return 0;
if (WARN_ON(object != folio_address(folio)))
return 0;
return folio_size(folio);
}
return slab_ksize(folio_slab(folio)->slab_cache);
}
#ifdef CONFIG_TRACING
void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
void *ret = __kmem_cache_alloc_node(s, gfpflags, NUMA_NO_NODE,
size, _RET_IP_);
trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
ret = kasan_kmalloc(s, ret, size, gfpflags);
return ret;
}
EXPORT_SYMBOL(kmalloc_trace);
void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
int node, size_t size)
{
void *ret = __kmem_cache_alloc_node(s, gfpflags, node, size, _RET_IP_);
trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
ret = kasan_kmalloc(s, ret, size, gfpflags);
return ret;
}
EXPORT_SYMBOL(kmalloc_node_trace);
#endif /* !CONFIG_TRACING */
#endif /* !CONFIG_SLOB */
gfp_t kmalloc_fix_flags(gfp_t flags)
{
gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
flags &= ~GFP_SLAB_BUG_MASK;
pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
invalid_mask, &invalid_mask, flags, &flags);
dump_stack();
return flags;
}
/*
* To avoid unnecessary overhead, we pass through large allocation requests
* directly to the page allocator. We use __GFP_COMP, because we will need to
* know the allocation order to free the pages properly in kfree.
*/
static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
{
struct page *page;
void *ptr = NULL;
unsigned int order = get_order(size);
if (unlikely(flags & GFP_SLAB_BUG_MASK))
flags = kmalloc_fix_flags(flags);
flags |= __GFP_COMP;
page = alloc_pages_node(node, flags, order);
if (page) {
ptr = page_address(page);
mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
PAGE_SIZE << order);
}
ptr = kasan_kmalloc_large(ptr, size, flags);
/* As ptr might get tagged, call kmemleak hook after KASAN. */
kmemleak_alloc(ptr, size, 1, flags);
return ptr;
}
void *kmalloc_large(size_t size, gfp_t flags)
{
void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
flags, NUMA_NO_NODE);
return ret;
}
EXPORT_SYMBOL(kmalloc_large);
void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
void *ret = __kmalloc_large_node(size, flags, node);
trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
flags, node);
return ret;
}
EXPORT_SYMBOL(kmalloc_large_node);
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Randomize a generic freelist */
static void freelist_randomize(struct rnd_state *state, unsigned int *list,
unsigned int count)
{
unsigned int rand;
unsigned int i;
for (i = 0; i < count; i++)
list[i] = i;
/* Fisher-Yates shuffle */
for (i = count - 1; i > 0; i--) {
rand = prandom_u32_state(state);
rand %= (i + 1);
swap(list[i], list[rand]);
}
}
/* Create a random sequence per cache */
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
gfp_t gfp)
{
struct rnd_state state;
if (count < 2 || cachep->random_seq)
return 0;
cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
if (!cachep->random_seq)
return -ENOMEM;
/* Get best entropy at this stage of boot */
prandom_seed_state(&state, get_random_long());
freelist_randomize(&state, cachep->random_seq, count);
return 0;
}
/* Destroy the per-cache random freelist sequence */
void cache_random_seq_destroy(struct kmem_cache *cachep)
{
kfree(cachep->random_seq);
cachep->random_seq = NULL;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
#ifdef CONFIG_SLAB
#define SLABINFO_RIGHTS (0600)
#else
#define SLABINFO_RIGHTS (0400)
#endif
static void print_slabinfo_header(struct seq_file *m)
{
/*
* Output format version, so at least we can change it
* without _too_ many complaints.
*/
#ifdef CONFIG_DEBUG_SLAB
seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
seq_puts(m, "slabinfo - version: 2.1\n");
#endif
seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
seq_putc(m, '\n');
}
static void *slab_start(struct seq_file *m, loff_t *pos)
{
mutex_lock(&slab_mutex);
return seq_list_start(&slab_caches, *pos);
}
static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
{
return seq_list_next(p, &slab_caches, pos);
}
static void slab_stop(struct seq_file *m, void *p)
{
mutex_unlock(&slab_mutex);
}
static void cache_show(struct kmem_cache *s, struct seq_file *m)
{
struct slabinfo sinfo;
memset(&sinfo, 0, sizeof(sinfo));
get_slabinfo(s, &sinfo);
seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
s->name, sinfo.active_objs, sinfo.num_objs, s->size,
sinfo.objects_per_slab, (1 << sinfo.cache_order));
seq_printf(m, " : tunables %4u %4u %4u",
sinfo.limit, sinfo.batchcount, sinfo.shared);
seq_printf(m, " : slabdata %6lu %6lu %6lu",
sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
slabinfo_show_stats(m, s);
seq_putc(m, '\n');
}
static int slab_show(struct seq_file *m, void *p)
{
struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
if (p == slab_caches.next)
print_slabinfo_header(m);
cache_show(s, m);
return 0;
}
void dump_unreclaimable_slab(void)
{
struct kmem_cache *s;
struct slabinfo sinfo;
/*
* Here acquiring slab_mutex is risky since we don't prefer to get
* sleep in oom path. But, without mutex hold, it may introduce a
* risk of crash.
* Use mutex_trylock to protect the list traverse, dump nothing
* without acquiring the mutex.
*/
if (!mutex_trylock(&slab_mutex)) {
pr_warn("excessive unreclaimable slab but cannot dump stats\n");
return;
}
pr_info("Unreclaimable slab info:\n");
pr_info("Name Used Total\n");
list_for_each_entry(s, &slab_caches, list) {
if (s->flags & SLAB_RECLAIM_ACCOUNT)
continue;
get_slabinfo(s, &sinfo);
if (sinfo.num_objs > 0)
pr_info("%-17s %10luKB %10luKB\n", s->name,
(sinfo.active_objs * s->size) / 1024,
(sinfo.num_objs * s->size) / 1024);
}
mutex_unlock(&slab_mutex);
}
/*
* slabinfo_op - iterator that generates /proc/slabinfo
*
* Output layout:
* cache-name
* num-active-objs
* total-objs
* object size
* num-active-slabs
* total-slabs
* num-pages-per-slab
* + further values on SMP and with statistics enabled
*/
static const struct seq_operations slabinfo_op = {
.start = slab_start,
.next = slab_next,
.stop = slab_stop,
.show = slab_show,
};
static int slabinfo_open(struct inode *inode, struct file *file)
{
return seq_open(file, &slabinfo_op);
}
static const struct proc_ops slabinfo_proc_ops = {
.proc_flags = PROC_ENTRY_PERMANENT,
.proc_open = slabinfo_open,
.proc_read = seq_read,
.proc_write = slabinfo_write,
.proc_lseek = seq_lseek,
.proc_release = seq_release,
};
static int __init slab_proc_init(void)
{
proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
return 0;
}
module_init(slab_proc_init);
#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
static __always_inline __realloc_size(2) void *
__do_krealloc(const void *p, size_t new_size, gfp_t flags)
{
void *ret;
size_t ks;
/* Don't use instrumented ksize to allow precise KASAN poisoning. */
if (likely(!ZERO_OR_NULL_PTR(p))) {
if (!kasan_check_byte(p))
return NULL;
ks = kfence_ksize(p) ?: __ksize(p);
} else
ks = 0;
/* If the object still fits, repoison it precisely. */
if (ks >= new_size) {
p = kasan_krealloc((void *)p, new_size, flags);
return (void *)p;
}
ret = kmalloc_track_caller(new_size, flags);
if (ret && p) {
/* Disable KASAN checks as the object's redzone is accessed. */
kasan_disable_current();
memcpy(ret, kasan_reset_tag(p), ks);
kasan_enable_current();
}
return ret;
}
/**
* krealloc - reallocate memory. The contents will remain unchanged.
* @p: object to reallocate memory for.
* @new_size: how many bytes of memory are required.
* @flags: the type of memory to allocate.
*
* The contents of the object pointed to are preserved up to the
* lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
* If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
* is 0 and @p is not a %NULL pointer, the object pointed to is freed.
*
* Return: pointer to the allocated memory or %NULL in case of error
*/
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
void *ret;
if (unlikely(!new_size)) {
kfree(p);
return ZERO_SIZE_PTR;
}
ret = __do_krealloc(p, new_size, flags);
if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
kfree(p);
return ret;
}
EXPORT_SYMBOL(krealloc);
/**
* kfree_sensitive - Clear sensitive information in memory before freeing
* @p: object to free memory of
*
* The memory of the object @p points to is zeroed before freed.
* If @p is %NULL, kfree_sensitive() does nothing.
*
* Note: this function zeroes the whole allocated buffer which can be a good
* deal bigger than the requested buffer size passed to kmalloc(). So be
* careful when using this function in performance sensitive code.
*/
void kfree_sensitive(const void *p)
{
size_t ks;
void *mem = (void *)p;
ks = ksize(mem);
if (ks)
memzero_explicit(mem, ks);
kfree(mem);
}
EXPORT_SYMBOL(kfree_sensitive);
/**
* ksize - get the actual amount of memory allocated for a given object
* @objp: Pointer to the object
*
* kmalloc may internally round up allocations and return more memory
* than requested. ksize() can be used to determine the actual amount of
* memory allocated. The caller may use this additional memory, even though
* a smaller amount of memory was initially specified with the kmalloc call.
* The caller must guarantee that objp points to a valid object previously
* allocated with either kmalloc() or kmem_cache_alloc(). The object
* must not be freed during the duration of the call.
*
* Return: size of the actual memory used by @objp in bytes
*/
size_t ksize(const void *objp)
{
size_t size;
/*
* We need to first check that the pointer to the object is valid, and
* only then unpoison the memory. The report printed from ksize() is
* more useful, then when it's printed later when the behaviour could
* be undefined due to a potential use-after-free or double-free.
*
* We use kasan_check_byte(), which is supported for the hardware
* tag-based KASAN mode, unlike kasan_check_read/write().
*
* If the pointed to memory is invalid, we return 0 to avoid users of
* ksize() writing to and potentially corrupting the memory region.
*
* We want to perform the check before __ksize(), to avoid potentially
* crashing in __ksize() due to accessing invalid metadata.
*/
if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
return 0;
size = kfence_ksize(objp) ?: __ksize(objp);
/*
* We assume that ksize callers could use whole allocated area,
* so we need to unpoison this area.
*/
kasan_unpoison_range(objp, size);
return size;
}
EXPORT_SYMBOL(ksize);
/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
{
if (__should_failslab(s, gfpflags))
return -ENOMEM;
return 0;
}
ALLOW_ERROR_INJECTION(should_failslab, ERRNO);