/*
* linux/mm/mlock.c
*
* (C) Copyright 1995 Linus Torvalds
* (C) Copyright 2002 Christoph Hellwig
*/
#include <linux/capability.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/pagemap.h>
#include <linux/mempolicy.h>
#include <linux/syscalls.h>
#include <linux/sched.h>
#include <linux/module.h>
#include <linux/rmap.h>
#include <linux/mmzone.h>
#include <linux/hugetlb.h>
#include "internal.h"
int can_do_mlock(void)
{
if (capable(CAP_IPC_LOCK))
return 1;
if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
return 1;
return 0;
}
EXPORT_SYMBOL(can_do_mlock);
#ifdef CONFIG_UNEVICTABLE_LRU
/*
* Mlocked pages are marked with PageMlocked() flag for efficient testing
* in vmscan and, possibly, the fault path; and to support semi-accurate
* statistics.
*
* An mlocked page [PageMlocked(page)] is unevictable. As such, it will
* be placed on the LRU "unevictable" list, rather than the [in]active lists.
* The unevictable list is an LRU sibling list to the [in]active lists.
* PageUnevictable is set to indicate the unevictable state.
*
* When lazy mlocking via vmscan, it is important to ensure that the
* vma's VM_LOCKED status is not concurrently being modified, otherwise we
* may have mlocked a page that is being munlocked. So lazy mlock must take
* the mmap_sem for read, and verify that the vma really is locked
* (see mm/rmap.c).
*/
/*
* LRU accounting for clear_page_mlock()
*/
void __clear_page_mlock(struct page *page)
{
VM_BUG_ON(!PageLocked(page));
if (!page->mapping) { /* truncated ? */
return;
}
if (!isolate_lru_page(page)) {
putback_lru_page(page);
} else {
/*
* Page not on the LRU yet. Flush all pagevecs and retry.
*/
lru_add_drain_all();
if (!isolate_lru_page(page))
putback_lru_page(page);
}
}
/*
* Mark page as mlocked if not already.
* If page on LRU, isolate and putback to move to unevictable list.
*/
void mlock_vma_page(struct page *page)
{
BUG_ON(!PageLocked(page));
if (!TestSetPageMlocked(page) && !isolate_lru_page(page))
putback_lru_page(page);
}
/*
* called from munlock()/munmap() path with page supposedly on the LRU.
*
* Note: unlike mlock_vma_page(), we can't just clear the PageMlocked
* [in try_to_munlock()] and then attempt to isolate the page. We must
* isolate the page to keep others from messing with its unevictable
* and mlocked state while trying to munlock. However, we pre-clear the
* mlocked state anyway as we might lose the isolation race and we might
* not get another chance to clear PageMlocked. If we successfully
* isolate the page and try_to_munlock() detects other VM_LOCKED vmas
* mapping the page, it will restore the PageMlocked state, unless the page
* is mapped in a non-linear vma. So, we go ahead and SetPageMlocked(),
* perhaps redundantly.
* If we lose the isolation race, and the page is mapped by other VM_LOCKED
* vmas, we'll detect this in vmscan--via try_to_munlock() or try_to_unmap()
* either of which will restore the PageMlocked state by calling
* mlock_vma_page() above, if it can grab the vma's mmap sem.
*/
static void munlock_vma_page(struct page *page)
{
BUG_ON(!PageLocked(page));
if (TestClearPageMlocked(page) && !isolate_lru_page(page)) {
try_to_munlock(page);
putback_lru_page(page);
}
}
/*
* mlock a range of pages in the vma.
*
* This takes care of making the pages present too.
*
* vma->vm_mm->mmap_sem must be held for write.
*/
static int __mlock_vma_pages_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long addr = start;
struct page *pages[16]; /* 16 gives a reasonable batch */
int write = !!(vma->vm_flags & VM_WRITE);
int nr_pages = (end - start) / PAGE_SIZE;
int ret;
VM_BUG_ON(start & ~PAGE_MASK || end & ~PAGE_MASK);
VM_BUG_ON(start < vma->vm_start || end > vma->vm_end);
VM_BUG_ON(!rwsem_is_locked(&vma->vm_mm->mmap_sem));
lru_add_drain_all(); /* push cached pages to LRU */
while (nr_pages > 0) {
int i;
cond_resched();
/*
* get_user_pages makes pages present if we are
* setting mlock. and this extra reference count will
* disable migration of this page. However, page may
* still be truncated out from under us.
*/
ret = get_user_pages(current, mm, addr,
min_t(int, nr_pages, ARRAY_SIZE(pages)),
write, 0, pages, NULL);
/*
* This can happen for, e.g., VM_NONLINEAR regions before
* a page has been allocated and mapped at a given offset,
* or for addresses that map beyond end of a file.
* We'll mlock the the pages if/when they get faulted in.
*/
if (ret < 0)
break;
if (ret == 0) {
/*
* We know the vma is there, so the only time
* we cannot get a single page should be an
* error (ret < 0) case.
*/
WARN_ON(1);
break;
}
lru_add_drain(); /* push cached pages to LRU */
for (i = 0; i < ret; i++) {
struct page *page = pages[i];
lock_page(page);
/*
* Because we lock page here and migration is blocked
* by the elevated reference, we need only check for
* page truncation (file-cache only).
*/
if (page->mapping)
mlock_vma_page(page);
unlock_page(page);
put_page(page); /* ref from get_user_pages() */
/*
* here we assume that get_user_pages() has given us
* a list of virtually contiguous pages.
*/
addr += PAGE_SIZE; /* for next get_user_pages() */
nr_pages--;
}
}
lru_add_drain_all(); /* to update stats */
return 0; /* count entire vma as locked_vm */
}
/*
* private structure for munlock page table walk
*/
struct munlock_page_walk {
struct vm_area_struct *vma;
pmd_t *pmd; /* for migration_entry_wait() */
};
/*
* munlock normal pages for present ptes
*/
static int __munlock_pte_handler(pte_t *ptep, unsigned long addr,
unsigned long end, struct mm_walk *walk)
{
struct munlock_page_walk *mpw = walk->private;
swp_entry_t entry;
struct page *page;
pte_t pte;
retry:
pte = *ptep;
/*
* If it's a swap pte, we might be racing with page migration.
*/
if (unlikely(!pte_present(pte))) {
if (!is_swap_pte(pte))
goto out;
entry = pte_to_swp_entry(pte);
if (is_migration_entry(entry)) {
migration_entry_wait(mpw->vma->vm_mm, mpw->pmd, addr);
goto retry;
}
goto out;
}
page = vm_normal_page(mpw->vma, addr, pte);
if (!page)
goto out;
lock_page(page);
if (!page->mapping) {
unlock_page(page);
goto retry;
}
munlock_vma_page(page);
unlock_page(page);
out:
return 0;
}
/*
* Save pmd for pte handler for waiting on migration entries
*/
static int __munlock_pmd_handler(pmd_t *pmd, unsigned long addr,
unsigned long end, struct mm_walk *walk)
{
struct munlock_page_walk *mpw = walk->private;
mpw->pmd = pmd;
return 0;
}
/*
* munlock a range of pages in the vma using standard page table walk.
*
* vma->vm_mm->mmap_sem must be held for write.
*/
static void __munlock_vma_pages_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
struct mm_struct *mm = vma->vm_mm;
struct munlock_page_walk mpw = {
.vma = vma,
};
struct mm_walk munlock_page_walk = {
.pmd_entry = __munlock_pmd_handler,
.pte_entry = __munlock_pte_handler,
.private = &mpw,
.mm = mm,
};
VM_BUG_ON(start & ~PAGE_MASK || end & ~PAGE_MASK);
VM_BUG_ON(!rwsem_is_locked(&vma->vm_mm->mmap_sem));
VM_BUG_ON(start < vma->vm_start);
VM_BUG_ON(end > vma->vm_end);
lru_add_drain_all(); /* push cached pages to LRU */
walk_page_range(start, end, &munlock_page_walk);
lru_add_drain_all(); /* to update stats */
}
#else /* CONFIG_UNEVICTABLE_LRU */
/*
* Just make pages present if VM_LOCKED. No-op if unlocking.
*/
static int __mlock_vma_pages_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
if (vma->vm_flags & VM_LOCKED)
make_pages_present(start, end);
return 0;
}
/*
* munlock a range of pages in the vma -- no-op.
*/
static void __munlock_vma_pages_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
}
#endif /* CONFIG_UNEVICTABLE_LRU */
/*
* mlock all pages in this vma range. For mmap()/mremap()/...
*/
int mlock_vma_pages_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
struct mm_struct *mm = vma->vm_mm;
int nr_pages = (end - start) / PAGE_SIZE;
BUG_ON(!(vma->vm_flags & VM_LOCKED));
/*
* filter unlockable vmas
*/
if (vma->vm_flags & (VM_IO | VM_PFNMAP))
goto no_mlock;
if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
is_vm_hugetlb_page(vma) ||
vma == get_gate_vma(current))) {
downgrade_write(&mm->mmap_sem);
nr_pages = __mlock_vma_pages_range(vma, start, end);
up_read(&mm->mmap_sem);
/* vma can change or disappear */
down_write(&mm->mmap_sem);
vma = find_vma(mm, start);
/* non-NULL vma must contain @start, but need to check @end */
if (!vma || end > vma->vm_end)
return -EAGAIN;
return nr_pages;
}
/*
* User mapped kernel pages or huge pages:
* make these pages present to populate the ptes, but
* fall thru' to reset VM_LOCKED--no need to unlock, and
* return nr_pages so these don't get counted against task's
* locked limit. huge pages are already counted against
* locked vm limit.
*/
make_pages_present(start, end);
no_mlock:
vma->vm_flags &= ~VM_LOCKED; /* and don't come back! */
return nr_pages; /* pages NOT mlocked */
}
/*
* munlock all pages in vma. For munmap() and exit().
*/
void munlock_vma_pages_all(struct vm_area_struct *vma)
{
vma->vm_flags &= ~VM_LOCKED;
__munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end);
}
/*
* mlock_fixup - handle mlock[all]/munlock[all] requests.
*
* Filters out "special" vmas -- VM_LOCKED never gets set for these, and
* munlock is a no-op. However, for some special vmas, we go ahead and
* populate the ptes via make_pages_present().
*
* For vmas that pass the filters, merge/split as appropriate.
*/
static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
unsigned long start, unsigned long end, unsigned int newflags)
{
struct mm_struct *mm = vma->vm_mm;
pgoff_t pgoff;
int nr_pages;
int ret = 0;
int lock = newflags & VM_LOCKED;
if (newflags == vma->vm_flags ||
(vma->vm_flags & (VM_IO | VM_PFNMAP)))
goto out; /* don't set VM_LOCKED, don't count */
if ((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
is_vm_hugetlb_page(vma) ||
vma == get_gate_vma(current)) {
if (lock)
make_pages_present(start, end);
goto out; /* don't set VM_LOCKED, don't count */
}
pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
vma->vm_file, pgoff, vma_policy(vma));
if (*prev) {
vma = *prev;
goto success;
}
if (start != vma->vm_start) {
ret = split_vma(mm, vma, start, 1);
if (ret)
goto out;
}
if (end != vma->vm_end) {
ret = split_vma(mm, vma, end, 0);
if (ret)
goto out;
}
success:
/*
* Keep track of amount of locked VM.
*/
nr_pages = (end - start) >> PAGE_SHIFT;
if (!lock)
nr_pages = -nr_pages;
mm->locked_vm += nr_pages;
/*
* vm_flags is protected by the mmap_sem held in write mode.
* It's okay if try_to_unmap_one unmaps a page just after we
* set VM_LOCKED, __mlock_vma_pages_range will bring it back.
*/
vma->vm_flags = newflags;
if (lock) {
/*
* mmap_sem is currently held for write. Downgrade the write
* lock to a read lock so that other faults, mmap scans, ...
* while we fault in all pages.
*/
downgrade_write(&mm->mmap_sem);
ret = __mlock_vma_pages_range(vma, start, end);
if (ret > 0) {
mm->locked_vm -= ret;
ret = 0;
}
/*
* Need to reacquire mmap sem in write mode, as our callers
* expect this. We have no support for atomically upgrading
* a sem to write, so we need to check for ranges while sem
* is unlocked.
*/
up_read(&mm->mmap_sem);
/* vma can change or disappear */
down_write(&mm->mmap_sem);
*prev = find_vma(mm, start);
/* non-NULL *prev must contain @start, but need to check @end */
if (!(*prev) || end > (*prev)->vm_end)
ret = -EAGAIN;
} else {
/*
* TODO: for unlocking, pages will already be resident, so
* we don't need to wait for allocations/reclaim/pagein, ...
* However, unlocking a very large region can still take a
* while. Should we downgrade the semaphore for both lock
* AND unlock ?
*/
__munlock_vma_pages_range(vma, start, end);
}
out:
*prev = vma;
return ret;
}
static int do_mlock(unsigned long start, size_t len, int on)
{
unsigned long nstart, end, tmp;
struct vm_area_struct * vma, * prev;
int error;
len = PAGE_ALIGN(len);
end = start + len;
if (end < start)
return -EINVAL;
if (end == start)
return 0;
vma = find_vma_prev(current->mm, start, &prev);
if (!vma || vma->vm_start > start)
return -ENOMEM;
if (start > vma->vm_start)
prev = vma;
for (nstart = start ; ; ) {
unsigned int newflags;
/* Here we know that vma->vm_start <= nstart < vma->vm_end. */
newflags = vma->vm_flags | VM_LOCKED;
if (!on)
newflags &= ~VM_LOCKED;
tmp = vma->vm_end;
if (tmp > end)
tmp = end;
error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
if (error)
break;
nstart = tmp;
if (nstart < prev->vm_end)
nstart = prev->vm_end;
if (nstart >= end)
break;
vma = prev->vm_next;
if (!vma || vma->vm_start != nstart) {
error = -ENOMEM;
break;
}
}
return error;
}
asmlinkage long sys_mlock(unsigned long start, size_t len)
{
unsigned long locked;
unsigned long lock_limit;
int error = -ENOMEM;
if (!can_do_mlock())
return -EPERM;
down_write(¤t->mm->mmap_sem);
len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
start &= PAGE_MASK;
locked = len >> PAGE_SHIFT;
locked += current->mm->locked_vm;
lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
lock_limit >>= PAGE_SHIFT;
/* check against resource limits */
if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
error = do_mlock(start, len, 1);
up_write(¤t->mm->mmap_sem);
return error;
}
asmlinkage long sys_munlock(unsigned long start, size_t len)
{
int ret;
down_write(¤t->mm->mmap_sem);
len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
start &= PAGE_MASK;
ret = do_mlock(start, len, 0);
up_write(¤t->mm->mmap_sem);
return ret;
}
static int do_mlockall(int flags)
{
struct vm_area_struct * vma, * prev = NULL;
unsigned int def_flags = 0;
if (flags & MCL_FUTURE)
def_flags = VM_LOCKED;
current->mm->def_flags = def_flags;
if (flags == MCL_FUTURE)
goto out;
for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
unsigned int newflags;
newflags = vma->vm_flags | VM_LOCKED;
if (!(flags & MCL_CURRENT))
newflags &= ~VM_LOCKED;
/* Ignore errors */
mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
}
out:
return 0;
}
asmlinkage long sys_mlockall(int flags)
{
unsigned long lock_limit;
int ret = -EINVAL;
if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
goto out;
ret = -EPERM;
if (!can_do_mlock())
goto out;
down_write(¤t->mm->mmap_sem);
lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
lock_limit >>= PAGE_SHIFT;
ret = -ENOMEM;
if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
capable(CAP_IPC_LOCK))
ret = do_mlockall(flags);
up_write(¤t->mm->mmap_sem);
out:
return ret;
}
asmlinkage long sys_munlockall(void)
{
int ret;
down_write(¤t->mm->mmap_sem);
ret = do_mlockall(0);
up_write(¤t->mm->mmap_sem);
return ret;
}
/*
* Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
* shm segments) get accounted against the user_struct instead.
*/
static DEFINE_SPINLOCK(shmlock_user_lock);
int user_shm_lock(size_t size, struct user_struct *user)
{
unsigned long lock_limit, locked;
int allowed = 0;
locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
if (lock_limit == RLIM_INFINITY)
allowed = 1;
lock_limit >>= PAGE_SHIFT;
spin_lock(&shmlock_user_lock);
if (!allowed &&
locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
goto out;
get_uid(user);
user->locked_shm += locked;
allowed = 1;
out:
spin_unlock(&shmlock_user_lock);
return allowed;
}
void user_shm_unlock(size_t size, struct user_struct *user)
{
spin_lock(&shmlock_user_lock);
user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
spin_unlock(&shmlock_user_lock);
free_uid(user);
}