// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/mm/memory_hotplug.c
*
* Copyright (C)
*/
#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/sched/signal.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
#include <linux/compiler.h>
#include <linux/export.h>
#include <linux/pagevec.h>
#include <linux/writeback.h>
#include <linux/slab.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/memory.h>
#include <linux/memremap.h>
#include <linux/memory_hotplug.h>
#include <linux/highmem.h>
#include <linux/vmalloc.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/migrate.h>
#include <linux/page-isolation.h>
#include <linux/pfn.h>
#include <linux/suspend.h>
#include <linux/mm_inline.h>
#include <linux/firmware-map.h>
#include <linux/stop_machine.h>
#include <linux/hugetlb.h>
#include <linux/memblock.h>
#include <linux/compaction.h>
#include <linux/rmap.h>
#include <asm/tlbflush.h>
#include "internal.h"
#include "shuffle.h"
/*
* memory_hotplug.memmap_on_memory parameter
*/
static bool memmap_on_memory __ro_after_init;
#ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
module_param(memmap_on_memory, bool, 0444);
MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
#endif
/*
* online_page_callback contains pointer to current page onlining function.
* Initially it is generic_online_page(). If it is required it could be
* changed by calling set_online_page_callback() for callback registration
* and restore_online_page_callback() for generic callback restore.
*/
static online_page_callback_t online_page_callback = generic_online_page;
static DEFINE_MUTEX(online_page_callback_lock);
DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
void get_online_mems(void)
{
percpu_down_read(&mem_hotplug_lock);
}
void put_online_mems(void)
{
percpu_up_read(&mem_hotplug_lock);
}
bool movable_node_enabled = false;
#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
int mhp_default_online_type = MMOP_OFFLINE;
#else
int mhp_default_online_type = MMOP_ONLINE;
#endif
static int __init setup_memhp_default_state(char *str)
{
const int online_type = mhp_online_type_from_str(str);
if (online_type >= 0)
mhp_default_online_type = online_type;
return 1;
}
__setup("memhp_default_state=", setup_memhp_default_state);
void mem_hotplug_begin(void)
{
cpus_read_lock();
percpu_down_write(&mem_hotplug_lock);
}
void mem_hotplug_done(void)
{
percpu_up_write(&mem_hotplug_lock);
cpus_read_unlock();
}
u64 max_mem_size = U64_MAX;
/* add this memory to iomem resource */
static struct resource *register_memory_resource(u64 start, u64 size,
const char *resource_name)
{
struct resource *res;
unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
if (strcmp(resource_name, "System RAM"))
flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
if (!mhp_range_allowed(start, size, true))
return ERR_PTR(-E2BIG);
/*
* Make sure value parsed from 'mem=' only restricts memory adding
* while booting, so that memory hotplug won't be impacted. Please
* refer to document of 'mem=' in kernel-parameters.txt for more
* details.
*/
if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
return ERR_PTR(-E2BIG);
/*
* Request ownership of the new memory range. This might be
* a child of an existing resource that was present but
* not marked as busy.
*/
res = __request_region(&iomem_resource, start, size,
resource_name, flags);
if (!res) {
pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
start, start + size);
return ERR_PTR(-EEXIST);
}
return res;
}
static void release_memory_resource(struct resource *res)
{
if (!res)
return;
release_resource(res);
kfree(res);
}
#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
const char *reason)
{
/*
* Disallow all operations smaller than a sub-section and only
* allow operations smaller than a section for
* SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
* enforces a larger memory_block_size_bytes() granularity for
* memory that will be marked online, so this check should only
* fire for direct arch_{add,remove}_memory() users outside of
* add_memory_resource().
*/
unsigned long min_align;
if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
min_align = PAGES_PER_SUBSECTION;
else
min_align = PAGES_PER_SECTION;
if (!IS_ALIGNED(pfn, min_align)
|| !IS_ALIGNED(nr_pages, min_align)) {
WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
reason, pfn, pfn + nr_pages - 1);
return -EINVAL;
}
return 0;
}
/*
* Return page for the valid pfn only if the page is online. All pfn
* walkers which rely on the fully initialized page->flags and others
* should use this rather than pfn_valid && pfn_to_page
*/
struct page *pfn_to_online_page(unsigned long pfn)
{
unsigned long nr = pfn_to_section_nr(pfn);
struct dev_pagemap *pgmap;
struct mem_section *ms;
if (nr >= NR_MEM_SECTIONS)
return NULL;
ms = __nr_to_section(nr);
if (!online_section(ms))
return NULL;
/*
* Save some code text when online_section() +
* pfn_section_valid() are sufficient.
*/
if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
return NULL;
if (!pfn_section_valid(ms, pfn))
return NULL;
if (!online_device_section(ms))
return pfn_to_page(pfn);
/*
* Slowpath: when ZONE_DEVICE collides with
* ZONE_{NORMAL,MOVABLE} within the same section some pfns in
* the section may be 'offline' but 'valid'. Only
* get_dev_pagemap() can determine sub-section online status.
*/
pgmap = get_dev_pagemap(pfn, NULL);
put_dev_pagemap(pgmap);
/* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
if (pgmap)
return NULL;
return pfn_to_page(pfn);
}
EXPORT_SYMBOL_GPL(pfn_to_online_page);
/*
* Reasonably generic function for adding memory. It is
* expected that archs that support memory hotplug will
* call this function after deciding the zone to which to
* add the new pages.
*/
int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
struct mhp_params *params)
{
const unsigned long end_pfn = pfn + nr_pages;
unsigned long cur_nr_pages;
int err;
struct vmem_altmap *altmap = params->altmap;
if (WARN_ON_ONCE(!params->pgprot.pgprot))
return -EINVAL;
VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
if (altmap) {
/*
* Validate altmap is within bounds of the total request
*/
if (altmap->base_pfn != pfn
|| vmem_altmap_offset(altmap) > nr_pages) {
pr_warn_once("memory add fail, invalid altmap\n");
return -EINVAL;
}
altmap->alloc = 0;
}
err = check_pfn_span(pfn, nr_pages, "add");
if (err)
return err;
for (; pfn < end_pfn; pfn += cur_nr_pages) {
/* Select all remaining pages up to the next section boundary */
cur_nr_pages = min(end_pfn - pfn,
SECTION_ALIGN_UP(pfn + 1) - pfn);
err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
if (err)
break;
cond_resched();
}
vmemmap_populate_print_last();
return err;
}
/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
unsigned long start_pfn,
unsigned long end_pfn)
{
for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
if (unlikely(!pfn_to_online_page(start_pfn)))
continue;
if (unlikely(pfn_to_nid(start_pfn) != nid))
continue;
if (zone != page_zone(pfn_to_page(start_pfn)))
continue;
return start_pfn;
}
return 0;
}
/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
unsigned long start_pfn,
unsigned long end_pfn)
{
unsigned long pfn;
/* pfn is the end pfn of a memory section. */
pfn = end_pfn - 1;
for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
if (unlikely(!pfn_to_online_page(pfn)))
continue;
if (unlikely(pfn_to_nid(pfn) != nid))
continue;
if (zone != page_zone(pfn_to_page(pfn)))
continue;
return pfn;
}
return 0;
}
static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
unsigned long end_pfn)
{
unsigned long pfn;
int nid = zone_to_nid(zone);
zone_span_writelock(zone);
if (zone->zone_start_pfn == start_pfn) {
/*
* If the section is smallest section in the zone, it need
* shrink zone->zone_start_pfn and zone->zone_spanned_pages.
* In this case, we find second smallest valid mem_section
* for shrinking zone.
*/
pfn = find_smallest_section_pfn(nid, zone, end_pfn,
zone_end_pfn(zone));
if (pfn) {
zone->spanned_pages = zone_end_pfn(zone) - pfn;
zone->zone_start_pfn = pfn;
} else {
zone->zone_start_pfn = 0;
zone->spanned_pages = 0;
}
} else if (zone_end_pfn(zone) == end_pfn) {
/*
* If the section is biggest section in the zone, it need
* shrink zone->spanned_pages.
* In this case, we find second biggest valid mem_section for
* shrinking zone.
*/
pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
start_pfn);
if (pfn)
zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
else {
zone->zone_start_pfn = 0;
zone->spanned_pages = 0;
}
}
zone_span_writeunlock(zone);
}
static void update_pgdat_span(struct pglist_data *pgdat)
{
unsigned long node_start_pfn = 0, node_end_pfn = 0;
struct zone *zone;
for (zone = pgdat->node_zones;
zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
unsigned long end_pfn = zone_end_pfn(zone);
/* No need to lock the zones, they can't change. */
if (!zone->spanned_pages)
continue;
if (!node_end_pfn) {
node_start_pfn = zone->zone_start_pfn;
node_end_pfn = end_pfn;
continue;
}
if (end_pfn > node_end_pfn)
node_end_pfn = end_pfn;
if (zone->zone_start_pfn < node_start_pfn)
node_start_pfn = zone->zone_start_pfn;
}
pgdat->node_start_pfn = node_start_pfn;
pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
}
void __ref remove_pfn_range_from_zone(struct zone *zone,
unsigned long start_pfn,
unsigned long nr_pages)
{
const unsigned long end_pfn = start_pfn + nr_pages;
struct pglist_data *pgdat = zone->zone_pgdat;
unsigned long pfn, cur_nr_pages, flags;
/* Poison struct pages because they are now uninitialized again. */
for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
cond_resched();
/* Select all remaining pages up to the next section boundary */
cur_nr_pages =
min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
page_init_poison(pfn_to_page(pfn),
sizeof(struct page) * cur_nr_pages);
}
#ifdef CONFIG_ZONE_DEVICE
/*
* Zone shrinking code cannot properly deal with ZONE_DEVICE. So
* we will not try to shrink the zones - which is okay as
* set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
*/
if (zone_idx(zone) == ZONE_DEVICE)
return;
#endif
clear_zone_contiguous(zone);
pgdat_resize_lock(zone->zone_pgdat, &flags);
shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
update_pgdat_span(pgdat);
pgdat_resize_unlock(zone->zone_pgdat, &flags);
set_zone_contiguous(zone);
}
static void __remove_section(unsigned long pfn, unsigned long nr_pages,
unsigned long map_offset,
struct vmem_altmap *altmap)
{
struct mem_section *ms = __pfn_to_section(pfn);
if (WARN_ON_ONCE(!valid_section(ms)))
return;
sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
}
/**
* __remove_pages() - remove sections of pages
* @pfn: starting pageframe (must be aligned to start of a section)
* @nr_pages: number of pages to remove (must be multiple of section size)
* @altmap: alternative device page map or %NULL if default memmap is used
*
* Generic helper function to remove section mappings and sysfs entries
* for the section of the memory we are removing. Caller needs to make
* sure that pages are marked reserved and zones are adjust properly by
* calling offline_pages().
*/
void __remove_pages(unsigned long pfn, unsigned long nr_pages,
struct vmem_altmap *altmap)
{
const unsigned long end_pfn = pfn + nr_pages;
unsigned long cur_nr_pages;
unsigned long map_offset = 0;
map_offset = vmem_altmap_offset(altmap);
if (check_pfn_span(pfn, nr_pages, "remove"))
return;
for (; pfn < end_pfn; pfn += cur_nr_pages) {
cond_resched();
/* Select all remaining pages up to the next section boundary */
cur_nr_pages = min(end_pfn - pfn,
SECTION_ALIGN_UP(pfn + 1) - pfn);
__remove_section(pfn, cur_nr_pages, map_offset, altmap);
map_offset = 0;
}
}
int set_online_page_callback(online_page_callback_t callback)
{
int rc = -EINVAL;
get_online_mems();
mutex_lock(&online_page_callback_lock);
if (online_page_callback == generic_online_page) {
online_page_callback = callback;
rc = 0;
}
mutex_unlock(&online_page_callback_lock);
put_online_mems();
return rc;
}
EXPORT_SYMBOL_GPL(set_online_page_callback);
int restore_online_page_callback(online_page_callback_t callback)
{
int rc = -EINVAL;
get_online_mems();
mutex_lock(&online_page_callback_lock);
if (online_page_callback == callback) {
online_page_callback = generic_online_page;
rc = 0;
}
mutex_unlock(&online_page_callback_lock);
put_online_mems();
return rc;
}
EXPORT_SYMBOL_GPL(restore_online_page_callback);
void generic_online_page(struct page *page, unsigned int order)
{
/*
* Freeing the page with debug_pagealloc enabled will try to unmap it,
* so we should map it first. This is better than introducing a special
* case in page freeing fast path.
*/
debug_pagealloc_map_pages(page, 1 << order);
__free_pages_core(page, order);
totalram_pages_add(1UL << order);
#ifdef CONFIG_HIGHMEM
if (PageHighMem(page))
totalhigh_pages_add(1UL << order);
#endif
}
EXPORT_SYMBOL_GPL(generic_online_page);
static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
{
const unsigned long end_pfn = start_pfn + nr_pages;
unsigned long pfn;
/*
* Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
* decide to not expose all pages to the buddy (e.g., expose them
* later). We account all pages as being online and belonging to this
* zone ("present").
* When using memmap_on_memory, the range might not be aligned to
* MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
* this and the first chunk to online will be pageblock_nr_pages.
*/
for (pfn = start_pfn; pfn < end_pfn;) {
int order = min(MAX_ORDER - 1UL, __ffs(pfn));
(*online_page_callback)(pfn_to_page(pfn), order);
pfn += (1UL << order);
}
/* mark all involved sections as online */
online_mem_sections(start_pfn, end_pfn);
}
/* check which state of node_states will be changed when online memory */
static void node_states_check_changes_online(unsigned long nr_pages,
struct zone *zone, struct memory_notify *arg)
{
int nid = zone_to_nid(zone);
arg->status_change_nid = NUMA_NO_NODE;
arg->status_change_nid_normal = NUMA_NO_NODE;
arg->status_change_nid_high = NUMA_NO_NODE;
if (!node_state(nid, N_MEMORY))
arg->status_change_nid = nid;
if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
arg->status_change_nid_normal = nid;
#ifdef CONFIG_HIGHMEM
if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
arg->status_change_nid_high = nid;
#endif
}
static void node_states_set_node(int node, struct memory_notify *arg)
{
if (arg->status_change_nid_normal >= 0)
node_set_state(node, N_NORMAL_MEMORY);
if (arg->status_change_nid_high >= 0)
node_set_state(node, N_HIGH_MEMORY);
if (arg->status_change_nid >= 0)
node_set_state(node, N_MEMORY);
}
static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
unsigned long nr_pages)
{
unsigned long old_end_pfn = zone_end_pfn(zone);
if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
zone->zone_start_pfn = start_pfn;
zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
}
static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
unsigned long nr_pages)
{
unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
pgdat->node_start_pfn = start_pfn;
pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
}
static void section_taint_zone_device(unsigned long pfn)
{
struct mem_section *ms = __pfn_to_section(pfn);
ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
}
/*
* Associate the pfn range with the given zone, initializing the memmaps
* and resizing the pgdat/zone data to span the added pages. After this
* call, all affected pages are PG_reserved.
*
* All aligned pageblocks are initialized to the specified migratetype
* (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
* zone stats (e.g., nr_isolate_pageblock) are touched.
*/
void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
unsigned long nr_pages,
struct vmem_altmap *altmap, int migratetype)
{
struct pglist_data *pgdat = zone->zone_pgdat;
int nid = pgdat->node_id;
unsigned long flags;
clear_zone_contiguous(zone);
/* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
pgdat_resize_lock(pgdat, &flags);
zone_span_writelock(zone);
if (zone_is_empty(zone))
init_currently_empty_zone(zone, start_pfn, nr_pages);
resize_zone_range(zone, start_pfn, nr_pages);
zone_span_writeunlock(zone);
resize_pgdat_range(pgdat, start_pfn, nr_pages);
pgdat_resize_unlock(pgdat, &flags);
/*
* Subsection population requires care in pfn_to_online_page().
* Set the taint to enable the slow path detection of
* ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE}
* section.
*/
if (zone_is_zone_device(zone)) {
if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
section_taint_zone_device(start_pfn);
if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
section_taint_zone_device(start_pfn + nr_pages);
}
/*
* TODO now we have a visible range of pages which are not associated
* with their zone properly. Not nice but set_pfnblock_flags_mask
* expects the zone spans the pfn range. All the pages in the range
* are reserved so nobody should be touching them so we should be safe
*/
memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
MEMINIT_HOTPLUG, altmap, migratetype);
set_zone_contiguous(zone);
}
/*
* Returns a default kernel memory zone for the given pfn range.
* If no kernel zone covers this pfn range it will automatically go
* to the ZONE_NORMAL.
*/
static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
unsigned long nr_pages)
{
struct pglist_data *pgdat = NODE_DATA(nid);
int zid;
for (zid = 0; zid <= ZONE_NORMAL; zid++) {
struct zone *zone = &pgdat->node_zones[zid];
if (zone_intersects(zone, start_pfn, nr_pages))
return zone;
}
return &pgdat->node_zones[ZONE_NORMAL];
}
static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
unsigned long nr_pages)
{
struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
nr_pages);
struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
/*
* We inherit the existing zone in a simple case where zones do not
* overlap in the given range
*/
if (in_kernel ^ in_movable)
return (in_kernel) ? kernel_zone : movable_zone;
/*
* If the range doesn't belong to any zone or two zones overlap in the
* given range then we use movable zone only if movable_node is
* enabled because we always online to a kernel zone by default.
*/
return movable_node_enabled ? movable_zone : kernel_zone;
}
struct zone *zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
unsigned long nr_pages)
{
if (online_type == MMOP_ONLINE_KERNEL)
return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
if (online_type == MMOP_ONLINE_MOVABLE)
return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
return default_zone_for_pfn(nid, start_pfn, nr_pages);
}
/*
* This function should only be called by memory_block_{online,offline},
* and {online,offline}_pages.
*/
void adjust_present_page_count(struct zone *zone, long nr_pages)
{
unsigned long flags;
zone->present_pages += nr_pages;
pgdat_resize_lock(zone->zone_pgdat, &flags);
zone->zone_pgdat->node_present_pages += nr_pages;
pgdat_resize_unlock(zone->zone_pgdat, &flags);
}
int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
struct zone *zone)
{
unsigned long end_pfn = pfn + nr_pages;
int ret;
ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
if (ret)
return ret;
move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
/*
* It might be that the vmemmap_pages fully span sections. If that is
* the case, mark those sections online here as otherwise they will be
* left offline.
*/
if (nr_pages >= PAGES_PER_SECTION)
online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
return ret;
}
void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
{
unsigned long end_pfn = pfn + nr_pages;
/*
* It might be that the vmemmap_pages fully span sections. If that is
* the case, mark those sections offline here as otherwise they will be
* left online.
*/
if (nr_pages >= PAGES_PER_SECTION)
offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
/*
* The pages associated with this vmemmap have been offlined, so
* we can reset its state here.
*/
remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
}
int __ref online_pages(unsigned long pfn, unsigned long nr_pages, struct zone *zone)
{
unsigned long flags;
int need_zonelists_rebuild = 0;
const int nid = zone_to_nid(zone);
int ret;
struct memory_notify arg;
/*
* {on,off}lining is constrained to full memory sections (or more
* precisly to memory blocks from the user space POV).
* memmap_on_memory is an exception because it reserves initial part
* of the physical memory space for vmemmaps. That space is pageblock
* aligned.
*/
if (WARN_ON_ONCE(!nr_pages ||
!IS_ALIGNED(pfn, pageblock_nr_pages) ||
!IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
return -EINVAL;
mem_hotplug_begin();
/* associate pfn range with the zone */
move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
arg.start_pfn = pfn;
arg.nr_pages = nr_pages;
node_states_check_changes_online(nr_pages, zone, &arg);
ret = memory_notify(MEM_GOING_ONLINE, &arg);
ret = notifier_to_errno(ret);
if (ret)
goto failed_addition;
/*
* Fixup the number of isolated pageblocks before marking the sections
* onlining, such that undo_isolate_page_range() works correctly.
*/
spin_lock_irqsave(&zone->lock, flags);
zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
spin_unlock_irqrestore(&zone->lock, flags);
/*
* If this zone is not populated, then it is not in zonelist.
* This means the page allocator ignores this zone.
* So, zonelist must be updated after online.
*/
if (!populated_zone(zone)) {
need_zonelists_rebuild = 1;
setup_zone_pageset(zone);
}
online_pages_range(pfn, nr_pages);
adjust_present_page_count(zone, nr_pages);
node_states_set_node(nid, &arg);
if (need_zonelists_rebuild)
build_all_zonelists(NULL);
/* Basic onlining is complete, allow allocation of onlined pages. */
undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
/*
* Freshly onlined pages aren't shuffled (e.g., all pages are placed to
* the tail of the freelist when undoing isolation). Shuffle the whole
* zone to make sure the just onlined pages are properly distributed
* across the whole freelist - to create an initial shuffle.
*/
shuffle_zone(zone);
/* reinitialise watermarks and update pcp limits */
init_per_zone_wmark_min();
kswapd_run(nid);
kcompactd_run(nid);
writeback_set_ratelimit();
memory_notify(MEM_ONLINE, &arg);
mem_hotplug_done();
return 0;
failed_addition:
pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
(unsigned long long) pfn << PAGE_SHIFT,
(((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
memory_notify(MEM_CANCEL_ONLINE, &arg);
remove_pfn_range_from_zone(zone, pfn, nr_pages);
mem_hotplug_done();
return ret;
}
#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
static void reset_node_present_pages(pg_data_t *pgdat)
{
struct zone *z;
for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
z->present_pages = 0;
pgdat->node_present_pages = 0;
}
/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
static pg_data_t __ref *hotadd_new_pgdat(int nid)
{
struct pglist_data *pgdat;
pgdat = NODE_DATA(nid);
if (!pgdat) {
pgdat = arch_alloc_nodedata(nid);
if (!pgdat)
return NULL;
pgdat->per_cpu_nodestats =
alloc_percpu(struct per_cpu_nodestat);
arch_refresh_nodedata(nid, pgdat);
} else {
int cpu;
/*
* Reset the nr_zones, order and highest_zoneidx before reuse.
* Note that kswapd will init kswapd_highest_zoneidx properly
* when it starts in the near future.
*/
pgdat->nr_zones = 0;
pgdat->kswapd_order = 0;
pgdat->kswapd_highest_zoneidx = 0;
for_each_online_cpu(cpu) {
struct per_cpu_nodestat *p;
p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
memset(p, 0, sizeof(*p));
}
}
/* we can use NODE_DATA(nid) from here */
pgdat->node_id = nid;
pgdat->node_start_pfn = 0;
/* init node's zones as empty zones, we don't have any present pages.*/
free_area_init_core_hotplug(nid);
/*
* The node we allocated has no zone fallback lists. For avoiding
* to access not-initialized zonelist, build here.
*/
build_all_zonelists(pgdat);
/*
* When memory is hot-added, all the memory is in offline state. So
* clear all zones' present_pages because they will be updated in
* online_pages() and offline_pages().
*/
reset_node_managed_pages(pgdat);
reset_node_present_pages(pgdat);
return pgdat;
}
static void rollback_node_hotadd(int nid)
{
pg_data_t *pgdat = NODE_DATA(nid);
arch_refresh_nodedata(nid, NULL);
free_percpu(pgdat->per_cpu_nodestats);
arch_free_nodedata(pgdat);
}
/**
* try_online_node - online a node if offlined
* @nid: the node ID
* @set_node_online: Whether we want to online the node
* called by cpu_up() to online a node without onlined memory.
*
* Returns:
* 1 -> a new node has been allocated
* 0 -> the node is already online
* -ENOMEM -> the node could not be allocated
*/
static int __try_online_node(int nid, bool set_node_online)
{
pg_data_t *pgdat;
int ret = 1;
if (node_online(nid))
return 0;
pgdat = hotadd_new_pgdat(nid);
if (!pgdat) {
pr_err("Cannot online node %d due to NULL pgdat\n", nid);
ret = -ENOMEM;
goto out;
}
if (set_node_online) {
node_set_online(nid);
ret = register_one_node(nid);
BUG_ON(ret);
}
out:
return ret;
}
/*
* Users of this function always want to online/register the node
*/
int try_online_node(int nid)
{
int ret;
mem_hotplug_begin();
ret = __try_online_node(nid, true);
mem_hotplug_done();
return ret;
}
static int check_hotplug_memory_range(u64 start, u64 size)
{
/* memory range must be block size aligned */
if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
!IS_ALIGNED(size, memory_block_size_bytes())) {
pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
memory_block_size_bytes(), start, size);
return -EINVAL;
}
return 0;
}
static int online_memory_block(struct memory_block *mem, void *arg)
{
mem->online_type = mhp_default_online_type;
return device_online(&mem->dev);
}
bool mhp_supports_memmap_on_memory(unsigned long size)
{
unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
unsigned long remaining_size = size - vmemmap_size;
/*
* Besides having arch support and the feature enabled at runtime, we
* need a few more assumptions to hold true:
*
* a) We span a single memory block: memory onlining/offlinin;g happens
* in memory block granularity. We don't want the vmemmap of online
* memory blocks to reside on offline memory blocks. In the future,
* we might want to support variable-sized memory blocks to make the
* feature more versatile.
*
* b) The vmemmap pages span complete PMDs: We don't want vmemmap code
* to populate memory from the altmap for unrelated parts (i.e.,
* other memory blocks)
*
* c) The vmemmap pages (and thereby the pages that will be exposed to
* the buddy) have to cover full pageblocks: memory onlining/offlining
* code requires applicable ranges to be page-aligned, for example, to
* set the migratetypes properly.
*
* TODO: Although we have a check here to make sure that vmemmap pages
* fully populate a PMD, it is not the right place to check for
* this. A much better solution involves improving vmemmap code
* to fallback to base pages when trying to populate vmemmap using
* altmap as an alternative source of memory, and we do not exactly
* populate a single PMD.
*/
return memmap_on_memory &&
!hugetlb_free_vmemmap_enabled &&
IS_ENABLED(CONFIG_MHP_MEMMAP_ON_MEMORY) &&
size == memory_block_size_bytes() &&
IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
}
/*
* NOTE: The caller must call lock_device_hotplug() to serialize hotplug
* and online/offline operations (triggered e.g. by sysfs).
*
* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
*/
int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
{
struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
struct vmem_altmap mhp_altmap = {};
u64 start, size;
bool new_node = false;
int ret;
start = res->start;
size = resource_size(res);
ret = check_hotplug_memory_range(start, size);
if (ret)
return ret;
if (!node_possible(nid)) {
WARN(1, "node %d was absent from the node_possible_map\n", nid);
return -EINVAL;
}
mem_hotplug_begin();
if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
memblock_add_node(start, size, nid);
ret = __try_online_node(nid, false);
if (ret < 0)
goto error;
new_node = ret;
/*
* Self hosted memmap array
*/
if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
if (!mhp_supports_memmap_on_memory(size)) {
ret = -EINVAL;
goto error;
}
mhp_altmap.free = PHYS_PFN(size);
mhp_altmap.base_pfn = PHYS_PFN(start);
params.altmap = &mhp_altmap;
}
/* call arch's memory hotadd */
ret = arch_add_memory(nid, start, size, ¶ms);
if (ret < 0)
goto error;
/* create memory block devices after memory was added */
ret = create_memory_block_devices(start, size, mhp_altmap.alloc);
if (ret) {
arch_remove_memory(nid, start, size, NULL);
goto error;
}
if (new_node) {
/* If sysfs file of new node can't be created, cpu on the node
* can't be hot-added. There is no rollback way now.
* So, check by BUG_ON() to catch it reluctantly..
* We online node here. We can't roll back from here.
*/
node_set_online(nid);
ret = __register_one_node(nid);
BUG_ON(ret);
}
/* link memory sections under this node.*/
link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1),
MEMINIT_HOTPLUG);
/* create new memmap entry */
if (!strcmp(res->name, "System RAM"))
firmware_map_add_hotplug(start, start + size, "System RAM");
/* device_online() will take the lock when calling online_pages() */
mem_hotplug_done();
/*
* In case we're allowed to merge the resource, flag it and trigger
* merging now that adding succeeded.
*/
if (mhp_flags & MHP_MERGE_RESOURCE)
merge_system_ram_resource(res);
/* online pages if requested */
if (mhp_default_online_type != MMOP_OFFLINE)
walk_memory_blocks(start, size, NULL, online_memory_block);
return ret;
error:
/* rollback pgdat allocation and others */
if (new_node)
rollback_node_hotadd(nid);
if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
memblock_remove(start, size);
mem_hotplug_done();
return ret;
}
/* requires device_hotplug_lock, see add_memory_resource() */
int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
{
struct resource *res;
int ret;
res = register_memory_resource(start, size, "System RAM");
if (IS_ERR(res))
return PTR_ERR(res);
ret = add_memory_resource(nid, res, mhp_flags);
if (ret < 0)
release_memory_resource(res);
return ret;
}
int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
{
int rc;
lock_device_hotplug();
rc = __add_memory(nid, start, size, mhp_flags);
unlock_device_hotplug();
return rc;
}
EXPORT_SYMBOL_GPL(add_memory);
/*
* Add special, driver-managed memory to the system as system RAM. Such
* memory is not exposed via the raw firmware-provided memmap as system
* RAM, instead, it is detected and added by a driver - during cold boot,
* after a reboot, and after kexec.
*
* Reasons why this memory should not be used for the initial memmap of a
* kexec kernel or for placing kexec images:
* - The booting kernel is in charge of determining how this memory will be
* used (e.g., use persistent memory as system RAM)
* - Coordination with a hypervisor is required before this memory
* can be used (e.g., inaccessible parts).
*
* For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
* memory map") are created. Also, the created memory resource is flagged
* with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
* this memory as well (esp., not place kexec images onto it).
*
* The resource_name (visible via /proc/iomem) has to have the format
* "System RAM ($DRIVER)".
*/
int add_memory_driver_managed(int nid, u64 start, u64 size,
const char *resource_name, mhp_t mhp_flags)
{
struct resource *res;
int rc;
if (!resource_name ||
strstr(resource_name, "System RAM (") != resource_name ||
resource_name[strlen(resource_name) - 1] != ')')
return -EINVAL;
lock_device_hotplug();
res = register_memory_resource(start, size, resource_name);
if (IS_ERR(res)) {
rc = PTR_ERR(res);
goto out_unlock;
}
rc = add_memory_resource(nid, res, mhp_flags);
if (rc < 0)
release_memory_resource(res);
out_unlock:
unlock_device_hotplug();
return rc;
}
EXPORT_SYMBOL_GPL(add_memory_driver_managed);
/*
* Platforms should define arch_get_mappable_range() that provides
* maximum possible addressable physical memory range for which the
* linear mapping could be created. The platform returned address
* range must adhere to these following semantics.
*
* - range.start <= range.end
* - Range includes both end points [range.start..range.end]
*
* There is also a fallback definition provided here, allowing the
* entire possible physical address range in case any platform does
* not define arch_get_mappable_range().
*/
struct range __weak arch_get_mappable_range(void)
{
struct range mhp_range = {
.start = 0UL,
.end = -1ULL,
};
return mhp_range;
}
struct range mhp_get_pluggable_range(bool need_mapping)
{
const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
struct range mhp_range;
if (need_mapping) {
mhp_range = arch_get_mappable_range();
if (mhp_range.start > max_phys) {
mhp_range.start = 0;
mhp_range.end = 0;
}
mhp_range.end = min_t(u64, mhp_range.end, max_phys);
} else {
mhp_range.start = 0;
mhp_range.end = max_phys;
}
return mhp_range;
}
EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
{
struct range mhp_range = mhp_get_pluggable_range(need_mapping);
u64 end = start + size;
if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
return true;
pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
start, end, mhp_range.start, mhp_range.end);
return false;
}
#ifdef CONFIG_MEMORY_HOTREMOVE
/*
* Confirm all pages in a range [start, end) belong to the same zone (skipping
* memory holes). When true, return the zone.
*/
struct zone *test_pages_in_a_zone(unsigned long start_pfn,
unsigned long end_pfn)
{
unsigned long pfn, sec_end_pfn;
struct zone *zone = NULL;
struct page *page;
int i;
for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
pfn < end_pfn;
pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
/* Make sure the memory section is present first */
if (!present_section_nr(pfn_to_section_nr(pfn)))
continue;
for (; pfn < sec_end_pfn && pfn < end_pfn;
pfn += MAX_ORDER_NR_PAGES) {
i = 0;
/* This is just a CONFIG_HOLES_IN_ZONE check.*/
while ((i < MAX_ORDER_NR_PAGES) &&
!pfn_valid_within(pfn + i))
i++;
if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
continue;
/* Check if we got outside of the zone */
if (zone && !zone_spans_pfn(zone, pfn + i))
return NULL;
page = pfn_to_page(pfn + i);
if (zone && page_zone(page) != zone)
return NULL;
zone = page_zone(page);
}
}
return zone;
}
/*
* Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
* non-lru movable pages and hugepages). Will skip over most unmovable
* pages (esp., pages that can be skipped when offlining), but bail out on
* definitely unmovable pages.
*
* Returns:
* 0 in case a movable page is found and movable_pfn was updated.
* -ENOENT in case no movable page was found.
* -EBUSY in case a definitely unmovable page was found.
*/
static int scan_movable_pages(unsigned long start, unsigned long end,
unsigned long *movable_pfn)
{
unsigned long pfn;
for (pfn = start; pfn < end; pfn++) {
struct page *page, *head;
unsigned long skip;
if (!pfn_valid(pfn))
continue;
page = pfn_to_page(pfn);
if (PageLRU(page))
goto found;
if (__PageMovable(page))
goto found;
/*
* PageOffline() pages that are not marked __PageMovable() and
* have a reference count > 0 (after MEM_GOING_OFFLINE) are
* definitely unmovable. If their reference count would be 0,
* they could at least be skipped when offlining memory.
*/
if (PageOffline(page) && page_count(page))
return -EBUSY;
if (!PageHuge(page))
continue;
head = compound_head(page);
/*
* This test is racy as we hold no reference or lock. The
* hugetlb page could have been free'ed and head is no longer
* a hugetlb page before the following check. In such unlikely
* cases false positives and negatives are possible. Calling
* code must deal with these scenarios.
*/
if (HPageMigratable(head))
goto found;
skip = compound_nr(head) - (page - head);
pfn += skip - 1;
}
return -ENOENT;
found:
*movable_pfn = pfn;
return 0;
}
static int
do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long pfn;
struct page *page, *head;
int ret = 0;
LIST_HEAD(source);
static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
DEFAULT_RATELIMIT_BURST);
for (pfn = start_pfn; pfn < end_pfn; pfn++) {
if (!pfn_valid(pfn))
continue;
page = pfn_to_page(pfn);
head = compound_head(page);
if (PageHuge(page)) {
pfn = page_to_pfn(head) + compound_nr(head) - 1;
isolate_huge_page(head, &source);
continue;
} else if (PageTransHuge(page))
pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
/*
* HWPoison pages have elevated reference counts so the migration would
* fail on them. It also doesn't make any sense to migrate them in the
* first place. Still try to unmap such a page in case it is still mapped
* (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
* the unmap as the catch all safety net).
*/
if (PageHWPoison(page)) {
if (WARN_ON(PageLRU(page)))
isolate_lru_page(page);
if (page_mapped(page))
try_to_unmap(page, TTU_IGNORE_MLOCK);
continue;
}
if (!get_page_unless_zero(page))
continue;
/*
* We can skip free pages. And we can deal with pages on
* LRU and non-lru movable pages.
*/
if (PageLRU(page))
ret = isolate_lru_page(page);
else
ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
if (!ret) { /* Success */
list_add_tail(&page->lru, &source);
if (!__PageMovable(page))
inc_node_page_state(page, NR_ISOLATED_ANON +
page_is_file_lru(page));
} else {
if (__ratelimit(&migrate_rs)) {
pr_warn("failed to isolate pfn %lx\n", pfn);
dump_page(page, "isolation failed");
}
}
put_page(page);
}
if (!list_empty(&source)) {
nodemask_t nmask = node_states[N_MEMORY];
struct migration_target_control mtc = {
.nmask = &nmask,
.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
};
/*
* We have checked that migration range is on a single zone so
* we can use the nid of the first page to all the others.
*/
mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
/*
* try to allocate from a different node but reuse this node
* if there are no other online nodes to be used (e.g. we are
* offlining a part of the only existing node)
*/
node_clear(mtc.nid, nmask);
if (nodes_empty(nmask))
node_set(mtc.nid, nmask);
ret = migrate_pages(&source, alloc_migration_target, NULL,
(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
if (ret) {
list_for_each_entry(page, &source, lru) {
if (__ratelimit(&migrate_rs)) {
pr_warn("migrating pfn %lx failed ret:%d\n",
page_to_pfn(page), ret);
dump_page(page, "migration failure");
}
}
putback_movable_pages(&source);
}
}
return ret;
}
static int __init cmdline_parse_movable_node(char *p)
{
movable_node_enabled = true;
return 0;
}
early_param("movable_node", cmdline_parse_movable_node);
/* check which state of node_states will be changed when offline memory */
static void node_states_check_changes_offline(unsigned long nr_pages,
struct zone *zone, struct memory_notify *arg)
{
struct pglist_data *pgdat = zone->zone_pgdat;
unsigned long present_pages = 0;
enum zone_type zt;
arg->status_change_nid = NUMA_NO_NODE;
arg->status_change_nid_normal = NUMA_NO_NODE;
arg->status_change_nid_high = NUMA_NO_NODE;
/*
* Check whether node_states[N_NORMAL_MEMORY] will be changed.
* If the memory to be offline is within the range
* [0..ZONE_NORMAL], and it is the last present memory there,
* the zones in that range will become empty after the offlining,
* thus we can determine that we need to clear the node from
* node_states[N_NORMAL_MEMORY].
*/
for (zt = 0; zt <= ZONE_NORMAL; zt++)
present_pages += pgdat->node_zones[zt].present_pages;
if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
arg->status_change_nid_normal = zone_to_nid(zone);
#ifdef CONFIG_HIGHMEM
/*
* node_states[N_HIGH_MEMORY] contains nodes which
* have normal memory or high memory.
* Here we add the present_pages belonging to ZONE_HIGHMEM.
* If the zone is within the range of [0..ZONE_HIGHMEM), and
* we determine that the zones in that range become empty,
* we need to clear the node for N_HIGH_MEMORY.
*/
present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
arg->status_change_nid_high = zone_to_nid(zone);
#endif
/*
* We have accounted the pages from [0..ZONE_NORMAL), and
* in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
* as well.
* Here we count the possible pages from ZONE_MOVABLE.
* If after having accounted all the pages, we see that the nr_pages
* to be offlined is over or equal to the accounted pages,
* we know that the node will become empty, and so, we can clear
* it for N_MEMORY as well.
*/
present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
if (nr_pages >= present_pages)
arg->status_change_nid = zone_to_nid(zone);
}
static void node_states_clear_node(int node, struct memory_notify *arg)
{
if (arg->status_change_nid_normal >= 0)
node_clear_state(node, N_NORMAL_MEMORY);
if (arg->status_change_nid_high >= 0)
node_clear_state(node, N_HIGH_MEMORY);
if (arg->status_change_nid >= 0)
node_clear_state(node, N_MEMORY);
}
static int count_system_ram_pages_cb(unsigned long start_pfn,
unsigned long nr_pages, void *data)
{
unsigned long *nr_system_ram_pages = data;
*nr_system_ram_pages += nr_pages;
return 0;
}
int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages)
{
const unsigned long end_pfn = start_pfn + nr_pages;
unsigned long pfn, system_ram_pages = 0;
unsigned long flags;
struct zone *zone;
struct memory_notify arg;
int ret, node;
char *reason;
/*
* {on,off}lining is constrained to full memory sections (or more
* precisly to memory blocks from the user space POV).
* memmap_on_memory is an exception because it reserves initial part
* of the physical memory space for vmemmaps. That space is pageblock
* aligned.
*/
if (WARN_ON_ONCE(!nr_pages ||
!IS_ALIGNED(start_pfn, pageblock_nr_pages) ||
!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
return -EINVAL;
mem_hotplug_begin();
/*
* Don't allow to offline memory blocks that contain holes.
* Consequently, memory blocks with holes can never get onlined
* via the hotplug path - online_pages() - as hotplugged memory has
* no holes. This way, we e.g., don't have to worry about marking
* memory holes PG_reserved, don't need pfn_valid() checks, and can
* avoid using walk_system_ram_range() later.
*/
walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
count_system_ram_pages_cb);
if (system_ram_pages != nr_pages) {
ret = -EINVAL;
reason = "memory holes";
goto failed_removal;
}
/* This makes hotplug much easier...and readable.
we assume this for now. .*/
zone = test_pages_in_a_zone(start_pfn, end_pfn);
if (!zone) {
ret = -EINVAL;
reason = "multizone range";
goto failed_removal;
}
node = zone_to_nid(zone);
/*
* Disable pcplists so that page isolation cannot race with freeing
* in a way that pages from isolated pageblock are left on pcplists.
*/
zone_pcp_disable(zone);
lru_cache_disable();
/* set above range as isolated */
ret = start_isolate_page_range(start_pfn, end_pfn,
MIGRATE_MOVABLE,
MEMORY_OFFLINE | REPORT_FAILURE);
if (ret) {
reason = "failure to isolate range";
goto failed_removal_pcplists_disabled;
}
arg.start_pfn = start_pfn;
arg.nr_pages = nr_pages;
node_states_check_changes_offline(nr_pages, zone, &arg);
ret = memory_notify(MEM_GOING_OFFLINE, &arg);
ret = notifier_to_errno(ret);
if (ret) {
reason = "notifier failure";
goto failed_removal_isolated;
}
do {
pfn = start_pfn;
do {
if (signal_pending(current)) {
ret = -EINTR;
reason = "signal backoff";
goto failed_removal_isolated;
}
cond_resched();
ret = scan_movable_pages(pfn, end_pfn, &pfn);
if (!ret) {
/*
* TODO: fatal migration failures should bail
* out
*/
do_migrate_range(pfn, end_pfn);
}
} while (!ret);
if (ret != -ENOENT) {
reason = "unmovable page";
goto failed_removal_isolated;
}
/*
* Dissolve free hugepages in the memory block before doing
* offlining actually in order to make hugetlbfs's object
* counting consistent.
*/
ret = dissolve_free_huge_pages(start_pfn, end_pfn);
if (ret) {
reason = "failure to dissolve huge pages";
goto failed_removal_isolated;
}
ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
} while (ret);
/* Mark all sections offline and remove free pages from the buddy. */
__offline_isolated_pages(start_pfn, end_pfn);
pr_debug("Offlined Pages %ld\n", nr_pages);
/*
* The memory sections are marked offline, and the pageblock flags
* effectively stale; nobody should be touching them. Fixup the number
* of isolated pageblocks, memory onlining will properly revert this.
*/
spin_lock_irqsave(&zone->lock, flags);
zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
spin_unlock_irqrestore(&zone->lock, flags);
lru_cache_enable();
zone_pcp_enable(zone);
/* removal success */
adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
adjust_present_page_count(zone, -nr_pages);
/* reinitialise watermarks and update pcp limits */
init_per_zone_wmark_min();
if (!populated_zone(zone)) {
zone_pcp_reset(zone);
build_all_zonelists(NULL);
}
node_states_clear_node(node, &arg);
if (arg.status_change_nid >= 0) {
kswapd_stop(node);
kcompactd_stop(node);
}
writeback_set_ratelimit();
memory_notify(MEM_OFFLINE, &arg);
remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
mem_hotplug_done();
return 0;
failed_removal_isolated:
undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
memory_notify(MEM_CANCEL_OFFLINE, &arg);
failed_removal_pcplists_disabled:
zone_pcp_enable(zone);
failed_removal:
pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
(unsigned long long) start_pfn << PAGE_SHIFT,
((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
reason);
/* pushback to free area */
mem_hotplug_done();
return ret;
}
static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
{
int ret = !is_memblock_offlined(mem);
if (unlikely(ret)) {
phys_addr_t beginpa, endpa;
beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
endpa = beginpa + memory_block_size_bytes() - 1;
pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
&beginpa, &endpa);
return -EBUSY;
}
return 0;
}
static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
{
/*
* If not set, continue with the next block.
*/
return mem->nr_vmemmap_pages;
}
static int check_cpu_on_node(pg_data_t *pgdat)
{
int cpu;
for_each_present_cpu(cpu) {
if (cpu_to_node(cpu) == pgdat->node_id)
/*
* the cpu on this node isn't removed, and we can't
* offline this node.
*/
return -EBUSY;
}
return 0;
}
static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
{
int nid = *(int *)arg;
/*
* If a memory block belongs to multiple nodes, the stored nid is not
* reliable. However, such blocks are always online (e.g., cannot get
* offlined) and, therefore, are still spanned by the node.
*/
return mem->nid == nid ? -EEXIST : 0;
}
/**
* try_offline_node
* @nid: the node ID
*
* Offline a node if all memory sections and cpus of the node are removed.
*
* NOTE: The caller must call lock_device_hotplug() to serialize hotplug
* and online/offline operations before this call.
*/
void try_offline_node(int nid)
{
pg_data_t *pgdat = NODE_DATA(nid);
int rc;
/*
* If the node still spans pages (especially ZONE_DEVICE), don't
* offline it. A node spans memory after move_pfn_range_to_zone(),
* e.g., after the memory block was onlined.
*/
if (pgdat->node_spanned_pages)
return;
/*
* Especially offline memory blocks might not be spanned by the
* node. They will get spanned by the node once they get onlined.
* However, they link to the node in sysfs and can get onlined later.
*/
rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
if (rc)
return;
if (check_cpu_on_node(pgdat))
return;
/*
* all memory/cpu of this node are removed, we can offline this
* node now.
*/
node_set_offline(nid);
unregister_one_node(nid);
}
EXPORT_SYMBOL(try_offline_node);
static int __ref try_remove_memory(int nid, u64 start, u64 size)
{
int rc = 0;
struct vmem_altmap mhp_altmap = {};
struct vmem_altmap *altmap = NULL;
unsigned long nr_vmemmap_pages;
BUG_ON(check_hotplug_memory_range(start, size));
/*
* All memory blocks must be offlined before removing memory. Check
* whether all memory blocks in question are offline and return error
* if this is not the case.
*/
rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
if (rc)
return rc;
/*
* We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
* the same granularity it was added - a single memory block.
*/
if (memmap_on_memory) {
nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
get_nr_vmemmap_pages_cb);
if (nr_vmemmap_pages) {
if (size != memory_block_size_bytes()) {
pr_warn("Refuse to remove %#llx - %#llx,"
"wrong granularity\n",
start, start + size);
return -EINVAL;
}
/*
* Let remove_pmd_table->free_hugepage_table do the
* right thing if we used vmem_altmap when hot-adding
* the range.
*/
mhp_altmap.alloc = nr_vmemmap_pages;
altmap = &mhp_altmap;
}
}
/* remove memmap entry */
firmware_map_remove(start, start + size, "System RAM");
/*
* Memory block device removal under the device_hotplug_lock is
* a barrier against racing online attempts.
*/
remove_memory_block_devices(start, size);
mem_hotplug_begin();
arch_remove_memory(nid, start, size, altmap);
if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
memblock_free(start, size);
memblock_remove(start, size);
}
release_mem_region_adjustable(start, size);
try_offline_node(nid);
mem_hotplug_done();
return 0;
}
/**
* remove_memory
* @nid: the node ID
* @start: physical address of the region to remove
* @size: size of the region to remove
*
* NOTE: The caller must call lock_device_hotplug() to serialize hotplug
* and online/offline operations before this call, as required by
* try_offline_node().
*/
void __remove_memory(int nid, u64 start, u64 size)
{
/*
* trigger BUG() if some memory is not offlined prior to calling this
* function
*/
if (try_remove_memory(nid, start, size))
BUG();
}
/*
* Remove memory if every memory block is offline, otherwise return -EBUSY is
* some memory is not offline
*/
int remove_memory(int nid, u64 start, u64 size)
{
int rc;
lock_device_hotplug();
rc = try_remove_memory(nid, start, size);
unlock_device_hotplug();
return rc;
}
EXPORT_SYMBOL_GPL(remove_memory);
static int try_offline_memory_block(struct memory_block *mem, void *arg)
{
uint8_t online_type = MMOP_ONLINE_KERNEL;
uint8_t **online_types = arg;
struct page *page;
int rc;
/*
* Sense the online_type via the zone of the memory block. Offlining
* with multiple zones within one memory block will be rejected
* by offlining code ... so we don't care about that.
*/
page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
online_type = MMOP_ONLINE_MOVABLE;
rc = device_offline(&mem->dev);
/*
* Default is MMOP_OFFLINE - change it only if offlining succeeded,
* so try_reonline_memory_block() can do the right thing.
*/
if (!rc)
**online_types = online_type;
(*online_types)++;
/* Ignore if already offline. */
return rc < 0 ? rc : 0;
}
static int try_reonline_memory_block(struct memory_block *mem, void *arg)
{
uint8_t **online_types = arg;
int rc;
if (**online_types != MMOP_OFFLINE) {
mem->online_type = **online_types;
rc = device_online(&mem->dev);
if (rc < 0)
pr_warn("%s: Failed to re-online memory: %d",
__func__, rc);
}
/* Continue processing all remaining memory blocks. */
(*online_types)++;
return 0;
}
/*
* Try to offline and remove memory. Might take a long time to finish in case
* memory is still in use. Primarily useful for memory devices that logically
* unplugged all memory (so it's no longer in use) and want to offline + remove
* that memory.
*/
int offline_and_remove_memory(int nid, u64 start, u64 size)
{
const unsigned long mb_count = size / memory_block_size_bytes();
uint8_t *online_types, *tmp;
int rc;
if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
!IS_ALIGNED(size, memory_block_size_bytes()) || !size)
return -EINVAL;
/*
* We'll remember the old online type of each memory block, so we can
* try to revert whatever we did when offlining one memory block fails
* after offlining some others succeeded.
*/
online_types = kmalloc_array(mb_count, sizeof(*online_types),
GFP_KERNEL);
if (!online_types)
return -ENOMEM;
/*
* Initialize all states to MMOP_OFFLINE, so when we abort processing in
* try_offline_memory_block(), we'll skip all unprocessed blocks in
* try_reonline_memory_block().
*/
memset(online_types, MMOP_OFFLINE, mb_count);
lock_device_hotplug();
tmp = online_types;
rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
/*
* In case we succeeded to offline all memory, remove it.
* This cannot fail as it cannot get onlined in the meantime.
*/
if (!rc) {
rc = try_remove_memory(nid, start, size);
if (rc)
pr_err("%s: Failed to remove memory: %d", __func__, rc);
}
/*
* Rollback what we did. While memory onlining might theoretically fail
* (nacked by a notifier), it barely ever happens.
*/
if (rc) {
tmp = online_types;
walk_memory_blocks(start, size, &tmp,
try_reonline_memory_block);
}
unlock_device_hotplug();
kfree(online_types);
return rc;
}
EXPORT_SYMBOL_GPL(offline_and_remove_memory);
#endif /* CONFIG_MEMORY_HOTREMOVE */