summaryrefslogblamecommitdiff
path: root/mm/memory.c
blob: 1db40e935e5523591fe9ed092dd7e7b15f787c0c (plain) (tree)



























































                                                                         
                                  


















































                                                                            
                                                              
 




                                            

 


                                                                           


                           
                            
 
                     
                                    



                                               
                                         

                                                  






                                    
         





                                     

 


                                                                           


                           
                            
 
                     
                                    



                                               
                                                                     

                                                  






                                      
         





                                     


  

                                                           

                                           
                                            

                                                                   


                           


























                                                                       
 
















                                    
                                           



                                               
                                                                      
                                                  
 

                                                           


                                                                       
                                                           




                                                           

                                                                           
                                                                      












                                                                                

                           

 

                                                               























































































































































































































                                                                                          










                                                                          




















































                                                                            

                                                                           


























                                                                        
                                                                










































































                                                                                
                                                                          















                                                                               
                                                                        






                                                                     
                                         



                                                                      











                                                                     





























                                                                               












                                                                  
                                                                       








                                                                         
                                                                               








                                                                
                           




                                        
                                                                              

                                          
                   





                                                  

                                                                              
































                                                                
                                             





                                                


                                                                                
                                                         
                         







                                    
                    

                                                                   
                                                       

 




                                                                              
 
                                                           
 

                                        





























                                                                          



































                                                                            

                                                     
                                                      



                                                     























                                                                     
                                                 
                                          

                                                                
                                                                                

                                        


                                                                              
                                                                             


                                                                            
                                                                                       
                                                                


                                                                  








                                                                                      
                                                         

                                                                












                                                               


                                                                



                                                             





                                              
                                                     
                                                  
                      

                 

















































































































































                                                                              
                                                    



















































































                                                                                                         
                














                                                                               
                                                                 










                                                                                  
                                                             

























                                                                      
                             















                                                              
                                      




                                          
                   






























                                                                        
                                                                       




































                                                                                

                                                                        









                                                                
                                       





                                                                     
                                                      




































































                                                                               
                                                               
























































































































































































































                                                                                       
                                     





                                            


                                                                  






                                                           




                                                 




                                                 













                                                                      





                                          












































































































































































































                                                                               
                                     





























































                                                                                                      













                                                                      
                                                                        










                                                        

                                                                     

















































































































































































                                                                                    
                                      































                                                                      
/*
 *  linux/mm/memory.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 */

/*
 * demand-loading started 01.12.91 - seems it is high on the list of
 * things wanted, and it should be easy to implement. - Linus
 */

/*
 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
 * pages started 02.12.91, seems to work. - Linus.
 *
 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
 * would have taken more than the 6M I have free, but it worked well as
 * far as I could see.
 *
 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
 */

/*
 * Real VM (paging to/from disk) started 18.12.91. Much more work and
 * thought has to go into this. Oh, well..
 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
 *		Found it. Everything seems to work now.
 * 20.12.91  -  Ok, making the swap-device changeable like the root.
 */

/*
 * 05.04.94  -  Multi-page memory management added for v1.1.
 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
 *
 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
 *		(Gerhard.Wichert@pdb.siemens.de)
 *
 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
 */

#include <linux/kernel_stat.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/module.h>
#include <linux/init.h>

#include <asm/pgalloc.h>
#include <asm/uaccess.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/pgtable.h>

#include <linux/swapops.h>
#include <linux/elf.h>

#ifndef CONFIG_NEED_MULTIPLE_NODES
/* use the per-pgdat data instead for discontigmem - mbligh */
unsigned long max_mapnr;
struct page *mem_map;

EXPORT_SYMBOL(max_mapnr);
EXPORT_SYMBOL(mem_map);
#endif

unsigned long num_physpages;
/*
 * A number of key systems in x86 including ioremap() rely on the assumption
 * that high_memory defines the upper bound on direct map memory, then end
 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 * and ZONE_HIGHMEM.
 */
void * high_memory;
unsigned long vmalloc_earlyreserve;

EXPORT_SYMBOL(num_physpages);
EXPORT_SYMBOL(high_memory);
EXPORT_SYMBOL(vmalloc_earlyreserve);

/*
 * If a p?d_bad entry is found while walking page tables, report
 * the error, before resetting entry to p?d_none.  Usually (but
 * very seldom) called out from the p?d_none_or_clear_bad macros.
 */

void pgd_clear_bad(pgd_t *pgd)
{
	pgd_ERROR(*pgd);
	pgd_clear(pgd);
}

void pud_clear_bad(pud_t *pud)
{
	pud_ERROR(*pud);
	pud_clear(pud);
}

void pmd_clear_bad(pmd_t *pmd)
{
	pmd_ERROR(*pmd);
	pmd_clear(pmd);
}

/*
 * Note: this doesn't free the actual pages themselves. That
 * has been handled earlier when unmapping all the memory regions.
 */
static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
{
	struct page *page = pmd_page(*pmd);
	pmd_clear(pmd);
	pte_free_tlb(tlb, page);
	dec_page_state(nr_page_table_pages);
	tlb->mm->nr_ptes--;
}

static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
				unsigned long addr, unsigned long end,
				unsigned long floor, unsigned long ceiling)
{
	pmd_t *pmd;
	unsigned long next;
	unsigned long start;

	start = addr;
	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none_or_clear_bad(pmd))
			continue;
		free_pte_range(tlb, pmd);
	} while (pmd++, addr = next, addr != end);

	start &= PUD_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PUD_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;

	pmd = pmd_offset(pud, start);
	pud_clear(pud);
	pmd_free_tlb(tlb, pmd);
}

static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
				unsigned long addr, unsigned long end,
				unsigned long floor, unsigned long ceiling)
{
	pud_t *pud;
	unsigned long next;
	unsigned long start;

	start = addr;
	pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		if (pud_none_or_clear_bad(pud))
			continue;
		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
	} while (pud++, addr = next, addr != end);

	start &= PGDIR_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PGDIR_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;

	pud = pud_offset(pgd, start);
	pgd_clear(pgd);
	pud_free_tlb(tlb, pud);
}

/*
 * This function frees user-level page tables of a process.
 *
 * Must be called with pagetable lock held.
 */
void free_pgd_range(struct mmu_gather **tlb,
			unsigned long addr, unsigned long end,
			unsigned long floor, unsigned long ceiling)
{
	pgd_t *pgd;
	unsigned long next;
	unsigned long start;

	/*
	 * The next few lines have given us lots of grief...
	 *
	 * Why are we testing PMD* at this top level?  Because often
	 * there will be no work to do at all, and we'd prefer not to
	 * go all the way down to the bottom just to discover that.
	 *
	 * Why all these "- 1"s?  Because 0 represents both the bottom
	 * of the address space and the top of it (using -1 for the
	 * top wouldn't help much: the masks would do the wrong thing).
	 * The rule is that addr 0 and floor 0 refer to the bottom of
	 * the address space, but end 0 and ceiling 0 refer to the top
	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
	 * that end 0 case should be mythical).
	 *
	 * Wherever addr is brought up or ceiling brought down, we must
	 * be careful to reject "the opposite 0" before it confuses the
	 * subsequent tests.  But what about where end is brought down
	 * by PMD_SIZE below? no, end can't go down to 0 there.
	 *
	 * Whereas we round start (addr) and ceiling down, by different
	 * masks at different levels, in order to test whether a table
	 * now has no other vmas using it, so can be freed, we don't
	 * bother to round floor or end up - the tests don't need that.
	 */

	addr &= PMD_MASK;
	if (addr < floor) {
		addr += PMD_SIZE;
		if (!addr)
			return;
	}
	if (ceiling) {
		ceiling &= PMD_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		end -= PMD_SIZE;
	if (addr > end - 1)
		return;

	start = addr;
	pgd = pgd_offset((*tlb)->mm, addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
		free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
	} while (pgd++, addr = next, addr != end);

	if (!tlb_is_full_mm(*tlb))
		flush_tlb_pgtables((*tlb)->mm, start, end);
}

void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
		unsigned long floor, unsigned long ceiling)
{
	while (vma) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long addr = vma->vm_start;

		if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
				floor, next? next->vm_start: ceiling);
		} else {
			/*
			 * Optimization: gather nearby vmas into one call down
			 */
			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
			  && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
							HPAGE_SIZE)) {
				vma = next;
				next = vma->vm_next;
			}
			free_pgd_range(tlb, addr, vma->vm_end,
				floor, next? next->vm_start: ceiling);
		}
		vma = next;
	}
}

pte_t fastcall *pte_alloc_map(struct mm_struct *mm, pmd_t *pmd,
				unsigned long address)
{
	if (!pmd_present(*pmd)) {
		struct page *new;

		spin_unlock(&mm->page_table_lock);
		new = pte_alloc_one(mm, address);
		spin_lock(&mm->page_table_lock);
		if (!new)
			return NULL;
		/*
		 * Because we dropped the lock, we should re-check the
		 * entry, as somebody else could have populated it..
		 */
		if (pmd_present(*pmd)) {
			pte_free(new);
			goto out;
		}
		mm->nr_ptes++;
		inc_page_state(nr_page_table_pages);
		pmd_populate(mm, pmd, new);
	}
out:
	return pte_offset_map(pmd, address);
}

pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
{
	if (!pmd_present(*pmd)) {
		pte_t *new;

		spin_unlock(&mm->page_table_lock);
		new = pte_alloc_one_kernel(mm, address);
		spin_lock(&mm->page_table_lock);
		if (!new)
			return NULL;

		/*
		 * Because we dropped the lock, we should re-check the
		 * entry, as somebody else could have populated it..
		 */
		if (pmd_present(*pmd)) {
			pte_free_kernel(new);
			goto out;
		}
		pmd_populate_kernel(mm, pmd, new);
	}
out:
	return pte_offset_kernel(pmd, address);
}

/*
 * copy one vm_area from one task to the other. Assumes the page tables
 * already present in the new task to be cleared in the whole range
 * covered by this vma.
 *
 * dst->page_table_lock is held on entry and exit,
 * but may be dropped within p[mg]d_alloc() and pte_alloc_map().
 */

static inline void
copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags,
		unsigned long addr)
{
	pte_t pte = *src_pte;
	struct page *page;
	unsigned long pfn;

	/* pte contains position in swap or file, so copy. */
	if (unlikely(!pte_present(pte))) {
		if (!pte_file(pte)) {
			swap_duplicate(pte_to_swp_entry(pte));
			/* make sure dst_mm is on swapoff's mmlist. */
			if (unlikely(list_empty(&dst_mm->mmlist))) {
				spin_lock(&mmlist_lock);
				list_add(&dst_mm->mmlist, &src_mm->mmlist);
				spin_unlock(&mmlist_lock);
			}
		}
		set_pte_at(dst_mm, addr, dst_pte, pte);
		return;
	}

	pfn = pte_pfn(pte);
	/* the pte points outside of valid memory, the
	 * mapping is assumed to be good, meaningful
	 * and not mapped via rmap - duplicate the
	 * mapping as is.
	 */
	page = NULL;
	if (pfn_valid(pfn))
		page = pfn_to_page(pfn);

	if (!page || PageReserved(page)) {
		set_pte_at(dst_mm, addr, dst_pte, pte);
		return;
	}

	/*
	 * If it's a COW mapping, write protect it both
	 * in the parent and the child
	 */
	if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
		ptep_set_wrprotect(src_mm, addr, src_pte);
		pte = *src_pte;
	}

	/*
	 * If it's a shared mapping, mark it clean in
	 * the child
	 */
	if (vm_flags & VM_SHARED)
		pte = pte_mkclean(pte);
	pte = pte_mkold(pte);
	get_page(page);
	inc_mm_counter(dst_mm, rss);
	if (PageAnon(page))
		inc_mm_counter(dst_mm, anon_rss);
	set_pte_at(dst_mm, addr, dst_pte, pte);
	page_dup_rmap(page);
}

static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
		unsigned long addr, unsigned long end)
{
	pte_t *src_pte, *dst_pte;
	unsigned long vm_flags = vma->vm_flags;
	int progress;

again:
	dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr);
	if (!dst_pte)
		return -ENOMEM;
	src_pte = pte_offset_map_nested(src_pmd, addr);

	progress = 0;
	spin_lock(&src_mm->page_table_lock);
	do {
		/*
		 * We are holding two locks at this point - either of them
		 * could generate latencies in another task on another CPU.
		 */
		if (progress >= 32 && (need_resched() ||
		    need_lockbreak(&src_mm->page_table_lock) ||
		    need_lockbreak(&dst_mm->page_table_lock)))
			break;
		if (pte_none(*src_pte)) {
			progress++;
			continue;
		}
		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr);
		progress += 8;
	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
	spin_unlock(&src_mm->page_table_lock);

	pte_unmap_nested(src_pte - 1);
	pte_unmap(dst_pte - 1);
	cond_resched_lock(&dst_mm->page_table_lock);
	if (addr != end)
		goto again;
	return 0;
}

static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
		unsigned long addr, unsigned long end)
{
	pmd_t *src_pmd, *dst_pmd;
	unsigned long next;

	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
	if (!dst_pmd)
		return -ENOMEM;
	src_pmd = pmd_offset(src_pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none_or_clear_bad(src_pmd))
			continue;
		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
						vma, addr, next))
			return -ENOMEM;
	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
	return 0;
}

static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
		unsigned long addr, unsigned long end)
{
	pud_t *src_pud, *dst_pud;
	unsigned long next;

	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
	if (!dst_pud)
		return -ENOMEM;
	src_pud = pud_offset(src_pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		if (pud_none_or_clear_bad(src_pud))
			continue;
		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
						vma, addr, next))
			return -ENOMEM;
	} while (dst_pud++, src_pud++, addr = next, addr != end);
	return 0;
}

int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		struct vm_area_struct *vma)
{
	pgd_t *src_pgd, *dst_pgd;
	unsigned long next;
	unsigned long addr = vma->vm_start;
	unsigned long end = vma->vm_end;

	/*
	 * Don't copy ptes where a page fault will fill them correctly.
	 * Fork becomes much lighter when there are big shared or private
	 * readonly mappings. The tradeoff is that copy_page_range is more
	 * efficient than faulting.
	 */
	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) {
		if (!vma->anon_vma)
			return 0;
	}

	if (is_vm_hugetlb_page(vma))
		return copy_hugetlb_page_range(dst_mm, src_mm, vma);

	dst_pgd = pgd_offset(dst_mm, addr);
	src_pgd = pgd_offset(src_mm, addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(src_pgd))
			continue;
		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
						vma, addr, next))
			return -ENOMEM;
	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
	return 0;
}

static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct zap_details *details)
{
	pte_t *pte;

	pte = pte_offset_map(pmd, addr);
	do {
		pte_t ptent = *pte;
		if (pte_none(ptent))
			continue;
		if (pte_present(ptent)) {
			struct page *page = NULL;
			unsigned long pfn = pte_pfn(ptent);
			if (pfn_valid(pfn)) {
				page = pfn_to_page(pfn);
				if (PageReserved(page))
					page = NULL;
			}
			if (unlikely(details) && page) {
				/*
				 * unmap_shared_mapping_pages() wants to
				 * invalidate cache without truncating:
				 * unmap shared but keep private pages.
				 */
				if (details->check_mapping &&
				    details->check_mapping != page->mapping)
					continue;
				/*
				 * Each page->index must be checked when
				 * invalidating or truncating nonlinear.
				 */
				if (details->nonlinear_vma &&
				    (page->index < details->first_index ||
				     page->index > details->last_index))
					continue;
			}
			ptent = ptep_get_and_clear_full(tlb->mm, addr, pte,
							tlb->fullmm);
			tlb_remove_tlb_entry(tlb, pte, addr);
			if (unlikely(!page))
				continue;
			if (unlikely(details) && details->nonlinear_vma
			    && linear_page_index(details->nonlinear_vma,
						addr) != page->index)
				set_pte_at(tlb->mm, addr, pte,
					   pgoff_to_pte(page->index));
			if (pte_dirty(ptent))
				set_page_dirty(page);
			if (PageAnon(page))
				dec_mm_counter(tlb->mm, anon_rss);
			else if (pte_young(ptent))
				mark_page_accessed(page);
			tlb->freed++;
			page_remove_rmap(page);
			tlb_remove_page(tlb, page);
			continue;
		}
		/*
		 * If details->check_mapping, we leave swap entries;
		 * if details->nonlinear_vma, we leave file entries.
		 */
		if (unlikely(details))
			continue;
		if (!pte_file(ptent))
			free_swap_and_cache(pte_to_swp_entry(ptent));
		pte_clear_full(tlb->mm, addr, pte, tlb->fullmm);
	} while (pte++, addr += PAGE_SIZE, addr != end);
	pte_unmap(pte - 1);
}

static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud,
				unsigned long addr, unsigned long end,
				struct zap_details *details)
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none_or_clear_bad(pmd))
			continue;
		zap_pte_range(tlb, pmd, addr, next, details);
	} while (pmd++, addr = next, addr != end);
}

static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
				unsigned long addr, unsigned long end,
				struct zap_details *details)
{
	pud_t *pud;
	unsigned long next;

	pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		if (pud_none_or_clear_bad(pud))
			continue;
		zap_pmd_range(tlb, pud, addr, next, details);
	} while (pud++, addr = next, addr != end);
}

static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
				unsigned long addr, unsigned long end,
				struct zap_details *details)
{
	pgd_t *pgd;
	unsigned long next;

	if (details && !details->check_mapping && !details->nonlinear_vma)
		details = NULL;

	BUG_ON(addr >= end);
	tlb_start_vma(tlb, vma);
	pgd = pgd_offset(vma->vm_mm, addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
		zap_pud_range(tlb, pgd, addr, next, details);
	} while (pgd++, addr = next, addr != end);
	tlb_end_vma(tlb, vma);
}

#ifdef CONFIG_PREEMPT
# define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
#else
/* No preempt: go for improved straight-line efficiency */
# define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
#endif

/**
 * unmap_vmas - unmap a range of memory covered by a list of vma's
 * @tlbp: address of the caller's struct mmu_gather
 * @mm: the controlling mm_struct
 * @vma: the starting vma
 * @start_addr: virtual address at which to start unmapping
 * @end_addr: virtual address at which to end unmapping
 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
 * @details: details of nonlinear truncation or shared cache invalidation
 *
 * Returns the end address of the unmapping (restart addr if interrupted).
 *
 * Unmap all pages in the vma list.  Called under page_table_lock.
 *
 * We aim to not hold page_table_lock for too long (for scheduling latency
 * reasons).  So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
 * return the ending mmu_gather to the caller.
 *
 * Only addresses between `start' and `end' will be unmapped.
 *
 * The VMA list must be sorted in ascending virtual address order.
 *
 * unmap_vmas() assumes that the caller will flush the whole unmapped address
 * range after unmap_vmas() returns.  So the only responsibility here is to
 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
 * drops the lock and schedules.
 */
unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
		struct vm_area_struct *vma, unsigned long start_addr,
		unsigned long end_addr, unsigned long *nr_accounted,
		struct zap_details *details)
{
	unsigned long zap_bytes = ZAP_BLOCK_SIZE;
	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
	int tlb_start_valid = 0;
	unsigned long start = start_addr;
	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
	int fullmm = tlb_is_full_mm(*tlbp);

	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
		unsigned long end;

		start = max(vma->vm_start, start_addr);
		if (start >= vma->vm_end)
			continue;
		end = min(vma->vm_end, end_addr);
		if (end <= vma->vm_start)
			continue;

		if (vma->vm_flags & VM_ACCOUNT)
			*nr_accounted += (end - start) >> PAGE_SHIFT;

		while (start != end) {
			unsigned long block;

			if (!tlb_start_valid) {
				tlb_start = start;
				tlb_start_valid = 1;
			}

			if (is_vm_hugetlb_page(vma)) {
				block = end - start;
				unmap_hugepage_range(vma, start, end);
			} else {
				block = min(zap_bytes, end - start);
				unmap_page_range(*tlbp, vma, start,
						start + block, details);
			}

			start += block;
			zap_bytes -= block;
			if ((long)zap_bytes > 0)
				continue;

			tlb_finish_mmu(*tlbp, tlb_start, start);

			if (need_resched() ||
				need_lockbreak(&mm->page_table_lock) ||
				(i_mmap_lock && need_lockbreak(i_mmap_lock))) {
				if (i_mmap_lock) {
					/* must reset count of rss freed */
					*tlbp = tlb_gather_mmu(mm, fullmm);
					goto out;
				}
				spin_unlock(&mm->page_table_lock);
				cond_resched();
				spin_lock(&mm->page_table_lock);
			}

			*tlbp = tlb_gather_mmu(mm, fullmm);
			tlb_start_valid = 0;
			zap_bytes = ZAP_BLOCK_SIZE;
		}
	}
out:
	return start;	/* which is now the end (or restart) address */
}

/**
 * zap_page_range - remove user pages in a given range
 * @vma: vm_area_struct holding the applicable pages
 * @address: starting address of pages to zap
 * @size: number of bytes to zap
 * @details: details of nonlinear truncation or shared cache invalidation
 */
unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
		unsigned long size, struct zap_details *details)
{
	struct mm_struct *mm = vma->vm_mm;
	struct mmu_gather *tlb;
	unsigned long end = address + size;
	unsigned long nr_accounted = 0;

	if (is_vm_hugetlb_page(vma)) {
		zap_hugepage_range(vma, address, size);
		return end;
	}

	lru_add_drain();
	spin_lock(&mm->page_table_lock);
	tlb = tlb_gather_mmu(mm, 0);
	end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
	tlb_finish_mmu(tlb, address, end);
	spin_unlock(&mm->page_table_lock);
	return end;
}

/*
 * Do a quick page-table lookup for a single page.
 * mm->page_table_lock must be held.
 */
static struct page *__follow_page(struct mm_struct *mm, unsigned long address,
			int read, int write, int accessed)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep, pte;
	unsigned long pfn;
	struct page *page;

	page = follow_huge_addr(mm, address, write);
	if (! IS_ERR(page))
		return page;

	pgd = pgd_offset(mm, address);
	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		goto out;

	pud = pud_offset(pgd, address);
	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
		goto out;
	
	pmd = pmd_offset(pud, address);
	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
		goto out;
	if (pmd_huge(*pmd))
		return follow_huge_pmd(mm, address, pmd, write);

	ptep = pte_offset_map(pmd, address);
	if (!ptep)
		goto out;

	pte = *ptep;
	pte_unmap(ptep);
	if (pte_present(pte)) {
		if (write && !pte_write(pte))
			goto out;
		if (read && !pte_read(pte))
			goto out;
		pfn = pte_pfn(pte);
		if (pfn_valid(pfn)) {
			page = pfn_to_page(pfn);
			if (accessed) {
				if (write && !pte_dirty(pte) &&!PageDirty(page))
					set_page_dirty(page);
				mark_page_accessed(page);
			}
			return page;
		}
	}

out:
	return NULL;
}

inline struct page *
follow_page(struct mm_struct *mm, unsigned long address, int write)
{
	return __follow_page(mm, address, 0, write, 1);
}

/*
 * check_user_page_readable() can be called frm niterrupt context by oprofile,
 * so we need to avoid taking any non-irq-safe locks
 */
int check_user_page_readable(struct mm_struct *mm, unsigned long address)
{
	return __follow_page(mm, address, 1, 0, 0) != NULL;
}
EXPORT_SYMBOL(check_user_page_readable);

static inline int
untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
			 unsigned long address)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;

	/* Check if the vma is for an anonymous mapping. */
	if (vma->vm_ops && vma->vm_ops->nopage)
		return 0;

	/* Check if page directory entry exists. */
	pgd = pgd_offset(mm, address);
	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		return 1;

	pud = pud_offset(pgd, address);
	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
		return 1;

	/* Check if page middle directory entry exists. */
	pmd = pmd_offset(pud, address);
	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
		return 1;

	/* There is a pte slot for 'address' in 'mm'. */
	return 0;
}

int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
		unsigned long start, int len, int write, int force,
		struct page **pages, struct vm_area_struct **vmas)
{
	int i;
	unsigned int flags;

	/* 
	 * Require read or write permissions.
	 * If 'force' is set, we only require the "MAY" flags.
	 */
	flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
	flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
	i = 0;

	do {
		struct vm_area_struct *	vma;

		vma = find_extend_vma(mm, start);
		if (!vma && in_gate_area(tsk, start)) {
			unsigned long pg = start & PAGE_MASK;
			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
			pgd_t *pgd;
			pud_t *pud;
			pmd_t *pmd;
			pte_t *pte;
			if (write) /* user gate pages are read-only */
				return i ? : -EFAULT;
			if (pg > TASK_SIZE)
				pgd = pgd_offset_k(pg);
			else
				pgd = pgd_offset_gate(mm, pg);
			BUG_ON(pgd_none(*pgd));
			pud = pud_offset(pgd, pg);
			BUG_ON(pud_none(*pud));
			pmd = pmd_offset(pud, pg);
			if (pmd_none(*pmd))
				return i ? : -EFAULT;
			pte = pte_offset_map(pmd, pg);
			if (pte_none(*pte)) {
				pte_unmap(pte);
				return i ? : -EFAULT;
			}
			if (pages) {
				pages[i] = pte_page(*pte);
				get_page(pages[i]);
			}
			pte_unmap(pte);
			if (vmas)
				vmas[i] = gate_vma;
			i++;
			start += PAGE_SIZE;
			len--;
			continue;
		}

		if (!vma || (vma->vm_flags & VM_IO)
				|| !(flags & vma->vm_flags))
			return i ? : -EFAULT;

		if (is_vm_hugetlb_page(vma)) {
			i = follow_hugetlb_page(mm, vma, pages, vmas,
						&start, &len, i);
			continue;
		}
		spin_lock(&mm->page_table_lock);
		do {
			int write_access = write;
			struct page *page;

			cond_resched_lock(&mm->page_table_lock);
			while (!(page = follow_page(mm, start, write_access))) {
				int ret;

				/*
				 * Shortcut for anonymous pages. We don't want
				 * to force the creation of pages tables for
				 * insanely big anonymously mapped areas that
				 * nobody touched so far. This is important
				 * for doing a core dump for these mappings.
				 */
				if (!write && untouched_anonymous_page(mm,vma,start)) {
					page = ZERO_PAGE(start);
					break;
				}
				spin_unlock(&mm->page_table_lock);
				ret = __handle_mm_fault(mm, vma, start, write_access);

				/*
				 * The VM_FAULT_WRITE bit tells us that do_wp_page has
				 * broken COW when necessary, even if maybe_mkwrite
				 * decided not to set pte_write. We can thus safely do
				 * subsequent page lookups as if they were reads.
				 */
				if (ret & VM_FAULT_WRITE)
					write_access = 0;
				
				switch (ret & ~VM_FAULT_WRITE) {
				case VM_FAULT_MINOR:
					tsk->min_flt++;
					break;
				case VM_FAULT_MAJOR:
					tsk->maj_flt++;
					break;
				case VM_FAULT_SIGBUS:
					return i ? i : -EFAULT;
				case VM_FAULT_OOM:
					return i ? i : -ENOMEM;
				default:
					BUG();
				}
				spin_lock(&mm->page_table_lock);
			}
			if (pages) {
				pages[i] = page;
				flush_dcache_page(page);
				if (!PageReserved(page))
					page_cache_get(page);
			}
			if (vmas)
				vmas[i] = vma;
			i++;
			start += PAGE_SIZE;
			len--;
		} while (len && start < vma->vm_end);
		spin_unlock(&mm->page_table_lock);
	} while (len);
	return i;
}
EXPORT_SYMBOL(get_user_pages);

static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
			unsigned long addr, unsigned long end, pgprot_t prot)
{
	pte_t *pte;

	pte = pte_alloc_map(mm, pmd, addr);
	if (!pte)
		return -ENOMEM;
	do {
		pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot));
		BUG_ON(!pte_none(*pte));
		set_pte_at(mm, addr, pte, zero_pte);
	} while (pte++, addr += PAGE_SIZE, addr != end);
	pte_unmap(pte - 1);
	return 0;
}

static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
			unsigned long addr, unsigned long end, pgprot_t prot)
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_alloc(mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
		if (zeromap_pte_range(mm, pmd, addr, next, prot))
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
			unsigned long addr, unsigned long end, pgprot_t prot)
{
	pud_t *pud;
	unsigned long next;

	pud = pud_alloc(mm, pgd, addr);
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
		if (zeromap_pmd_range(mm, pud, addr, next, prot))
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

int zeromap_page_range(struct vm_area_struct *vma,
			unsigned long addr, unsigned long size, pgprot_t prot)
{
	pgd_t *pgd;
	unsigned long next;
	unsigned long end = addr + size;
	struct mm_struct *mm = vma->vm_mm;
	int err;

	BUG_ON(addr >= end);
	pgd = pgd_offset(mm, addr);
	flush_cache_range(vma, addr, end);
	spin_lock(&mm->page_table_lock);
	do {
		next = pgd_addr_end(addr, end);
		err = zeromap_pud_range(mm, pgd, addr, next, prot);
		if (err)
			break;
	} while (pgd++, addr = next, addr != end);
	spin_unlock(&mm->page_table_lock);
	return err;
}

/*
 * maps a range of physical memory into the requested pages. the old
 * mappings are removed. any references to nonexistent pages results
 * in null mappings (currently treated as "copy-on-access")
 */
static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pte_t *pte;

	pte = pte_alloc_map(mm, pmd, addr);
	if (!pte)
		return -ENOMEM;
	do {
		BUG_ON(!pte_none(*pte));
		if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn)))
			set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
	pte_unmap(pte - 1);
	return 0;
}

static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pmd_t *pmd;
	unsigned long next;

	pfn -= addr >> PAGE_SHIFT;
	pmd = pmd_alloc(mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
		if (remap_pte_range(mm, pmd, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot))
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pud_t *pud;
	unsigned long next;

	pfn -= addr >> PAGE_SHIFT;
	pud = pud_alloc(mm, pgd, addr);
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
		if (remap_pmd_range(mm, pud, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot))
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

/*  Note: this is only safe if the mm semaphore is held when called. */
int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
		    unsigned long pfn, unsigned long size, pgprot_t prot)
{
	pgd_t *pgd;
	unsigned long next;
	unsigned long end = addr + PAGE_ALIGN(size);
	struct mm_struct *mm = vma->vm_mm;
	int err;

	/*
	 * Physically remapped pages are special. Tell the
	 * rest of the world about it:
	 *   VM_IO tells people not to look at these pages
	 *	(accesses can have side effects).
	 *   VM_RESERVED tells swapout not to try to touch
	 *	this region.
	 */
	vma->vm_flags |= VM_IO | VM_RESERVED;

	BUG_ON(addr >= end);
	pfn -= addr >> PAGE_SHIFT;
	pgd = pgd_offset(mm, addr);
	flush_cache_range(vma, addr, end);
	spin_lock(&mm->page_table_lock);
	do {
		next = pgd_addr_end(addr, end);
		err = remap_pud_range(mm, pgd, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot);
		if (err)
			break;
	} while (pgd++, addr = next, addr != end);
	spin_unlock(&mm->page_table_lock);
	return err;
}
EXPORT_SYMBOL(remap_pfn_range);

/*
 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
 * servicing faults for write access.  In the normal case, do always want
 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
 * that do not have writing enabled, when used by access_process_vm.
 */
static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
{
	if (likely(vma->vm_flags & VM_WRITE))
		pte = pte_mkwrite(pte);
	return pte;
}

/*
 * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock
 */
static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address, 
		pte_t *page_table)
{
	pte_t entry;

	entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)),
			      vma);
	ptep_establish(vma, address, page_table, entry);
	update_mmu_cache(vma, address, entry);
	lazy_mmu_prot_update(entry);
}

/*
 * This routine handles present pages, when users try to write
 * to a shared page. It is done by copying the page to a new address
 * and decrementing the shared-page counter for the old page.
 *
 * Goto-purists beware: the only reason for goto's here is that it results
 * in better assembly code.. The "default" path will see no jumps at all.
 *
 * Note that this routine assumes that the protection checks have been
 * done by the caller (the low-level page fault routine in most cases).
 * Thus we can safely just mark it writable once we've done any necessary
 * COW.
 *
 * We also mark the page dirty at this point even though the page will
 * change only once the write actually happens. This avoids a few races,
 * and potentially makes it more efficient.
 *
 * We hold the mm semaphore and the page_table_lock on entry and exit
 * with the page_table_lock released.
 */
static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma,
	unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte)
{
	struct page *old_page, *new_page;
	unsigned long pfn = pte_pfn(pte);
	pte_t entry;
	int ret;

	if (unlikely(!pfn_valid(pfn))) {
		/*
		 * This should really halt the system so it can be debugged or
		 * at least the kernel stops what it's doing before it corrupts
		 * data, but for the moment just pretend this is OOM.
		 */
		pte_unmap(page_table);
		printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n",
				address);
		spin_unlock(&mm->page_table_lock);
		return VM_FAULT_OOM;
	}
	old_page = pfn_to_page(pfn);

	if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
		int reuse = can_share_swap_page(old_page);
		unlock_page(old_page);
		if (reuse) {
			flush_cache_page(vma, address, pfn);
			entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)),
					      vma);
			ptep_set_access_flags(vma, address, page_table, entry, 1);
			update_mmu_cache(vma, address, entry);
			lazy_mmu_prot_update(entry);
			pte_unmap(page_table);
			spin_unlock(&mm->page_table_lock);
			return VM_FAULT_MINOR|VM_FAULT_WRITE;
		}
	}
	pte_unmap(page_table);

	/*
	 * Ok, we need to copy. Oh, well..
	 */
	if (!PageReserved(old_page))
		page_cache_get(old_page);
	spin_unlock(&mm->page_table_lock);

	if (unlikely(anon_vma_prepare(vma)))
		goto no_new_page;
	if (old_page == ZERO_PAGE(address)) {
		new_page = alloc_zeroed_user_highpage(vma, address);
		if (!new_page)
			goto no_new_page;
	} else {
		new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
		if (!new_page)
			goto no_new_page;
		copy_user_highpage(new_page, old_page, address);
	}
	/*
	 * Re-check the pte - we dropped the lock
	 */
	ret = VM_FAULT_MINOR;
	spin_lock(&mm->page_table_lock);
	page_table = pte_offset_map(pmd, address);
	if (likely(pte_same(*page_table, pte))) {
		if (PageAnon(old_page))
			dec_mm_counter(mm, anon_rss);
		if (PageReserved(old_page))
			inc_mm_counter(mm, rss);
		else
			page_remove_rmap(old_page);
		flush_cache_page(vma, address, pfn);
		break_cow(vma, new_page, address, page_table);
		lru_cache_add_active(new_page);
		page_add_anon_rmap(new_page, vma, address);

		/* Free the old page.. */
		new_page = old_page;
		ret |= VM_FAULT_WRITE;
	}
	pte_unmap(page_table);
	page_cache_release(new_page);
	page_cache_release(old_page);
	spin_unlock(&mm->page_table_lock);
	return ret;

no_new_page:
	page_cache_release(old_page);
	return VM_FAULT_OOM;
}

/*
 * Helper functions for unmap_mapping_range().
 *
 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
 *
 * We have to restart searching the prio_tree whenever we drop the lock,
 * since the iterator is only valid while the lock is held, and anyway
 * a later vma might be split and reinserted earlier while lock dropped.
 *
 * The list of nonlinear vmas could be handled more efficiently, using
 * a placeholder, but handle it in the same way until a need is shown.
 * It is important to search the prio_tree before nonlinear list: a vma
 * may become nonlinear and be shifted from prio_tree to nonlinear list
 * while the lock is dropped; but never shifted from list to prio_tree.
 *
 * In order to make forward progress despite restarting the search,
 * vm_truncate_count is used to mark a vma as now dealt with, so we can
 * quickly skip it next time around.  Since the prio_tree search only
 * shows us those vmas affected by unmapping the range in question, we
 * can't efficiently keep all vmas in step with mapping->truncate_count:
 * so instead reset them all whenever it wraps back to 0 (then go to 1).
 * mapping->truncate_count and vma->vm_truncate_count are protected by
 * i_mmap_lock.
 *
 * In order to make forward progress despite repeatedly restarting some
 * large vma, note the restart_addr from unmap_vmas when it breaks out:
 * and restart from that address when we reach that vma again.  It might
 * have been split or merged, shrunk or extended, but never shifted: so
 * restart_addr remains valid so long as it remains in the vma's range.
 * unmap_mapping_range forces truncate_count to leap over page-aligned
 * values so we can save vma's restart_addr in its truncate_count field.
 */
#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))

static void reset_vma_truncate_counts(struct address_space *mapping)
{
	struct vm_area_struct *vma;
	struct prio_tree_iter iter;

	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
		vma->vm_truncate_count = 0;
	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
		vma->vm_truncate_count = 0;
}

static int unmap_mapping_range_vma(struct vm_area_struct *vma,
		unsigned long start_addr, unsigned long end_addr,
		struct zap_details *details)
{
	unsigned long restart_addr;
	int need_break;

again:
	restart_addr = vma->vm_truncate_count;
	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
		start_addr = restart_addr;
		if (start_addr >= end_addr) {
			/* Top of vma has been split off since last time */
			vma->vm_truncate_count = details->truncate_count;
			return 0;
		}
	}

	restart_addr = zap_page_range(vma, start_addr,
					end_addr - start_addr, details);

	/*
	 * We cannot rely on the break test in unmap_vmas:
	 * on the one hand, we don't want to restart our loop
	 * just because that broke out for the page_table_lock;
	 * on the other hand, it does no test when vma is small.
	 */
	need_break = need_resched() ||
			need_lockbreak(details->i_mmap_lock);

	if (restart_addr >= end_addr) {
		/* We have now completed this vma: mark it so */
		vma->vm_truncate_count = details->truncate_count;
		if (!need_break)
			return 0;
	} else {
		/* Note restart_addr in vma's truncate_count field */
		vma->vm_truncate_count = restart_addr;
		if (!need_break)
			goto again;
	}

	spin_unlock(details->i_mmap_lock);
	cond_resched();
	spin_lock(details->i_mmap_lock);
	return -EINTR;
}

static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
					    struct zap_details *details)
{
	struct vm_area_struct *vma;
	struct prio_tree_iter iter;
	pgoff_t vba, vea, zba, zea;

restart:
	vma_prio_tree_foreach(vma, &iter, root,
			details->first_index, details->last_index) {
		/* Skip quickly over those we have already dealt with */
		if (vma->vm_truncate_count == details->truncate_count)
			continue;

		vba = vma->vm_pgoff;
		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
		zba = details->first_index;
		if (zba < vba)
			zba = vba;
		zea = details->last_index;
		if (zea > vea)
			zea = vea;

		if (unmap_mapping_range_vma(vma,
			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
				details) < 0)
			goto restart;
	}
}

static inline void unmap_mapping_range_list(struct list_head *head,
					    struct zap_details *details)
{
	struct vm_area_struct *vma;

	/*
	 * In nonlinear VMAs there is no correspondence between virtual address
	 * offset and file offset.  So we must perform an exhaustive search
	 * across *all* the pages in each nonlinear VMA, not just the pages
	 * whose virtual address lies outside the file truncation point.
	 */
restart:
	list_for_each_entry(vma, head, shared.vm_set.list) {
		/* Skip quickly over those we have already dealt with */
		if (vma->vm_truncate_count == details->truncate_count)
			continue;
		details->nonlinear_vma = vma;
		if (unmap_mapping_range_vma(vma, vma->vm_start,
					vma->vm_end, details) < 0)
			goto restart;
	}
}

/**
 * unmap_mapping_range - unmap the portion of all mmaps
 * in the specified address_space corresponding to the specified
 * page range in the underlying file.
 * @mapping: the address space containing mmaps to be unmapped.
 * @holebegin: byte in first page to unmap, relative to the start of
 * the underlying file.  This will be rounded down to a PAGE_SIZE
 * boundary.  Note that this is different from vmtruncate(), which
 * must keep the partial page.  In contrast, we must get rid of
 * partial pages.
 * @holelen: size of prospective hole in bytes.  This will be rounded
 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
 * end of the file.
 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
 * but 0 when invalidating pagecache, don't throw away private data.
 */
void unmap_mapping_range(struct address_space *mapping,
		loff_t const holebegin, loff_t const holelen, int even_cows)
{
	struct zap_details details;
	pgoff_t hba = holebegin >> PAGE_SHIFT;
	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;

	/* Check for overflow. */
	if (sizeof(holelen) > sizeof(hlen)) {
		long long holeend =
			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
		if (holeend & ~(long long)ULONG_MAX)
			hlen = ULONG_MAX - hba + 1;
	}

	details.check_mapping = even_cows? NULL: mapping;
	details.nonlinear_vma = NULL;
	details.first_index = hba;
	details.last_index = hba + hlen - 1;
	if (details.last_index < details.first_index)
		details.last_index = ULONG_MAX;
	details.i_mmap_lock = &mapping->i_mmap_lock;

	spin_lock(&mapping->i_mmap_lock);

	/* serialize i_size write against truncate_count write */
	smp_wmb();
	/* Protect against page faults, and endless unmapping loops */
	mapping->truncate_count++;
	/*
	 * For archs where spin_lock has inclusive semantics like ia64
	 * this smp_mb() will prevent to read pagetable contents
	 * before the truncate_count increment is visible to
	 * other cpus.
	 */
	smp_mb();
	if (unlikely(is_restart_addr(mapping->truncate_count))) {
		if (mapping->truncate_count == 0)
			reset_vma_truncate_counts(mapping);
		mapping->truncate_count++;
	}
	details.truncate_count = mapping->truncate_count;

	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
		unmap_mapping_range_tree(&mapping->i_mmap, &details);
	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
	spin_unlock(&mapping->i_mmap_lock);
}
EXPORT_SYMBOL(unmap_mapping_range);

/*
 * Handle all mappings that got truncated by a "truncate()"
 * system call.
 *
 * NOTE! We have to be ready to update the memory sharing
 * between the file and the memory map for a potential last
 * incomplete page.  Ugly, but necessary.
 */
int vmtruncate(struct inode * inode, loff_t offset)
{
	struct address_space *mapping = inode->i_mapping;
	unsigned long limit;

	if (inode->i_size < offset)
		goto do_expand;
	/*
	 * truncation of in-use swapfiles is disallowed - it would cause
	 * subsequent swapout to scribble on the now-freed blocks.
	 */
	if (IS_SWAPFILE(inode))
		goto out_busy;
	i_size_write(inode, offset);
	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
	truncate_inode_pages(mapping, offset);
	goto out_truncate;

do_expand:
	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
	if (limit != RLIM_INFINITY && offset > limit)
		goto out_sig;
	if (offset > inode->i_sb->s_maxbytes)
		goto out_big;
	i_size_write(inode, offset);

out_truncate:
	if (inode->i_op && inode->i_op->truncate)
		inode->i_op->truncate(inode);
	return 0;
out_sig:
	send_sig(SIGXFSZ, current, 0);
out_big:
	return -EFBIG;
out_busy:
	return -ETXTBSY;
}

EXPORT_SYMBOL(vmtruncate);

/* 
 * Primitive swap readahead code. We simply read an aligned block of
 * (1 << page_cluster) entries in the swap area. This method is chosen
 * because it doesn't cost us any seek time.  We also make sure to queue
 * the 'original' request together with the readahead ones...  
 *
 * This has been extended to use the NUMA policies from the mm triggering
 * the readahead.
 *
 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
 */
void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
{
#ifdef CONFIG_NUMA
	struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
#endif
	int i, num;
	struct page *new_page;
	unsigned long offset;

	/*
	 * Get the number of handles we should do readahead io to.
	 */
	num = valid_swaphandles(entry, &offset);
	for (i = 0; i < num; offset++, i++) {
		/* Ok, do the async read-ahead now */
		new_page = read_swap_cache_async(swp_entry(swp_type(entry),
							   offset), vma, addr);
		if (!new_page)
			break;
		page_cache_release(new_page);
#ifdef CONFIG_NUMA
		/*
		 * Find the next applicable VMA for the NUMA policy.
		 */
		addr += PAGE_SIZE;
		if (addr == 0)
			vma = NULL;
		if (vma) {
			if (addr >= vma->vm_end) {
				vma = next_vma;
				next_vma = vma ? vma->vm_next : NULL;
			}
			if (vma && addr < vma->vm_start)
				vma = NULL;
		} else {
			if (next_vma && addr >= next_vma->vm_start) {
				vma = next_vma;
				next_vma = vma->vm_next;
			}
		}
#endif
	}
	lru_add_drain();	/* Push any new pages onto the LRU now */
}

/*
 * We hold the mm semaphore and the page_table_lock on entry and
 * should release the pagetable lock on exit..
 */
static int do_swap_page(struct mm_struct * mm,
	struct vm_area_struct * vma, unsigned long address,
	pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access)
{
	struct page *page;
	swp_entry_t entry = pte_to_swp_entry(orig_pte);
	pte_t pte;
	int ret = VM_FAULT_MINOR;

	pte_unmap(page_table);
	spin_unlock(&mm->page_table_lock);
	page = lookup_swap_cache(entry);
	if (!page) {
 		swapin_readahead(entry, address, vma);
 		page = read_swap_cache_async(entry, vma, address);
		if (!page) {
			/*
			 * Back out if somebody else faulted in this pte while
			 * we released the page table lock.
			 */
			spin_lock(&mm->page_table_lock);
			page_table = pte_offset_map(pmd, address);
			if (likely(pte_same(*page_table, orig_pte)))
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_MINOR;
			pte_unmap(page_table);
			spin_unlock(&mm->page_table_lock);
			goto out;
		}

		/* Had to read the page from swap area: Major fault */
		ret = VM_FAULT_MAJOR;
		inc_page_state(pgmajfault);
		grab_swap_token();
	}

	mark_page_accessed(page);
	lock_page(page);

	/*
	 * Back out if somebody else faulted in this pte while we
	 * released the page table lock.
	 */
	spin_lock(&mm->page_table_lock);
	page_table = pte_offset_map(pmd, address);
	if (unlikely(!pte_same(*page_table, orig_pte))) {
		ret = VM_FAULT_MINOR;
		goto out_nomap;
	}

	if (unlikely(!PageUptodate(page))) {
		ret = VM_FAULT_SIGBUS;
		goto out_nomap;
	}

	/* The page isn't present yet, go ahead with the fault. */

	inc_mm_counter(mm, rss);
	pte = mk_pte(page, vma->vm_page_prot);
	if (write_access && can_share_swap_page(page)) {
		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
		write_access = 0;
	}

	flush_icache_page(vma, page);
	set_pte_at(mm, address, page_table, pte);
	page_add_anon_rmap(page, vma, address);

	swap_free(entry);
	if (vm_swap_full())
		remove_exclusive_swap_page(page);
	unlock_page(page);

	if (write_access) {
		if (do_wp_page(mm, vma, address,
				page_table, pmd, pte) == VM_FAULT_OOM)
			ret = VM_FAULT_OOM;
		goto out;
	}

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(vma, address, pte);
	lazy_mmu_prot_update(pte);
	pte_unmap(page_table);
	spin_unlock(&mm->page_table_lock);
out:
	return ret;
out_nomap:
	pte_unmap(page_table);
	spin_unlock(&mm->page_table_lock);
	unlock_page(page);
	page_cache_release(page);
	goto out;
}

/*
 * We are called with the MM semaphore and page_table_lock
 * spinlock held to protect against concurrent faults in
 * multithreaded programs. 
 */
static int
do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
		pte_t *page_table, pmd_t *pmd, int write_access,
		unsigned long addr)
{
	pte_t entry;
	struct page * page = ZERO_PAGE(addr);

	/* Read-only mapping of ZERO_PAGE. */
	entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));

	/* ..except if it's a write access */
	if (write_access) {
		/* Allocate our own private page. */
		pte_unmap(page_table);
		spin_unlock(&mm->page_table_lock);

		if (unlikely(anon_vma_prepare(vma)))
			goto no_mem;
		page = alloc_zeroed_user_highpage(vma, addr);
		if (!page)
			goto no_mem;

		spin_lock(&mm->page_table_lock);
		page_table = pte_offset_map(pmd, addr);

		if (!pte_none(*page_table)) {
			pte_unmap(page_table);
			page_cache_release(page);
			spin_unlock(&mm->page_table_lock);
			goto out;
		}
		inc_mm_counter(mm, rss);
		entry = maybe_mkwrite(pte_mkdirty(mk_pte(page,
							 vma->vm_page_prot)),
				      vma);
		lru_cache_add_active(page);
		SetPageReferenced(page);
		page_add_anon_rmap(page, vma, addr);
	}

	set_pte_at(mm, addr, page_table, entry);
	pte_unmap(page_table);

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(vma, addr, entry);
	lazy_mmu_prot_update(entry);
	spin_unlock(&mm->page_table_lock);
out:
	return VM_FAULT_MINOR;
no_mem:
	return VM_FAULT_OOM;
}

/*
 * do_no_page() tries to create a new page mapping. It aggressively
 * tries to share with existing pages, but makes a separate copy if
 * the "write_access" parameter is true in order to avoid the next
 * page fault.
 *
 * As this is called only for pages that do not currently exist, we
 * do not need to flush old virtual caches or the TLB.
 *
 * This is called with the MM semaphore held and the page table
 * spinlock held. Exit with the spinlock released.
 */
static int
do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
	unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd)
{
	struct page * new_page;
	struct address_space *mapping = NULL;
	pte_t entry;
	unsigned int sequence = 0;
	int ret = VM_FAULT_MINOR;
	int anon = 0;

	if (!vma->vm_ops || !vma->vm_ops->nopage)
		return do_anonymous_page(mm, vma, page_table,
					pmd, write_access, address);
	pte_unmap(page_table);
	spin_unlock(&mm->page_table_lock);

	if (vma->vm_file) {
		mapping = vma->vm_file->f_mapping;
		sequence = mapping->truncate_count;
		smp_rmb(); /* serializes i_size against truncate_count */
	}
retry:
	cond_resched();
	new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
	/*
	 * No smp_rmb is needed here as long as there's a full
	 * spin_lock/unlock sequence inside the ->nopage callback
	 * (for the pagecache lookup) that acts as an implicit
	 * smp_mb() and prevents the i_size read to happen
	 * after the next truncate_count read.
	 */

	/* no page was available -- either SIGBUS or OOM */
	if (new_page == NOPAGE_SIGBUS)
		return VM_FAULT_SIGBUS;
	if (new_page == NOPAGE_OOM)
		return VM_FAULT_OOM;

	/*
	 * Should we do an early C-O-W break?
	 */
	if (write_access && !(vma->vm_flags & VM_SHARED)) {
		struct page *page;

		if (unlikely(anon_vma_prepare(vma)))
			goto oom;
		page = alloc_page_vma(GFP_HIGHUSER, vma, address);
		if (!page)
			goto oom;
		copy_user_highpage(page, new_page, address);
		page_cache_release(new_page);
		new_page = page;
		anon = 1;
	}

	spin_lock(&mm->page_table_lock);
	/*
	 * For a file-backed vma, someone could have truncated or otherwise
	 * invalidated this page.  If unmap_mapping_range got called,
	 * retry getting the page.
	 */
	if (mapping && unlikely(sequence != mapping->truncate_count)) {
		sequence = mapping->truncate_count;
		spin_unlock(&mm->page_table_lock);
		page_cache_release(new_page);
		goto retry;
	}
	page_table = pte_offset_map(pmd, address);

	/*
	 * This silly early PAGE_DIRTY setting removes a race
	 * due to the bad i386 page protection. But it's valid
	 * for other architectures too.
	 *
	 * Note that if write_access is true, we either now have
	 * an exclusive copy of the page, or this is a shared mapping,
	 * so we can make it writable and dirty to avoid having to
	 * handle that later.
	 */
	/* Only go through if we didn't race with anybody else... */
	if (pte_none(*page_table)) {
		if (!PageReserved(new_page))
			inc_mm_counter(mm, rss);

		flush_icache_page(vma, new_page);
		entry = mk_pte(new_page, vma->vm_page_prot);
		if (write_access)
			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
		set_pte_at(mm, address, page_table, entry);
		if (anon) {
			lru_cache_add_active(new_page);
			page_add_anon_rmap(new_page, vma, address);
		} else
			page_add_file_rmap(new_page);
		pte_unmap(page_table);
	} else {
		/* One of our sibling threads was faster, back out. */
		pte_unmap(page_table);
		page_cache_release(new_page);
		spin_unlock(&mm->page_table_lock);
		goto out;
	}

	/* no need to invalidate: a not-present page shouldn't be cached */
	update_mmu_cache(vma, address, entry);
	lazy_mmu_prot_update(entry);
	spin_unlock(&mm->page_table_lock);
out:
	return ret;
oom:
	page_cache_release(new_page);
	ret = VM_FAULT_OOM;
	goto out;
}

/*
 * Fault of a previously existing named mapping. Repopulate the pte
 * from the encoded file_pte if possible. This enables swappable
 * nonlinear vmas.
 */
static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma,
	unsigned long address, int write_access, pte_t *pte, pmd_t *pmd)
{
	unsigned long pgoff;
	int err;

	BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage);
	/*
	 * Fall back to the linear mapping if the fs does not support
	 * ->populate:
	 */
	if (!vma->vm_ops->populate ||
			(write_access && !(vma->vm_flags & VM_SHARED))) {
		pte_clear(mm, address, pte);
		return do_no_page(mm, vma, address, write_access, pte, pmd);
	}

	pgoff = pte_to_pgoff(*pte);

	pte_unmap(pte);
	spin_unlock(&mm->page_table_lock);

	err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0);
	if (err == -ENOMEM)
		return VM_FAULT_OOM;
	if (err)
		return VM_FAULT_SIGBUS;
	return VM_FAULT_MAJOR;
}

/*
 * These routines also need to handle stuff like marking pages dirty
 * and/or accessed for architectures that don't do it in hardware (most
 * RISC architectures).  The early dirtying is also good on the i386.
 *
 * There is also a hook called "update_mmu_cache()" that architectures
 * with external mmu caches can use to update those (ie the Sparc or
 * PowerPC hashed page tables that act as extended TLBs).
 *
 * Note the "page_table_lock". It is to protect against kswapd removing
 * pages from under us. Note that kswapd only ever _removes_ pages, never
 * adds them. As such, once we have noticed that the page is not present,
 * we can drop the lock early.
 *
 * The adding of pages is protected by the MM semaphore (which we hold),
 * so we don't need to worry about a page being suddenly been added into
 * our VM.
 *
 * We enter with the pagetable spinlock held, we are supposed to
 * release it when done.
 */
static inline int handle_pte_fault(struct mm_struct *mm,
	struct vm_area_struct * vma, unsigned long address,
	int write_access, pte_t *pte, pmd_t *pmd)
{
	pte_t entry;

	entry = *pte;
	if (!pte_present(entry)) {
		/*
		 * If it truly wasn't present, we know that kswapd
		 * and the PTE updates will not touch it later. So
		 * drop the lock.
		 */
		if (pte_none(entry))
			return do_no_page(mm, vma, address, write_access, pte, pmd);
		if (pte_file(entry))
			return do_file_page(mm, vma, address, write_access, pte, pmd);
		return do_swap_page(mm, vma, address, pte, pmd, entry, write_access);
	}

	if (write_access) {
		if (!pte_write(entry))
			return do_wp_page(mm, vma, address, pte, pmd, entry);
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
	ptep_set_access_flags(vma, address, pte, entry, write_access);
	update_mmu_cache(vma, address, entry);
	lazy_mmu_prot_update(entry);
	pte_unmap(pte);
	spin_unlock(&mm->page_table_lock);
	return VM_FAULT_MINOR;
}

/*
 * By the time we get here, we already hold the mm semaphore
 */
int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
		unsigned long address, int write_access)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	__set_current_state(TASK_RUNNING);

	inc_page_state(pgfault);

	if (unlikely(is_vm_hugetlb_page(vma)))
		return hugetlb_fault(mm, vma, address, write_access);

	/*
	 * We need the page table lock to synchronize with kswapd
	 * and the SMP-safe atomic PTE updates.
	 */
	pgd = pgd_offset(mm, address);
	spin_lock(&mm->page_table_lock);

	pud = pud_alloc(mm, pgd, address);
	if (!pud)
		goto oom;

	pmd = pmd_alloc(mm, pud, address);
	if (!pmd)
		goto oom;

	pte = pte_alloc_map(mm, pmd, address);
	if (!pte)
		goto oom;
	
	return handle_pte_fault(mm, vma, address, write_access, pte, pmd);

 oom:
	spin_unlock(&mm->page_table_lock);
	return VM_FAULT_OOM;
}

#ifndef __PAGETABLE_PUD_FOLDED
/*
 * Allocate page upper directory.
 *
 * We've already handled the fast-path in-line, and we own the
 * page table lock.
 */
pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
{
	pud_t *new;

	spin_unlock(&mm->page_table_lock);
	new = pud_alloc_one(mm, address);
	spin_lock(&mm->page_table_lock);
	if (!new)
		return NULL;

	/*
	 * Because we dropped the lock, we should re-check the
	 * entry, as somebody else could have populated it..
	 */
	if (pgd_present(*pgd)) {
		pud_free(new);
		goto out;
	}
	pgd_populate(mm, pgd, new);
 out:
	return pud_offset(pgd, address);
}
#endif /* __PAGETABLE_PUD_FOLDED */

#ifndef __PAGETABLE_PMD_FOLDED
/*
 * Allocate page middle directory.
 *
 * We've already handled the fast-path in-line, and we own the
 * page table lock.
 */
pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
{
	pmd_t *new;

	spin_unlock(&mm->page_table_lock);
	new = pmd_alloc_one(mm, address);
	spin_lock(&mm->page_table_lock);
	if (!new)
		return NULL;

	/*
	 * Because we dropped the lock, we should re-check the
	 * entry, as somebody else could have populated it..
	 */
#ifndef __ARCH_HAS_4LEVEL_HACK
	if (pud_present(*pud)) {
		pmd_free(new);
		goto out;
	}
	pud_populate(mm, pud, new);
#else
	if (pgd_present(*pud)) {
		pmd_free(new);
		goto out;
	}
	pgd_populate(mm, pud, new);
#endif /* __ARCH_HAS_4LEVEL_HACK */

 out:
	return pmd_offset(pud, address);
}
#endif /* __PAGETABLE_PMD_FOLDED */

int make_pages_present(unsigned long addr, unsigned long end)
{
	int ret, len, write;
	struct vm_area_struct * vma;

	vma = find_vma(current->mm, addr);
	if (!vma)
		return -1;
	write = (vma->vm_flags & VM_WRITE) != 0;
	if (addr >= end)
		BUG();
	if (end > vma->vm_end)
		BUG();
	len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
	ret = get_user_pages(current, current->mm, addr,
			len, write, 0, NULL, NULL);
	if (ret < 0)
		return ret;
	return ret == len ? 0 : -1;
}

/* 
 * Map a vmalloc()-space virtual address to the physical page.
 */
struct page * vmalloc_to_page(void * vmalloc_addr)
{
	unsigned long addr = (unsigned long) vmalloc_addr;
	struct page *page = NULL;
	pgd_t *pgd = pgd_offset_k(addr);
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep, pte;
  
	if (!pgd_none(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (!pud_none(*pud)) {
			pmd = pmd_offset(pud, addr);
			if (!pmd_none(*pmd)) {
				ptep = pte_offset_map(pmd, addr);
				pte = *ptep;
				if (pte_present(pte))
					page = pte_page(pte);
				pte_unmap(ptep);
			}
		}
	}
	return page;
}

EXPORT_SYMBOL(vmalloc_to_page);

/*
 * Map a vmalloc()-space virtual address to the physical page frame number.
 */
unsigned long vmalloc_to_pfn(void * vmalloc_addr)
{
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
}

EXPORT_SYMBOL(vmalloc_to_pfn);

/*
 * update_mem_hiwater
 *	- update per process rss and vm high water data
 */
void update_mem_hiwater(struct task_struct *tsk)
{
	if (tsk->mm) {
		unsigned long rss = get_mm_counter(tsk->mm, rss);

		if (tsk->mm->hiwater_rss < rss)
			tsk->mm->hiwater_rss = rss;
		if (tsk->mm->hiwater_vm < tsk->mm->total_vm)
			tsk->mm->hiwater_vm = tsk->mm->total_vm;
	}
}

#if !defined(__HAVE_ARCH_GATE_AREA)

#if defined(AT_SYSINFO_EHDR)
static struct vm_area_struct gate_vma;

static int __init gate_vma_init(void)
{
	gate_vma.vm_mm = NULL;
	gate_vma.vm_start = FIXADDR_USER_START;
	gate_vma.vm_end = FIXADDR_USER_END;
	gate_vma.vm_page_prot = PAGE_READONLY;
	gate_vma.vm_flags = 0;
	return 0;
}
__initcall(gate_vma_init);
#endif

struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
{
#ifdef AT_SYSINFO_EHDR
	return &gate_vma;
#else
	return NULL;
#endif
}

int in_gate_area_no_task(unsigned long addr)
{
#ifdef AT_SYSINFO_EHDR
	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
		return 1;
#endif
	return 0;
}

#endif	/* __HAVE_ARCH_GATE_AREA */