/*
* Procedures for maintaining information about logical memory blocks.
*
* Peter Bergner, IBM Corp. June 2001.
* Copyright (C) 2001 Peter Bergner.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <linux/memblock.h>
struct memblock memblock;
static int memblock_debug;
static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS + 1];
static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS + 1];
static int __init early_memblock(char *p)
{
if (p && strstr(p, "debug"))
memblock_debug = 1;
return 0;
}
early_param("memblock", early_memblock);
static void memblock_dump(struct memblock_type *region, char *name)
{
unsigned long long base, size;
int i;
pr_info(" %s.cnt = 0x%lx\n", name, region->cnt);
for (i = 0; i < region->cnt; i++) {
base = region->regions[i].base;
size = region->regions[i].size;
pr_info(" %s[0x%x]\t0x%016llx - 0x%016llx, 0x%llx bytes\n",
name, i, base, base + size - 1, size);
}
}
void memblock_dump_all(void)
{
if (!memblock_debug)
return;
pr_info("MEMBLOCK configuration:\n");
pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size);
memblock_dump(&memblock.memory, "memory");
memblock_dump(&memblock.reserved, "reserved");
}
static unsigned long memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
phys_addr_t base2, phys_addr_t size2)
{
return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
}
static long memblock_addrs_adjacent(phys_addr_t base1, phys_addr_t size1,
phys_addr_t base2, phys_addr_t size2)
{
if (base2 == base1 + size1)
return 1;
else if (base1 == base2 + size2)
return -1;
return 0;
}
static long memblock_regions_adjacent(struct memblock_type *type,
unsigned long r1, unsigned long r2)
{
phys_addr_t base1 = type->regions[r1].base;
phys_addr_t size1 = type->regions[r1].size;
phys_addr_t base2 = type->regions[r2].base;
phys_addr_t size2 = type->regions[r2].size;
return memblock_addrs_adjacent(base1, size1, base2, size2);
}
static void memblock_remove_region(struct memblock_type *type, unsigned long r)
{
unsigned long i;
for (i = r; i < type->cnt - 1; i++) {
type->regions[i].base = type->regions[i + 1].base;
type->regions[i].size = type->regions[i + 1].size;
}
type->cnt--;
}
/* Assumption: base addr of region 1 < base addr of region 2 */
static void memblock_coalesce_regions(struct memblock_type *type,
unsigned long r1, unsigned long r2)
{
type->regions[r1].size += type->regions[r2].size;
memblock_remove_region(type, r2);
}
void __init memblock_init(void)
{
/* Hookup the initial arrays */
memblock.memory.regions = memblock_memory_init_regions;
memblock.memory.max = INIT_MEMBLOCK_REGIONS;
memblock.reserved.regions = memblock_reserved_init_regions;
memblock.reserved.max = INIT_MEMBLOCK_REGIONS;
/* Create a dummy zero size MEMBLOCK which will get coalesced away later.
* This simplifies the memblock_add() code below...
*/
memblock.memory.regions[0].base = 0;
memblock.memory.regions[0].size = 0;
memblock.memory.cnt = 1;
/* Ditto. */
memblock.reserved.regions[0].base = 0;
memblock.reserved.regions[0].size = 0;
memblock.reserved.cnt = 1;
memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE;
}
void __init memblock_analyze(void)
{
int i;
memblock.memory_size = 0;
for (i = 0; i < memblock.memory.cnt; i++)
memblock.memory_size += memblock.memory.regions[i].size;
}
static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
{
unsigned long coalesced = 0;
long adjacent, i;
if ((type->cnt == 1) && (type->regions[0].size == 0)) {
type->regions[0].base = base;
type->regions[0].size = size;
return 0;
}
/* First try and coalesce this MEMBLOCK with another. */
for (i = 0; i < type->cnt; i++) {
phys_addr_t rgnbase = type->regions[i].base;
phys_addr_t rgnsize = type->regions[i].size;
if ((rgnbase == base) && (rgnsize == size))
/* Already have this region, so we're done */
return 0;
adjacent = memblock_addrs_adjacent(base, size, rgnbase, rgnsize);
if (adjacent > 0) {
type->regions[i].base -= size;
type->regions[i].size += size;
coalesced++;
break;
} else if (adjacent < 0) {
type->regions[i].size += size;
coalesced++;
break;
}
}
if ((i < type->cnt - 1) && memblock_regions_adjacent(type, i, i+1)) {
memblock_coalesce_regions(type, i, i+1);
coalesced++;
}
if (coalesced)
return coalesced;
if (type->cnt >= type->max)
return -1;
/* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
for (i = type->cnt - 1; i >= 0; i--) {
if (base < type->regions[i].base) {
type->regions[i+1].base = type->regions[i].base;
type->regions[i+1].size = type->regions[i].size;
} else {
type->regions[i+1].base = base;
type->regions[i+1].size = size;
break;
}
}
if (base < type->regions[0].base) {
type->regions[0].base = base;
type->regions[0].size = size;
}
type->cnt++;
return 0;
}
long memblock_add(phys_addr_t base, phys_addr_t size)
{
return memblock_add_region(&memblock.memory, base, size);
}
static long __memblock_remove(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
{
phys_addr_t rgnbegin, rgnend;
phys_addr_t end = base + size;
int i;
rgnbegin = rgnend = 0; /* supress gcc warnings */
/* Find the region where (base, size) belongs to */
for (i=0; i < type->cnt; i++) {
rgnbegin = type->regions[i].base;
rgnend = rgnbegin + type->regions[i].size;
if ((rgnbegin <= base) && (end <= rgnend))
break;
}
/* Didn't find the region */
if (i == type->cnt)
return -1;
/* Check to see if we are removing entire region */
if ((rgnbegin == base) && (rgnend == end)) {
memblock_remove_region(type, i);
return 0;
}
/* Check to see if region is matching at the front */
if (rgnbegin == base) {
type->regions[i].base = end;
type->regions[i].size -= size;
return 0;
}
/* Check to see if the region is matching at the end */
if (rgnend == end) {
type->regions[i].size -= size;
return 0;
}
/*
* We need to split the entry - adjust the current one to the
* beginging of the hole and add the region after hole.
*/
type->regions[i].size = base - type->regions[i].base;
return memblock_add_region(type, end, rgnend - end);
}
long memblock_remove(phys_addr_t base, phys_addr_t size)
{
return __memblock_remove(&memblock.memory, base, size);
}
long __init memblock_free(phys_addr_t base, phys_addr_t size)
{
return __memblock_remove(&memblock.reserved, base, size);
}
long __init memblock_reserve(phys_addr_t base, phys_addr_t size)
{
struct memblock_type *_rgn = &memblock.reserved;
BUG_ON(0 == size);
return memblock_add_region(_rgn, base, size);
}
long memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
{
unsigned long i;
for (i = 0; i < type->cnt; i++) {
phys_addr_t rgnbase = type->regions[i].base;
phys_addr_t rgnsize = type->regions[i].size;
if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
break;
}
return (i < type->cnt) ? i : -1;
}
static phys_addr_t memblock_align_down(phys_addr_t addr, phys_addr_t size)
{
return addr & ~(size - 1);
}
static phys_addr_t memblock_align_up(phys_addr_t addr, phys_addr_t size)
{
return (addr + (size - 1)) & ~(size - 1);
}
static phys_addr_t __init memblock_alloc_region(phys_addr_t start, phys_addr_t end,
phys_addr_t size, phys_addr_t align)
{
phys_addr_t base, res_base;
long j;
base = memblock_align_down((end - size), align);
while (start <= base) {
j = memblock_overlaps_region(&memblock.reserved, base, size);
if (j < 0) {
/* this area isn't reserved, take it */
if (memblock_add_region(&memblock.reserved, base, size) < 0)
base = ~(phys_addr_t)0;
return base;
}
res_base = memblock.reserved.regions[j].base;
if (res_base < size)
break;
base = memblock_align_down(res_base - size, align);
}
return ~(phys_addr_t)0;
}
phys_addr_t __weak __init memblock_nid_range(phys_addr_t start, phys_addr_t end, int *nid)
{
*nid = 0;
return end;
}
static phys_addr_t __init memblock_alloc_nid_region(struct memblock_region *mp,
phys_addr_t size,
phys_addr_t align, int nid)
{
phys_addr_t start, end;
start = mp->base;
end = start + mp->size;
start = memblock_align_up(start, align);
while (start < end) {
phys_addr_t this_end;
int this_nid;
this_end = memblock_nid_range(start, end, &this_nid);
if (this_nid == nid) {
phys_addr_t ret = memblock_alloc_region(start, this_end, size, align);
if (ret != ~(phys_addr_t)0)
return ret;
}
start = this_end;
}
return ~(phys_addr_t)0;
}
phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
{
struct memblock_type *mem = &memblock.memory;
int i;
BUG_ON(0 == size);
/* We do a bottom-up search for a region with the right
* nid since that's easier considering how memblock_nid_range()
* works
*/
size = memblock_align_up(size, align);
for (i = 0; i < mem->cnt; i++) {
phys_addr_t ret = memblock_alloc_nid_region(&mem->regions[i],
size, align, nid);
if (ret != ~(phys_addr_t)0)
return ret;
}
return memblock_alloc(size, align);
}
phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
{
return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
}
phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
{
phys_addr_t alloc;
alloc = __memblock_alloc_base(size, align, max_addr);
if (alloc == 0)
panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
(unsigned long long) size, (unsigned long long) max_addr);
return alloc;
}
phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
{
long i;
phys_addr_t base = 0;
phys_addr_t res_base;
BUG_ON(0 == size);
size = memblock_align_up(size, align);
/* Pump up max_addr */
if (max_addr == MEMBLOCK_ALLOC_ACCESSIBLE)
max_addr = memblock.current_limit;
/* We do a top-down search, this tends to limit memory
* fragmentation by keeping early boot allocs near the
* top of memory
*/
for (i = memblock.memory.cnt - 1; i >= 0; i--) {
phys_addr_t memblockbase = memblock.memory.regions[i].base;
phys_addr_t memblocksize = memblock.memory.regions[i].size;
if (memblocksize < size)
continue;
base = min(memblockbase + memblocksize, max_addr);
res_base = memblock_alloc_region(memblockbase, base, size, align);
if (res_base != ~(phys_addr_t)0)
return res_base;
}
return 0;
}
/* You must call memblock_analyze() before this. */
phys_addr_t __init memblock_phys_mem_size(void)
{
return memblock.memory_size;
}
phys_addr_t memblock_end_of_DRAM(void)
{
int idx = memblock.memory.cnt - 1;
return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
}
/* You must call memblock_analyze() after this. */
void __init memblock_enforce_memory_limit(phys_addr_t memory_limit)
{
unsigned long i;
phys_addr_t limit;
struct memblock_region *p;
if (!memory_limit)
return;
/* Truncate the memblock regions to satisfy the memory limit. */
limit = memory_limit;
for (i = 0; i < memblock.memory.cnt; i++) {
if (limit > memblock.memory.regions[i].size) {
limit -= memblock.memory.regions[i].size;
continue;
}
memblock.memory.regions[i].size = limit;
memblock.memory.cnt = i + 1;
break;
}
memory_limit = memblock_end_of_DRAM();
/* And truncate any reserves above the limit also. */
for (i = 0; i < memblock.reserved.cnt; i++) {
p = &memblock.reserved.regions[i];
if (p->base > memory_limit)
p->size = 0;
else if ((p->base + p->size) > memory_limit)
p->size = memory_limit - p->base;
if (p->size == 0) {
memblock_remove_region(&memblock.reserved, i);
i--;
}
}
}
static int memblock_search(struct memblock_type *type, phys_addr_t addr)
{
unsigned int left = 0, right = type->cnt;
do {
unsigned int mid = (right + left) / 2;
if (addr < type->regions[mid].base)
right = mid;
else if (addr >= (type->regions[mid].base +
type->regions[mid].size))
left = mid + 1;
else
return mid;
} while (left < right);
return -1;
}
int __init memblock_is_reserved(phys_addr_t addr)
{
return memblock_search(&memblock.reserved, addr) != -1;
}
int memblock_is_memory(phys_addr_t addr)
{
return memblock_search(&memblock.memory, addr) != -1;
}
int memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
{
int idx = memblock_search(&memblock.reserved, base);
if (idx == -1)
return 0;
return memblock.reserved.regions[idx].base <= base &&
(memblock.reserved.regions[idx].base +
memblock.reserved.regions[idx].size) >= (base + size);
}
int memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
{
return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
}
void __init memblock_set_current_limit(phys_addr_t limit)
{
memblock.current_limit = limit;
}