/*
* This file contains shadow memory manipulation code.
*
* Copyright (c) 2014 Samsung Electronics Co., Ltd.
* Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
*
* Some code borrowed from https://github.com/xairy/kasan-prototype by
* Andrey Konovalov <adech.fo@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#define DISABLE_BRANCH_PROFILING
#include <linux/export.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/kasan.h>
#include <linux/kernel.h>
#include <linux/kmemleak.h>
#include <linux/linkage.h>
#include <linux/memblock.h>
#include <linux/memory.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/printk.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/stacktrace.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/vmalloc.h>
#include "kasan.h"
#include "../slab.h"
/*
* Poisons the shadow memory for 'size' bytes starting from 'addr'.
* Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
*/
static void kasan_poison_shadow(const void *address, size_t size, u8 value)
{
void *shadow_start, *shadow_end;
shadow_start = kasan_mem_to_shadow(address);
shadow_end = kasan_mem_to_shadow(address + size);
memset(shadow_start, value, shadow_end - shadow_start);
}
void kasan_unpoison_shadow(const void *address, size_t size)
{
kasan_poison_shadow(address, size, 0);
if (size & KASAN_SHADOW_MASK) {
u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
*shadow = size & KASAN_SHADOW_MASK;
}
}
static void __kasan_unpoison_stack(struct task_struct *task, void *sp)
{
void *base = task_stack_page(task);
size_t size = sp - base;
kasan_unpoison_shadow(base, size);
}
/* Unpoison the entire stack for a task. */
void kasan_unpoison_task_stack(struct task_struct *task)
{
__kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
}
/* Unpoison the stack for the current task beyond a watermark sp value. */
asmlinkage void kasan_unpoison_remaining_stack(void *sp)
{
__kasan_unpoison_stack(current, sp);
}
/*
* All functions below always inlined so compiler could
* perform better optimizations in each of __asan_loadX/__assn_storeX
* depending on memory access size X.
*/
static __always_inline bool memory_is_poisoned_1(unsigned long addr)
{
s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr);
if (unlikely(shadow_value)) {
s8 last_accessible_byte = addr & KASAN_SHADOW_MASK;
return unlikely(last_accessible_byte >= shadow_value);
}
return false;
}
static __always_inline bool memory_is_poisoned_2(unsigned long addr)
{
u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
if (unlikely(*shadow_addr)) {
if (memory_is_poisoned_1(addr + 1))
return true;
/*
* If single shadow byte covers 2-byte access, we don't
* need to do anything more. Otherwise, test the first
* shadow byte.
*/
if (likely(((addr + 1) & KASAN_SHADOW_MASK) != 0))
return false;
return unlikely(*(u8 *)shadow_addr);
}
return false;
}
static __always_inline bool memory_is_poisoned_4(unsigned long addr)
{
u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
if (unlikely(*shadow_addr)) {
if (memory_is_poisoned_1(addr + 3))
return true;
/*
* If single shadow byte covers 4-byte access, we don't
* need to do anything more. Otherwise, test the first
* shadow byte.
*/
if (likely(((addr + 3) & KASAN_SHADOW_MASK) >= 3))
return false;
return unlikely(*(u8 *)shadow_addr);
}
return false;
}
static __always_inline bool memory_is_poisoned_8(unsigned long addr)
{
u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
if (unlikely(*shadow_addr)) {
if (memory_is_poisoned_1(addr + 7))
return true;
/*
* If single shadow byte covers 8-byte access, we don't
* need to do anything more. Otherwise, test the first
* shadow byte.
*/
if (likely(IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
return false;
return unlikely(*(u8 *)shadow_addr);
}
return false;
}
static __always_inline bool memory_is_poisoned_16(unsigned long addr)
{
u32 *shadow_addr = (u32 *)kasan_mem_to_shadow((void *)addr);
if (unlikely(*shadow_addr)) {
u16 shadow_first_bytes = *(u16 *)shadow_addr;
if (unlikely(shadow_first_bytes))
return true;
/*
* If two shadow bytes covers 16-byte access, we don't
* need to do anything more. Otherwise, test the last
* shadow byte.
*/
if (likely(IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
return false;
return memory_is_poisoned_1(addr + 15);
}
return false;
}
static __always_inline unsigned long bytes_is_zero(const u8 *start,
size_t size)
{
while (size) {
if (unlikely(*start))
return (unsigned long)start;
start++;
size--;
}
return 0;
}
static __always_inline unsigned long memory_is_zero(const void *start,
const void *end)
{
unsigned int words;
unsigned long ret;
unsigned int prefix = (unsigned long)start % 8;
if (end - start <= 16)
return bytes_is_zero(start, end - start);
if (prefix) {
prefix = 8 - prefix;
ret = bytes_is_zero(start, prefix);
if (unlikely(ret))
return ret;
start += prefix;
}
words = (end - start) / 8;
while (words) {
if (unlikely(*(u64 *)start))
return bytes_is_zero(start, 8);
start += 8;
words--;
}
return bytes_is_zero(start, (end - start) % 8);
}
static __always_inline bool memory_is_poisoned_n(unsigned long addr,
size_t size)
{
unsigned long ret;
ret = memory_is_zero(kasan_mem_to_shadow((void *)addr),
kasan_mem_to_shadow((void *)addr + size - 1) + 1);
if (unlikely(ret)) {
unsigned long last_byte = addr + size - 1;
s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte);
if (unlikely(ret != (unsigned long)last_shadow ||
((long)(last_byte & KASAN_SHADOW_MASK) >= *last_shadow)))
return true;
}
return false;
}
static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size)
{
if (__builtin_constant_p(size)) {
switch (size) {
case 1:
return memory_is_poisoned_1(addr);
case 2:
return memory_is_poisoned_2(addr);
case 4:
return memory_is_poisoned_4(addr);
case 8:
return memory_is_poisoned_8(addr);
case 16:
return memory_is_poisoned_16(addr);
default:
BUILD_BUG();
}
}
return memory_is_poisoned_n(addr, size);
}
static __always_inline void check_memory_region(unsigned long addr,
size_t size, bool write)
{
if (unlikely(size == 0))
return;
if (unlikely((void *)addr <
kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) {
kasan_report(addr, size, write, _RET_IP_);
return;
}
if (likely(!memory_is_poisoned(addr, size)))
return;
kasan_report(addr, size, write, _RET_IP_);
}
void __asan_loadN(unsigned long addr, size_t size);
void __asan_storeN(unsigned long addr, size_t size);
#undef memset
void *memset(void *addr, int c, size_t len)
{
__asan_storeN((unsigned long)addr, len);
return __memset(addr, c, len);
}
#undef memmove
void *memmove(void *dest, const void *src, size_t len)
{
__asan_loadN((unsigned long)src, len);
__asan_storeN((unsigned long)dest, len);
return __memmove(dest, src, len);
}
#undef memcpy
void *memcpy(void *dest, const void *src, size_t len)
{
__asan_loadN((unsigned long)src, len);
__asan_storeN((unsigned long)dest, len);
return __memcpy(dest, src, len);
}
void kasan_alloc_pages(struct page *page, unsigned int order)
{
if (likely(!PageHighMem(page)))
kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
}
void kasan_free_pages(struct page *page, unsigned int order)
{
if (likely(!PageHighMem(page)))
kasan_poison_shadow(page_address(page),
PAGE_SIZE << order,
KASAN_FREE_PAGE);
}
#ifdef CONFIG_SLAB
/*
* Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
* For larger allocations larger redzones are used.
*/
static size_t optimal_redzone(size_t object_size)
{
int rz =
object_size <= 64 - 16 ? 16 :
object_size <= 128 - 32 ? 32 :
object_size <= 512 - 64 ? 64 :
object_size <= 4096 - 128 ? 128 :
object_size <= (1 << 14) - 256 ? 256 :
object_size <= (1 << 15) - 512 ? 512 :
object_size <= (1 << 16) - 1024 ? 1024 : 2048;
return rz;
}
void kasan_cache_create(struct kmem_cache *cache, size_t *size,
unsigned long *flags)
{
int redzone_adjust;
/* Make sure the adjusted size is still less than
* KMALLOC_MAX_CACHE_SIZE.
* TODO: this check is only useful for SLAB, but not SLUB. We'll need
* to skip it for SLUB when it starts using kasan_cache_create().
*/
if (*size > KMALLOC_MAX_CACHE_SIZE -
sizeof(struct kasan_alloc_meta) -
sizeof(struct kasan_free_meta))
return;
*flags |= SLAB_KASAN;
/* Add alloc meta. */
cache->kasan_info.alloc_meta_offset = *size;
*size += sizeof(struct kasan_alloc_meta);
/* Add free meta. */
if (cache->flags & SLAB_DESTROY_BY_RCU || cache->ctor ||
cache->object_size < sizeof(struct kasan_free_meta)) {
cache->kasan_info.free_meta_offset = *size;
*size += sizeof(struct kasan_free_meta);
}
redzone_adjust = optimal_redzone(cache->object_size) -
(*size - cache->object_size);
if (redzone_adjust > 0)
*size += redzone_adjust;
*size = min(KMALLOC_MAX_CACHE_SIZE,
max(*size,
cache->object_size +
optimal_redzone(cache->object_size)));
}
#endif
void kasan_poison_slab(struct page *page)
{
kasan_poison_shadow(page_address(page),
PAGE_SIZE << compound_order(page),
KASAN_KMALLOC_REDZONE);
}
void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
{
kasan_unpoison_shadow(object, cache->object_size);
}
void kasan_poison_object_data(struct kmem_cache *cache, void *object)
{
kasan_poison_shadow(object,
round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
KASAN_KMALLOC_REDZONE);
#ifdef CONFIG_SLAB
if (cache->flags & SLAB_KASAN) {
struct kasan_alloc_meta *alloc_info =
get_alloc_info(cache, object);
alloc_info->state = KASAN_STATE_INIT;
}
#endif
}
#ifdef CONFIG_SLAB
static inline int in_irqentry_text(unsigned long ptr)
{
return (ptr >= (unsigned long)&__irqentry_text_start &&
ptr < (unsigned long)&__irqentry_text_end) ||
(ptr >= (unsigned long)&__softirqentry_text_start &&
ptr < (unsigned long)&__softirqentry_text_end);
}
static inline void filter_irq_stacks(struct stack_trace *trace)
{
int i;
if (!trace->nr_entries)
return;
for (i = 0; i < trace->nr_entries; i++)
if (in_irqentry_text(trace->entries[i])) {
/* Include the irqentry function into the stack. */
trace->nr_entries = i + 1;
break;
}
}
static inline depot_stack_handle_t save_stack(gfp_t flags)
{
unsigned long entries[KASAN_STACK_DEPTH];
struct stack_trace trace = {
.nr_entries = 0,
.entries = entries,
.max_entries = KASAN_STACK_DEPTH,
.skip = 0
};
save_stack_trace(&trace);
filter_irq_stacks(&trace);
if (trace.nr_entries != 0 &&
trace.entries[trace.nr_entries-1] == ULONG_MAX)
trace.nr_entries--;
return depot_save_stack(&trace, flags);
}
static inline void set_track(struct kasan_track *track, gfp_t flags)
{
track->pid = current->pid;
track->stack = save_stack(flags);
}
struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
const void *object)
{
BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32);
return (void *)object + cache->kasan_info.alloc_meta_offset;
}
struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
const void *object)
{
BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
return (void *)object + cache->kasan_info.free_meta_offset;
}
#endif
void kasan_slab_alloc(struct kmem_cache *cache, void *object, gfp_t flags)
{
kasan_kmalloc(cache, object, cache->object_size, flags);
}
void kasan_slab_free(struct kmem_cache *cache, void *object)
{
unsigned long size = cache->object_size;
unsigned long rounded_up_size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
/* RCU slabs could be legally used after free within the RCU period */
if (unlikely(cache->flags & SLAB_DESTROY_BY_RCU))
return;
#ifdef CONFIG_SLAB
if (cache->flags & SLAB_KASAN) {
struct kasan_free_meta *free_info =
get_free_info(cache, object);
struct kasan_alloc_meta *alloc_info =
get_alloc_info(cache, object);
alloc_info->state = KASAN_STATE_FREE;
set_track(&free_info->track, GFP_NOWAIT);
}
#endif
kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
}
void kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size,
gfp_t flags)
{
unsigned long redzone_start;
unsigned long redzone_end;
if (unlikely(object == NULL))
return;
redzone_start = round_up((unsigned long)(object + size),
KASAN_SHADOW_SCALE_SIZE);
redzone_end = round_up((unsigned long)object + cache->object_size,
KASAN_SHADOW_SCALE_SIZE);
kasan_unpoison_shadow(object, size);
kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
KASAN_KMALLOC_REDZONE);
#ifdef CONFIG_SLAB
if (cache->flags & SLAB_KASAN) {
struct kasan_alloc_meta *alloc_info =
get_alloc_info(cache, object);
alloc_info->state = KASAN_STATE_ALLOC;
alloc_info->alloc_size = size;
set_track(&alloc_info->track, flags);
}
#endif
}
EXPORT_SYMBOL(kasan_kmalloc);
void kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
{
struct page *page;
unsigned long redzone_start;
unsigned long redzone_end;
if (unlikely(ptr == NULL))
return;
page = virt_to_page(ptr);
redzone_start = round_up((unsigned long)(ptr + size),
KASAN_SHADOW_SCALE_SIZE);
redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));
kasan_unpoison_shadow(ptr, size);
kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
KASAN_PAGE_REDZONE);
}
void kasan_krealloc(const void *object, size_t size, gfp_t flags)
{
struct page *page;
if (unlikely(object == ZERO_SIZE_PTR))
return;
page = virt_to_head_page(object);
if (unlikely(!PageSlab(page)))
kasan_kmalloc_large(object, size, flags);
else
kasan_kmalloc(page->slab_cache, object, size, flags);
}
void kasan_kfree(void *ptr)
{
struct page *page;
page = virt_to_head_page(ptr);
if (unlikely(!PageSlab(page)))
kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
KASAN_FREE_PAGE);
else
kasan_slab_free(page->slab_cache, ptr);
}
void kasan_kfree_large(const void *ptr)
{
struct page *page = virt_to_page(ptr);
kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
KASAN_FREE_PAGE);
}
int kasan_module_alloc(void *addr, size_t size)
{
void *ret;
size_t shadow_size;
unsigned long shadow_start;
shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
shadow_size = round_up(size >> KASAN_SHADOW_SCALE_SHIFT,
PAGE_SIZE);
if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
return -EINVAL;
ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
shadow_start + shadow_size,
GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
__builtin_return_address(0));
if (ret) {
find_vm_area(addr)->flags |= VM_KASAN;
kmemleak_ignore(ret);
return 0;
}
return -ENOMEM;
}
void kasan_free_shadow(const struct vm_struct *vm)
{
if (vm->flags & VM_KASAN)
vfree(kasan_mem_to_shadow(vm->addr));
}
static void register_global(struct kasan_global *global)
{
size_t aligned_size = round_up(global->size, KASAN_SHADOW_SCALE_SIZE);
kasan_unpoison_shadow(global->beg, global->size);
kasan_poison_shadow(global->beg + aligned_size,
global->size_with_redzone - aligned_size,
KASAN_GLOBAL_REDZONE);
}
void __asan_register_globals(struct kasan_global *globals, size_t size)
{
int i;
for (i = 0; i < size; i++)
register_global(&globals[i]);
}
EXPORT_SYMBOL(__asan_register_globals);
void __asan_unregister_globals(struct kasan_global *globals, size_t size)
{
}
EXPORT_SYMBOL(__asan_unregister_globals);
#define DEFINE_ASAN_LOAD_STORE(size) \
void __asan_load##size(unsigned long addr) \
{ \
check_memory_region(addr, size, false); \
} \
EXPORT_SYMBOL(__asan_load##size); \
__alias(__asan_load##size) \
void __asan_load##size##_noabort(unsigned long); \
EXPORT_SYMBOL(__asan_load##size##_noabort); \
void __asan_store##size(unsigned long addr) \
{ \
check_memory_region(addr, size, true); \
} \
EXPORT_SYMBOL(__asan_store##size); \
__alias(__asan_store##size) \
void __asan_store##size##_noabort(unsigned long); \
EXPORT_SYMBOL(__asan_store##size##_noabort)
DEFINE_ASAN_LOAD_STORE(1);
DEFINE_ASAN_LOAD_STORE(2);
DEFINE_ASAN_LOAD_STORE(4);
DEFINE_ASAN_LOAD_STORE(8);
DEFINE_ASAN_LOAD_STORE(16);
void __asan_loadN(unsigned long addr, size_t size)
{
check_memory_region(addr, size, false);
}
EXPORT_SYMBOL(__asan_loadN);
__alias(__asan_loadN)
void __asan_loadN_noabort(unsigned long, size_t);
EXPORT_SYMBOL(__asan_loadN_noabort);
void __asan_storeN(unsigned long addr, size_t size)
{
check_memory_region(addr, size, true);
}
EXPORT_SYMBOL(__asan_storeN);
__alias(__asan_storeN)
void __asan_storeN_noabort(unsigned long, size_t);
EXPORT_SYMBOL(__asan_storeN_noabort);
/* to shut up compiler complaints */
void __asan_handle_no_return(void) {}
EXPORT_SYMBOL(__asan_handle_no_return);
#ifdef CONFIG_MEMORY_HOTPLUG
static int kasan_mem_notifier(struct notifier_block *nb,
unsigned long action, void *data)
{
return (action == MEM_GOING_ONLINE) ? NOTIFY_BAD : NOTIFY_OK;
}
static int __init kasan_memhotplug_init(void)
{
pr_err("WARNING: KASAN doesn't support memory hot-add\n");
pr_err("Memory hot-add will be disabled\n");
hotplug_memory_notifier(kasan_mem_notifier, 0);
return 0;
}
module_init(kasan_memhotplug_init);
#endif