summaryrefslogblamecommitdiff
path: root/lib/rbtree.c
blob: a37ee7954b8f5eff08cda2b83d16d98ff3721c60 (plain) (tree)
1
2
3
4
5
6



                                                 

                                                 

















                                                                           
                         
 















                                                                               

                                                                             

   


                         







                                                                 
 




                                                   



                                                                       
 










                                                                    












                                                               











                                                                 
                                                  

 


                                                                             
 
                                                                     
 







                                                                     
                              
                                                                  



                                               

                                                

                                                                        



















                                                                               

                         

                                               

















                                                                               
                                                             
                                              
                                                     

                         








                                                           
                                                                          



                                                                               
                                                        
                              
                        








                                                                               

                         

                                              






                                                                          
                                                             
                                              
                                                    

                         
                                                             
                                                                          



                                                                               
                                                        
                              

                 
 
 


                                                              
 
                                                            
 

                      




                                                                            
                   

                                                                     














                                                                              
                                                                 
                                               
                         













                                                                         



                                                                               


                                                                            








                                                                         
                                 

















                                                                          
                                                               

                                               
                         


















                                                                       
                                                         
                              
                        







                                                                              
                                                                 
                                               
                         






                                                                            








                                                                         
                                 






                                                                          
                                                               

                                               
                         







                                                                          
                                                         
                              

                 

 


                                                      
 
                                                                     
                                           
                         
 
                   






                                                                             

                                             
                                                             
                            
                                                      
                                         

                                                                      
                             

                                                                            

                                                                      
                                                           
                                 
                             
                











                                                                      


                                                       
                        





















                                                                       

                                                              
                 
 








                                                                      

                                         


                                                                         
                 
                                

         
                                      
                      


























                                                                                 


                        




















                                                                               































                                                                                
                                 
























                                                                        
                                      









                                                                              
                                    
 


                                                                    
                                                    











                               
                                                   











                                
                                                   
 

                               
                                

                            



                                                                      



                                           
                                              

         






                                                                               

                                                                      
 
                      


                       
                                                   
 

                               
                                

                            



                                                                      



                                            
                                              

         



                                                                      

                                                                     
 
                      





                                                                 
                                                   

                                                                   
                                                     
                            
                                                    
                             
                                                     




                                                                         
/*
  Red Black Trees
  (C) 1999  Andrea Arcangeli <andrea@suse.de>
  (C) 2002  David Woodhouse <dwmw2@infradead.org>
  (C) 2012  Michel Lespinasse <walken@google.com>

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 2 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

  linux/lib/rbtree.c
*/

#include <linux/rbtree.h>
#include <linux/export.h>

/*
 * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree
 *
 *  1) A node is either red or black
 *  2) The root is black
 *  3) All leaves (NULL) are black
 *  4) Both children of every red node are black
 *  5) Every simple path from root to leaves contains the same number
 *     of black nodes.
 *
 *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
 *  consecutive red nodes in a path and every red node is therefore followed by
 *  a black. So if B is the number of black nodes on every simple path (as per
 *  5), then the longest possible path due to 4 is 2B.
 *
 *  We shall indicate color with case, where black nodes are uppercase and red
 *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
 *  parentheses and have some accompanying text comment.
 */

#define	RB_RED		0
#define	RB_BLACK	1

#define __rb_parent(pc)    ((struct rb_node *)(pc & ~3))

#define __rb_color(pc)     ((pc) & 1)
#define __rb_is_black(pc)  __rb_color(pc)
#define __rb_is_red(pc)    (!__rb_color(pc))
#define rb_color(rb)       __rb_color((rb)->__rb_parent_color)
#define rb_is_red(rb)      __rb_is_red((rb)->__rb_parent_color)
#define rb_is_black(rb)    __rb_is_black((rb)->__rb_parent_color)

static inline void rb_set_black(struct rb_node *rb)
{
	rb->__rb_parent_color |= RB_BLACK;
}

static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p)
{
	rb->__rb_parent_color = rb_color(rb) | (unsigned long)p;
}

static inline void rb_set_parent_color(struct rb_node *rb,
				       struct rb_node *p, int color)
{
	rb->__rb_parent_color = (unsigned long)p | color;
}

static inline struct rb_node *rb_red_parent(struct rb_node *red)
{
	return (struct rb_node *)red->__rb_parent_color;
}

static inline void
__rb_change_child(struct rb_node *old, struct rb_node *new,
		  struct rb_node *parent, struct rb_root *root)
{
	if (parent) {
		if (parent->rb_left == old)
			parent->rb_left = new;
		else
			parent->rb_right = new;
	} else
		root->rb_node = new;
}

/*
 * Helper function for rotations:
 * - old's parent and color get assigned to new
 * - old gets assigned new as a parent and 'color' as a color.
 */
static inline void
__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
			struct rb_root *root, int color)
{
	struct rb_node *parent = rb_parent(old);
	new->__rb_parent_color = old->__rb_parent_color;
	rb_set_parent_color(old, new, color);
	__rb_change_child(old, new, parent, root);
}

static __always_inline void
__rb_insert(struct rb_node *node, struct rb_root *root,
	    void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
{
	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;

	while (true) {
		/*
		 * Loop invariant: node is red
		 *
		 * If there is a black parent, we are done.
		 * Otherwise, take some corrective action as we don't
		 * want a red root or two consecutive red nodes.
		 */
		if (!parent) {
			rb_set_parent_color(node, NULL, RB_BLACK);
			break;
		} else if (rb_is_black(parent))
			break;

		gparent = rb_red_parent(parent);

		tmp = gparent->rb_right;
		if (parent != tmp) {	/* parent == gparent->rb_left */
			if (tmp && rb_is_red(tmp)) {
				/*
				 * Case 1 - color flips
				 *
				 *       G            g
				 *      / \          / \
				 *     p   u  -->   P   U
				 *    /            /
				 *   n            N
				 *
				 * However, since g's parent might be red, and
				 * 4) does not allow this, we need to recurse
				 * at g.
				 */
				rb_set_parent_color(tmp, gparent, RB_BLACK);
				rb_set_parent_color(parent, gparent, RB_BLACK);
				node = gparent;
				parent = rb_parent(node);
				rb_set_parent_color(node, parent, RB_RED);
				continue;
			}

			tmp = parent->rb_right;
			if (node == tmp) {
				/*
				 * Case 2 - left rotate at parent
				 *
				 *      G             G
				 *     / \           / \
				 *    p   U  -->    n   U
				 *     \           /
				 *      n         p
				 *
				 * This still leaves us in violation of 4), the
				 * continuation into Case 3 will fix that.
				 */
				parent->rb_right = tmp = node->rb_left;
				node->rb_left = parent;
				if (tmp)
					rb_set_parent_color(tmp, parent,
							    RB_BLACK);
				rb_set_parent_color(parent, node, RB_RED);
				augment_rotate(parent, node);
				parent = node;
				tmp = node->rb_right;
			}

			/*
			 * Case 3 - right rotate at gparent
			 *
			 *        G           P
			 *       / \         / \
			 *      p   U  -->  n   g
			 *     /                 \
			 *    n                   U
			 */
			gparent->rb_left = tmp;  /* == parent->rb_right */
			parent->rb_right = gparent;
			if (tmp)
				rb_set_parent_color(tmp, gparent, RB_BLACK);
			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
			augment_rotate(gparent, parent);
			break;
		} else {
			tmp = gparent->rb_left;
			if (tmp && rb_is_red(tmp)) {
				/* Case 1 - color flips */
				rb_set_parent_color(tmp, gparent, RB_BLACK);
				rb_set_parent_color(parent, gparent, RB_BLACK);
				node = gparent;
				parent = rb_parent(node);
				rb_set_parent_color(node, parent, RB_RED);
				continue;
			}

			tmp = parent->rb_left;
			if (node == tmp) {
				/* Case 2 - right rotate at parent */
				parent->rb_left = tmp = node->rb_right;
				node->rb_right = parent;
				if (tmp)
					rb_set_parent_color(tmp, parent,
							    RB_BLACK);
				rb_set_parent_color(parent, node, RB_RED);
				augment_rotate(parent, node);
				parent = node;
				tmp = node->rb_left;
			}

			/* Case 3 - left rotate at gparent */
			gparent->rb_right = tmp;  /* == parent->rb_left */
			parent->rb_left = gparent;
			if (tmp)
				rb_set_parent_color(tmp, gparent, RB_BLACK);
			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
			augment_rotate(gparent, parent);
			break;
		}
	}
}

static __always_inline void
__rb_erase_color(struct rb_node *parent, struct rb_root *root,
		 const struct rb_augment_callbacks *augment)
{
	struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;

	while (true) {
		/*
		 * Loop invariants:
		 * - node is black (or NULL on first iteration)
		 * - node is not the root (parent is not NULL)
		 * - All leaf paths going through parent and node have a
		 *   black node count that is 1 lower than other leaf paths.
		 */
		sibling = parent->rb_right;
		if (node != sibling) {	/* node == parent->rb_left */
			if (rb_is_red(sibling)) {
				/*
				 * Case 1 - left rotate at parent
				 *
				 *     P               S
				 *    / \             / \
				 *   N   s    -->    p   Sr
				 *      / \         / \
				 *     Sl  Sr      N   Sl
				 */
				parent->rb_right = tmp1 = sibling->rb_left;
				sibling->rb_left = parent;
				rb_set_parent_color(tmp1, parent, RB_BLACK);
				__rb_rotate_set_parents(parent, sibling, root,
							RB_RED);
				augment->rotate(parent, sibling);
				sibling = tmp1;
			}
			tmp1 = sibling->rb_right;
			if (!tmp1 || rb_is_black(tmp1)) {
				tmp2 = sibling->rb_left;
				if (!tmp2 || rb_is_black(tmp2)) {
					/*
					 * Case 2 - sibling color flip
					 * (p could be either color here)
					 *
					 *    (p)           (p)
					 *    / \           / \
					 *   N   S    -->  N   s
					 *      / \           / \
					 *     Sl  Sr        Sl  Sr
					 *
					 * This leaves us violating 5) which
					 * can be fixed by flipping p to black
					 * if it was red, or by recursing at p.
					 * p is red when coming from Case 1.
					 */
					rb_set_parent_color(sibling, parent,
							    RB_RED);
					if (rb_is_red(parent))
						rb_set_black(parent);
					else {
						node = parent;
						parent = rb_parent(node);
						if (parent)
							continue;
					}
					break;
				}
				/*
				 * Case 3 - right rotate at sibling
				 * (p could be either color here)
				 *
				 *   (p)           (p)
				 *   / \           / \
				 *  N   S    -->  N   Sl
				 *     / \             \
				 *    sl  Sr            s
				 *                       \
				 *                        Sr
				 */
				sibling->rb_left = tmp1 = tmp2->rb_right;
				tmp2->rb_right = sibling;
				parent->rb_right = tmp2;
				if (tmp1)
					rb_set_parent_color(tmp1, sibling,
							    RB_BLACK);
				augment->rotate(sibling, tmp2);
				tmp1 = sibling;
				sibling = tmp2;
			}
			/*
			 * Case 4 - left rotate at parent + color flips
			 * (p and sl could be either color here.
			 *  After rotation, p becomes black, s acquires
			 *  p's color, and sl keeps its color)
			 *
			 *      (p)             (s)
			 *      / \             / \
			 *     N   S     -->   P   Sr
			 *        / \         / \
			 *      (sl) sr      N  (sl)
			 */
			parent->rb_right = tmp2 = sibling->rb_left;
			sibling->rb_left = parent;
			rb_set_parent_color(tmp1, sibling, RB_BLACK);
			if (tmp2)
				rb_set_parent(tmp2, parent);
			__rb_rotate_set_parents(parent, sibling, root,
						RB_BLACK);
			augment->rotate(parent, sibling);
			break;
		} else {
			sibling = parent->rb_left;
			if (rb_is_red(sibling)) {
				/* Case 1 - right rotate at parent */
				parent->rb_left = tmp1 = sibling->rb_right;
				sibling->rb_right = parent;
				rb_set_parent_color(tmp1, parent, RB_BLACK);
				__rb_rotate_set_parents(parent, sibling, root,
							RB_RED);
				augment->rotate(parent, sibling);
				sibling = tmp1;
			}
			tmp1 = sibling->rb_left;
			if (!tmp1 || rb_is_black(tmp1)) {
				tmp2 = sibling->rb_right;
				if (!tmp2 || rb_is_black(tmp2)) {
					/* Case 2 - sibling color flip */
					rb_set_parent_color(sibling, parent,
							    RB_RED);
					if (rb_is_red(parent))
						rb_set_black(parent);
					else {
						node = parent;
						parent = rb_parent(node);
						if (parent)
							continue;
					}
					break;
				}
				/* Case 3 - right rotate at sibling */
				sibling->rb_right = tmp1 = tmp2->rb_left;
				tmp2->rb_left = sibling;
				parent->rb_left = tmp2;
				if (tmp1)
					rb_set_parent_color(tmp1, sibling,
							    RB_BLACK);
				augment->rotate(sibling, tmp2);
				tmp1 = sibling;
				sibling = tmp2;
			}
			/* Case 4 - left rotate at parent + color flips */
			parent->rb_left = tmp2 = sibling->rb_right;
			sibling->rb_right = parent;
			rb_set_parent_color(tmp1, sibling, RB_BLACK);
			if (tmp2)
				rb_set_parent(tmp2, parent);
			__rb_rotate_set_parents(parent, sibling, root,
						RB_BLACK);
			augment->rotate(parent, sibling);
			break;
		}
	}
}

static __always_inline void
__rb_erase(struct rb_node *node, struct rb_root *root,
	   const struct rb_augment_callbacks *augment)
{
	struct rb_node *child = node->rb_right, *tmp = node->rb_left;
	struct rb_node *parent, *rebalance;
	unsigned long pc;

	if (!tmp) {
		/*
		 * Case 1: node to erase has no more than 1 child (easy!)
		 *
		 * Note that if there is one child it must be red due to 5)
		 * and node must be black due to 4). We adjust colors locally
		 * so as to bypass __rb_erase_color() later on.
		 */
		pc = node->__rb_parent_color;
		parent = __rb_parent(pc);
		__rb_change_child(node, child, parent, root);
		if (child) {
			child->__rb_parent_color = pc;
			rebalance = NULL;
		} else
			rebalance = __rb_is_black(pc) ? parent : NULL;
		tmp = parent;
	} else if (!child) {
		/* Still case 1, but this time the child is node->rb_left */
		tmp->__rb_parent_color = pc = node->__rb_parent_color;
		parent = __rb_parent(pc);
		__rb_change_child(node, tmp, parent, root);
		rebalance = NULL;
		tmp = parent;
	} else {
		struct rb_node *successor = child, *child2;
		tmp = child->rb_left;
		if (!tmp) {
			/*
			 * Case 2: node's successor is its right child
			 *
			 *    (n)          (s)
			 *    / \          / \
			 *  (x) (s)  ->  (x) (c)
			 *        \
			 *        (c)
			 */
			parent = successor;
			child2 = successor->rb_right;
			augment->copy(node, successor);
		} else {
			/*
			 * Case 3: node's successor is leftmost under
			 * node's right child subtree
			 *
			 *    (n)          (s)
			 *    / \          / \
			 *  (x) (y)  ->  (x) (y)
			 *      /            /
			 *    (p)          (p)
			 *    /            /
			 *  (s)          (c)
			 *    \
			 *    (c)
			 */
			do {
				parent = successor;
				successor = tmp;
				tmp = tmp->rb_left;
			} while (tmp);
			parent->rb_left = child2 = successor->rb_right;
			successor->rb_right = child;
			rb_set_parent(child, successor);
			augment->copy(node, successor);
			augment->propagate(parent, successor);
		}

		successor->rb_left = tmp = node->rb_left;
		rb_set_parent(tmp, successor);

		pc = node->__rb_parent_color;
		tmp = __rb_parent(pc);
		__rb_change_child(node, successor, tmp, root);
		if (child2) {
			successor->__rb_parent_color = pc;
			rb_set_parent_color(child2, parent, RB_BLACK);
			rebalance = NULL;
		} else {
			unsigned long pc2 = successor->__rb_parent_color;
			successor->__rb_parent_color = pc;
			rebalance = __rb_is_black(pc2) ? parent : NULL;
		}
		tmp = successor;
	}

	augment->propagate(tmp, NULL);
	if (rebalance)
		__rb_erase_color(rebalance, root, augment);
}

/*
 * Non-augmented rbtree manipulation functions.
 *
 * We use dummy augmented callbacks here, and have the compiler optimize them
 * out of the rb_insert_color() and rb_erase() function definitions.
 */

static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}

static const struct rb_augment_callbacks dummy_callbacks = {
	dummy_propagate, dummy_copy, dummy_rotate
};

void rb_insert_color(struct rb_node *node, struct rb_root *root)
{
	__rb_insert(node, root, dummy_rotate);
}
EXPORT_SYMBOL(rb_insert_color);

void rb_erase(struct rb_node *node, struct rb_root *root)
{
	__rb_erase(node, root, &dummy_callbacks);
}
EXPORT_SYMBOL(rb_erase);

/*
 * Augmented rbtree manipulation functions.
 *
 * This instantiates the same __always_inline functions as in the non-augmented
 * case, but this time with user-defined callbacks.
 */

void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
{
	__rb_insert(node, root, augment_rotate);
}
EXPORT_SYMBOL(__rb_insert_augmented);

void rb_erase_augmented(struct rb_node *node, struct rb_root *root,
			const struct rb_augment_callbacks *augment)
{
	__rb_erase(node, root, augment);
}
EXPORT_SYMBOL(rb_erase_augmented);

static void rb_augment_path(struct rb_node *node, rb_augment_f func, void *data)
{
	struct rb_node *parent;

up:
	func(node, data);
	parent = rb_parent(node);
	if (!parent)
		return;

	if (node == parent->rb_left && parent->rb_right)
		func(parent->rb_right, data);
	else if (parent->rb_left)
		func(parent->rb_left, data);

	node = parent;
	goto up;
}

/*
 * after inserting @node into the tree, update the tree to account for
 * both the new entry and any damage done by rebalance
 */
void rb_augment_insert(struct rb_node *node, rb_augment_f func, void *data)
{
	if (node->rb_left)
		node = node->rb_left;
	else if (node->rb_right)
		node = node->rb_right;

	rb_augment_path(node, func, data);
}
EXPORT_SYMBOL(rb_augment_insert);

/*
 * before removing the node, find the deepest node on the rebalance path
 * that will still be there after @node gets removed
 */
struct rb_node *rb_augment_erase_begin(struct rb_node *node)
{
	struct rb_node *deepest;

	if (!node->rb_right && !node->rb_left)
		deepest = rb_parent(node);
	else if (!node->rb_right)
		deepest = node->rb_left;
	else if (!node->rb_left)
		deepest = node->rb_right;
	else {
		deepest = rb_next(node);
		if (deepest->rb_right)
			deepest = deepest->rb_right;
		else if (rb_parent(deepest) != node)
			deepest = rb_parent(deepest);
	}

	return deepest;
}
EXPORT_SYMBOL(rb_augment_erase_begin);

/*
 * after removal, update the tree to account for the removed entry
 * and any rebalance damage.
 */
void rb_augment_erase_end(struct rb_node *node, rb_augment_f func, void *data)
{
	if (node)
		rb_augment_path(node, func, data);
}
EXPORT_SYMBOL(rb_augment_erase_end);

/*
 * This function returns the first node (in sort order) of the tree.
 */
struct rb_node *rb_first(const struct rb_root *root)
{
	struct rb_node	*n;

	n = root->rb_node;
	if (!n)
		return NULL;
	while (n->rb_left)
		n = n->rb_left;
	return n;
}
EXPORT_SYMBOL(rb_first);

struct rb_node *rb_last(const struct rb_root *root)
{
	struct rb_node	*n;

	n = root->rb_node;
	if (!n)
		return NULL;
	while (n->rb_right)
		n = n->rb_right;
	return n;
}
EXPORT_SYMBOL(rb_last);

struct rb_node *rb_next(const struct rb_node *node)
{
	struct rb_node *parent;

	if (RB_EMPTY_NODE(node))
		return NULL;

	/*
	 * If we have a right-hand child, go down and then left as far
	 * as we can.
	 */
	if (node->rb_right) {
		node = node->rb_right; 
		while (node->rb_left)
			node=node->rb_left;
		return (struct rb_node *)node;
	}

	/*
	 * No right-hand children. Everything down and left is smaller than us,
	 * so any 'next' node must be in the general direction of our parent.
	 * Go up the tree; any time the ancestor is a right-hand child of its
	 * parent, keep going up. First time it's a left-hand child of its
	 * parent, said parent is our 'next' node.
	 */
	while ((parent = rb_parent(node)) && node == parent->rb_right)
		node = parent;

	return parent;
}
EXPORT_SYMBOL(rb_next);

struct rb_node *rb_prev(const struct rb_node *node)
{
	struct rb_node *parent;

	if (RB_EMPTY_NODE(node))
		return NULL;

	/*
	 * If we have a left-hand child, go down and then right as far
	 * as we can.
	 */
	if (node->rb_left) {
		node = node->rb_left; 
		while (node->rb_right)
			node=node->rb_right;
		return (struct rb_node *)node;
	}

	/*
	 * No left-hand children. Go up till we find an ancestor which
	 * is a right-hand child of its parent.
	 */
	while ((parent = rb_parent(node)) && node == parent->rb_left)
		node = parent;

	return parent;
}
EXPORT_SYMBOL(rb_prev);

void rb_replace_node(struct rb_node *victim, struct rb_node *new,
		     struct rb_root *root)
{
	struct rb_node *parent = rb_parent(victim);

	/* Set the surrounding nodes to point to the replacement */
	__rb_change_child(victim, new, parent, root);
	if (victim->rb_left)
		rb_set_parent(victim->rb_left, new);
	if (victim->rb_right)
		rb_set_parent(victim->rb_right, new);

	/* Copy the pointers/colour from the victim to the replacement */
	*new = *victim;
}
EXPORT_SYMBOL(rb_replace_node);