summaryrefslogblamecommitdiff
path: root/lib/rbtree.c
blob: eb823a31099c37678768551ed685d2dc0f0a6aca (plain) (tree)






















                                                                           
                         
 


















                                                                               

















                                                                       










                                                                    


                                                                        
                                                 

                                              
                                                    

                              


                                     
         

                                                
                    
                                                 


                                      
                                   




                                                                         
                                                 

                                             
                                                    

                              


                                    
         

                                                
                    
                                               


                                     
                                  

 




















                                                                 

                                                                
                                                                     
 







                                                                     
                              
                                                                  



                                               























                                                                               

                         
                                                       

















                                                                               
                                              

                         













                                                                               
                              
                        








                                                                               

                         
                                                      






                                                                          
                                              

                         





                                                                               
                              

                 







                                                                          















                                                                            
                                                 
                                             
                         

                                                    


                                                               


                                                                               
                                                          


                                                                 
                                 



                                                               
                         




                                                              
                        
                                                
                                             
                         

                                                    


                                                                


                                                                             
                                                          


                                                                 
                                 



                                                              
                         




                                                              

                 

















                                                         








                                                                
                                       
                                         
                                       
 
                                    
                                      


                                                             
                                                


                                                           
                 
 
                                                                 
                                             
                                                  
 


                           
                                 
                               

                  
                                             

                   



                                                 
         

                                      






                                                      































                                                                                
                                 
























                                                                        
                                      









                                                                              
                                    
 


                                                                    
                                                    











                               
                                                   











                                
                                                   
 

                               
                                

                            





                                                                      
                                              







                                                                     

                                                                      
 
                      


                       
                                                   
 

                               
                                

                            





                                                                      
                                              



                                                                      

                                                                     
 
                      





                                                                 
                                                   










                                                                   
                                                    
                             
                                                     




                                                                         
/*
  Red Black Trees
  (C) 1999  Andrea Arcangeli <andrea@suse.de>
  (C) 2002  David Woodhouse <dwmw2@infradead.org>
  
  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 2 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

  linux/lib/rbtree.c
*/

#include <linux/rbtree.h>
#include <linux/export.h>

/*
 * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree
 *
 *  1) A node is either red or black
 *  2) The root is black
 *  3) All leaves (NULL) are black
 *  4) Both children of every red node are black
 *  5) Every simple path from root to leaves contains the same number
 *     of black nodes.
 *
 *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
 *  consecutive red nodes in a path and every red node is therefore followed by
 *  a black. So if B is the number of black nodes on every simple path (as per
 *  5), then the longest possible path due to 4 is 2B.
 *
 *  We shall indicate color with case, where black nodes are uppercase and red
 *  nodes will be lowercase.
 */

#define	RB_RED		0
#define	RB_BLACK	1

#define rb_color(r)   ((r)->__rb_parent_color & 1)
#define rb_is_red(r)   (!rb_color(r))
#define rb_is_black(r) rb_color(r)
#define rb_set_red(r)  do { (r)->__rb_parent_color &= ~1; } while (0)
#define rb_set_black(r)  do { (r)->__rb_parent_color |= 1; } while (0)

static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p)
{
	rb->__rb_parent_color = rb_color(rb) | (unsigned long)p;
}
static inline void rb_set_color(struct rb_node *rb, int color)
{
	rb->__rb_parent_color = (rb->__rb_parent_color & ~1) | color;
}

static inline void rb_set_parent_color(struct rb_node *rb,
				       struct rb_node *p, int color)
{
	rb->__rb_parent_color = (unsigned long)p | color;
}

static inline struct rb_node *rb_red_parent(struct rb_node *red)
{
	return (struct rb_node *)red->__rb_parent_color;
}

static void __rb_rotate_left(struct rb_node *node, struct rb_root *root)
{
	struct rb_node *right = node->rb_right;
	struct rb_node *parent = rb_parent(node);

	if ((node->rb_right = right->rb_left))
		rb_set_parent(right->rb_left, node);
	right->rb_left = node;

	rb_set_parent(right, parent);

	if (parent)
	{
		if (node == parent->rb_left)
			parent->rb_left = right;
		else
			parent->rb_right = right;
	}
	else
		root->rb_node = right;
	rb_set_parent(node, right);
}

static void __rb_rotate_right(struct rb_node *node, struct rb_root *root)
{
	struct rb_node *left = node->rb_left;
	struct rb_node *parent = rb_parent(node);

	if ((node->rb_left = left->rb_right))
		rb_set_parent(left->rb_right, node);
	left->rb_right = node;

	rb_set_parent(left, parent);

	if (parent)
	{
		if (node == parent->rb_right)
			parent->rb_right = left;
		else
			parent->rb_left = left;
	}
	else
		root->rb_node = left;
	rb_set_parent(node, left);
}

/*
 * Helper function for rotations:
 * - old's parent and color get assigned to new
 * - old gets assigned new as a parent and 'color' as a color.
 */
static inline void
__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
			struct rb_root *root, int color)
{
	struct rb_node *parent = rb_parent(old);
	new->__rb_parent_color = old->__rb_parent_color;
	rb_set_parent_color(old, new, color);
	if (parent) {
		if (parent->rb_left == old)
			parent->rb_left = new;
		else
			parent->rb_right = new;
	} else
		root->rb_node = new;
}

void rb_insert_color(struct rb_node *node, struct rb_root *root)
{
	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;

	while (true) {
		/*
		 * Loop invariant: node is red
		 *
		 * If there is a black parent, we are done.
		 * Otherwise, take some corrective action as we don't
		 * want a red root or two consecutive red nodes.
		 */
		if (!parent) {
			rb_set_parent_color(node, NULL, RB_BLACK);
			break;
		} else if (rb_is_black(parent))
			break;

		gparent = rb_red_parent(parent);

		if (parent == gparent->rb_left) {
			tmp = gparent->rb_right;
			if (tmp && rb_is_red(tmp)) {
				/*
				 * Case 1 - color flips
				 *
				 *       G            g
				 *      / \          / \
				 *     p   u  -->   P   U
				 *    /            /
				 *   n            N
				 *
				 * However, since g's parent might be red, and
				 * 4) does not allow this, we need to recurse
				 * at g.
				 */
				rb_set_parent_color(tmp, gparent, RB_BLACK);
				rb_set_parent_color(parent, gparent, RB_BLACK);
				node = gparent;
				parent = rb_parent(node);
				rb_set_parent_color(node, parent, RB_RED);
				continue;
			}

			if (parent->rb_right == node) {
				/*
				 * Case 2 - left rotate at parent
				 *
				 *      G             G
				 *     / \           / \
				 *    p   U  -->    n   U
				 *     \           /
				 *      n         p
				 *
				 * This still leaves us in violation of 4), the
				 * continuation into Case 3 will fix that.
				 */
				parent->rb_right = tmp = node->rb_left;
				node->rb_left = parent;
				if (tmp)
					rb_set_parent_color(tmp, parent,
							    RB_BLACK);
				rb_set_parent_color(parent, node, RB_RED);
				parent = node;
			}

			/*
			 * Case 3 - right rotate at gparent
			 *
			 *        G           P
			 *       / \         / \
			 *      p   U  -->  n   g
			 *     /                 \
			 *    n                   U
			 */
			gparent->rb_left = tmp = parent->rb_right;
			parent->rb_right = gparent;
			if (tmp)
				rb_set_parent_color(tmp, gparent, RB_BLACK);
			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
			break;
		} else {
			tmp = gparent->rb_left;
			if (tmp && rb_is_red(tmp)) {
				/* Case 1 - color flips */
				rb_set_parent_color(tmp, gparent, RB_BLACK);
				rb_set_parent_color(parent, gparent, RB_BLACK);
				node = gparent;
				parent = rb_parent(node);
				rb_set_parent_color(node, parent, RB_RED);
				continue;
			}

			if (parent->rb_left == node) {
				/* Case 2 - right rotate at parent */
				parent->rb_left = tmp = node->rb_right;
				node->rb_right = parent;
				if (tmp)
					rb_set_parent_color(tmp, parent,
							    RB_BLACK);
				rb_set_parent_color(parent, node, RB_RED);
				parent = node;
			}

			/* Case 3 - left rotate at gparent */
			gparent->rb_right = tmp = parent->rb_left;
			parent->rb_left = gparent;
			if (tmp)
				rb_set_parent_color(tmp, gparent, RB_BLACK);
			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
			break;
		}
	}
}
EXPORT_SYMBOL(rb_insert_color);

static void __rb_erase_color(struct rb_node *node, struct rb_node *parent,
			     struct rb_root *root)
{
	struct rb_node *other;

	while (true) {
		/*
		 * Loop invariant: all leaf paths going through node have a
		 * black node count that is 1 lower than other leaf paths.
		 *
		 * If node is red, we can flip it to black to adjust.
		 * If node is the root, all leaf paths go through it.
		 * Otherwise, we need to adjust the tree through color flips
		 * and tree rotations as per one of the 4 cases below.
		 */
		if (node && rb_is_red(node)) {
			rb_set_black(node);
			break;
		} else if (!parent) {
			break;
		} else if (parent->rb_left == node) {
			other = parent->rb_right;
			if (rb_is_red(other))
			{
				rb_set_black(other);
				rb_set_red(parent);
				__rb_rotate_left(parent, root);
				other = parent->rb_right;
			}
			if (!other->rb_right || rb_is_black(other->rb_right)) {
				if (!other->rb_left ||
				    rb_is_black(other->rb_left)) {
					rb_set_red(other);
					node = parent;
					parent = rb_parent(node);
					continue;
				}
				rb_set_black(other->rb_left);
				rb_set_red(other);
				__rb_rotate_right(other, root);
				other = parent->rb_right;
			}
			rb_set_color(other, rb_color(parent));
			rb_set_black(parent);
			rb_set_black(other->rb_right);
			__rb_rotate_left(parent, root);
			break;
		} else {
			other = parent->rb_left;
			if (rb_is_red(other))
			{
				rb_set_black(other);
				rb_set_red(parent);
				__rb_rotate_right(parent, root);
				other = parent->rb_left;
			}
			if (!other->rb_left || rb_is_black(other->rb_left)) {
				if (!other->rb_right ||
				    rb_is_black(other->rb_right)) {
					rb_set_red(other);
					node = parent;
					parent = rb_parent(node);
					continue;
				}
				rb_set_black(other->rb_right);
				rb_set_red(other);
				__rb_rotate_left(other, root);
				other = parent->rb_left;
			}
			rb_set_color(other, rb_color(parent));
			rb_set_black(parent);
			rb_set_black(other->rb_left);
			__rb_rotate_right(parent, root);
			break;
		}
	}
}

void rb_erase(struct rb_node *node, struct rb_root *root)
{
	struct rb_node *child, *parent;
	int color;

	if (!node->rb_left)
		child = node->rb_right;
	else if (!node->rb_right)
		child = node->rb_left;
	else
	{
		struct rb_node *old = node, *left;

		node = node->rb_right;
		while ((left = node->rb_left) != NULL)
			node = left;

		if (rb_parent(old)) {
			if (rb_parent(old)->rb_left == old)
				rb_parent(old)->rb_left = node;
			else
				rb_parent(old)->rb_right = node;
		} else
			root->rb_node = node;

		child = node->rb_right;
		parent = rb_parent(node);
		color = rb_color(node);

		if (parent == old) {
			parent = node;
		} else {
			if (child)
				rb_set_parent(child, parent);
			parent->rb_left = child;

			node->rb_right = old->rb_right;
			rb_set_parent(old->rb_right, node);
		}

		node->__rb_parent_color = old->__rb_parent_color;
		node->rb_left = old->rb_left;
		rb_set_parent(old->rb_left, node);

		goto color;
	}

	parent = rb_parent(node);
	color = rb_color(node);

	if (child)
		rb_set_parent(child, parent);
	if (parent)
	{
		if (parent->rb_left == node)
			parent->rb_left = child;
		else
			parent->rb_right = child;
	}
	else
		root->rb_node = child;

 color:
	if (color == RB_BLACK)
		__rb_erase_color(child, parent, root);
}
EXPORT_SYMBOL(rb_erase);

static void rb_augment_path(struct rb_node *node, rb_augment_f func, void *data)
{
	struct rb_node *parent;

up:
	func(node, data);
	parent = rb_parent(node);
	if (!parent)
		return;

	if (node == parent->rb_left && parent->rb_right)
		func(parent->rb_right, data);
	else if (parent->rb_left)
		func(parent->rb_left, data);

	node = parent;
	goto up;
}

/*
 * after inserting @node into the tree, update the tree to account for
 * both the new entry and any damage done by rebalance
 */
void rb_augment_insert(struct rb_node *node, rb_augment_f func, void *data)
{
	if (node->rb_left)
		node = node->rb_left;
	else if (node->rb_right)
		node = node->rb_right;

	rb_augment_path(node, func, data);
}
EXPORT_SYMBOL(rb_augment_insert);

/*
 * before removing the node, find the deepest node on the rebalance path
 * that will still be there after @node gets removed
 */
struct rb_node *rb_augment_erase_begin(struct rb_node *node)
{
	struct rb_node *deepest;

	if (!node->rb_right && !node->rb_left)
		deepest = rb_parent(node);
	else if (!node->rb_right)
		deepest = node->rb_left;
	else if (!node->rb_left)
		deepest = node->rb_right;
	else {
		deepest = rb_next(node);
		if (deepest->rb_right)
			deepest = deepest->rb_right;
		else if (rb_parent(deepest) != node)
			deepest = rb_parent(deepest);
	}

	return deepest;
}
EXPORT_SYMBOL(rb_augment_erase_begin);

/*
 * after removal, update the tree to account for the removed entry
 * and any rebalance damage.
 */
void rb_augment_erase_end(struct rb_node *node, rb_augment_f func, void *data)
{
	if (node)
		rb_augment_path(node, func, data);
}
EXPORT_SYMBOL(rb_augment_erase_end);

/*
 * This function returns the first node (in sort order) of the tree.
 */
struct rb_node *rb_first(const struct rb_root *root)
{
	struct rb_node	*n;

	n = root->rb_node;
	if (!n)
		return NULL;
	while (n->rb_left)
		n = n->rb_left;
	return n;
}
EXPORT_SYMBOL(rb_first);

struct rb_node *rb_last(const struct rb_root *root)
{
	struct rb_node	*n;

	n = root->rb_node;
	if (!n)
		return NULL;
	while (n->rb_right)
		n = n->rb_right;
	return n;
}
EXPORT_SYMBOL(rb_last);

struct rb_node *rb_next(const struct rb_node *node)
{
	struct rb_node *parent;

	if (RB_EMPTY_NODE(node))
		return NULL;

	/* If we have a right-hand child, go down and then left as far
	   as we can. */
	if (node->rb_right) {
		node = node->rb_right; 
		while (node->rb_left)
			node=node->rb_left;
		return (struct rb_node *)node;
	}

	/* No right-hand children.  Everything down and left is
	   smaller than us, so any 'next' node must be in the general
	   direction of our parent. Go up the tree; any time the
	   ancestor is a right-hand child of its parent, keep going
	   up. First time it's a left-hand child of its parent, said
	   parent is our 'next' node. */
	while ((parent = rb_parent(node)) && node == parent->rb_right)
		node = parent;

	return parent;
}
EXPORT_SYMBOL(rb_next);

struct rb_node *rb_prev(const struct rb_node *node)
{
	struct rb_node *parent;

	if (RB_EMPTY_NODE(node))
		return NULL;

	/* If we have a left-hand child, go down and then right as far
	   as we can. */
	if (node->rb_left) {
		node = node->rb_left; 
		while (node->rb_right)
			node=node->rb_right;
		return (struct rb_node *)node;
	}

	/* No left-hand children. Go up till we find an ancestor which
	   is a right-hand child of its parent */
	while ((parent = rb_parent(node)) && node == parent->rb_left)
		node = parent;

	return parent;
}
EXPORT_SYMBOL(rb_prev);

void rb_replace_node(struct rb_node *victim, struct rb_node *new,
		     struct rb_root *root)
{
	struct rb_node *parent = rb_parent(victim);

	/* Set the surrounding nodes to point to the replacement */
	if (parent) {
		if (victim == parent->rb_left)
			parent->rb_left = new;
		else
			parent->rb_right = new;
	} else {
		root->rb_node = new;
	}
	if (victim->rb_left)
		rb_set_parent(victim->rb_left, new);
	if (victim->rb_right)
		rb_set_parent(victim->rb_right, new);

	/* Copy the pointers/colour from the victim to the replacement */
	*new = *victim;
}
EXPORT_SYMBOL(rb_replace_node);