/* mpi-mod.c - Modular reduction
* Copyright (C) 1998, 1999, 2001, 2002, 2003,
* 2007 Free Software Foundation, Inc.
*
* This file is part of Libgcrypt.
*/
#include "mpi-internal.h"
#include "longlong.h"
/* Context used with Barrett reduction. */
struct barrett_ctx_s {
MPI m; /* The modulus - may not be modified. */
int m_copied; /* If true, M needs to be released. */
int k;
MPI y;
MPI r1; /* Helper MPI. */
MPI r2; /* Helper MPI. */
MPI r3; /* Helper MPI allocated on demand. */
};
void mpi_mod(MPI rem, MPI dividend, MPI divisor)
{
mpi_fdiv_r(rem, dividend, divisor);
}
/* This function returns a new context for Barrett based operations on
* the modulus M. This context needs to be released using
* _gcry_mpi_barrett_free. If COPY is true M will be transferred to
* the context and the user may change M. If COPY is false, M may not
* be changed until gcry_mpi_barrett_free has been called.
*/
mpi_barrett_t mpi_barrett_init(MPI m, int copy)
{
mpi_barrett_t ctx;
MPI tmp;
mpi_normalize(m);
ctx = kcalloc(1, sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return NULL;
if (copy) {
ctx->m = mpi_copy(m);
ctx->m_copied = 1;
} else
ctx->m = m;
ctx->k = mpi_get_nlimbs(m);
tmp = mpi_alloc(ctx->k + 1);
/* Barrett precalculation: y = floor(b^(2k) / m). */
mpi_set_ui(tmp, 1);
mpi_lshift_limbs(tmp, 2 * ctx->k);
mpi_fdiv_q(tmp, tmp, m);
ctx->y = tmp;
ctx->r1 = mpi_alloc(2 * ctx->k + 1);
ctx->r2 = mpi_alloc(2 * ctx->k + 1);
return ctx;
}
void mpi_barrett_free(mpi_barrett_t ctx)
{
if (ctx) {
mpi_free(ctx->y);
mpi_free(ctx->r1);
mpi_free(ctx->r2);
if (ctx->r3)
mpi_free(ctx->r3);
if (ctx->m_copied)
mpi_free(ctx->m);
kfree(ctx);
}
}
/* R = X mod M
*
* Using Barrett reduction. Before using this function
* _gcry_mpi_barrett_init must have been called to do the
* precalculations. CTX is the context created by this precalculation
* and also conveys M. If the Barret reduction could no be done a
* straightforward reduction method is used.
*
* We assume that these conditions are met:
* Input: x =(x_2k-1 ...x_0)_b
* m =(m_k-1 ....m_0)_b with m_k-1 != 0
* Output: r = x mod m
*/
void mpi_mod_barrett(MPI r, MPI x, mpi_barrett_t ctx)
{
MPI m = ctx->m;
int k = ctx->k;
MPI y = ctx->y;
MPI r1 = ctx->r1;
MPI r2 = ctx->r2;
int sign;
mpi_normalize(x);
if (mpi_get_nlimbs(x) > 2*k) {
mpi_mod(r, x, m);
return;
}
sign = x->sign;
x->sign = 0;
/* 1. q1 = floor( x / b^k-1)
* q2 = q1 * y
* q3 = floor( q2 / b^k+1 )
* Actually, we don't need qx, we can work direct on r2
*/
mpi_set(r2, x);
mpi_rshift_limbs(r2, k-1);
mpi_mul(r2, r2, y);
mpi_rshift_limbs(r2, k+1);
/* 2. r1 = x mod b^k+1
* r2 = q3 * m mod b^k+1
* r = r1 - r2
* 3. if r < 0 then r = r + b^k+1
*/
mpi_set(r1, x);
if (r1->nlimbs > k+1) /* Quick modulo operation. */
r1->nlimbs = k+1;
mpi_mul(r2, r2, m);
if (r2->nlimbs > k+1) /* Quick modulo operation. */
r2->nlimbs = k+1;
mpi_sub(r, r1, r2);
if (mpi_has_sign(r)) {
if (!ctx->r3) {
ctx->r3 = mpi_alloc(k + 2);
mpi_set_ui(ctx->r3, 1);
mpi_lshift_limbs(ctx->r3, k + 1);
}
mpi_add(r, r, ctx->r3);
}
/* 4. while r >= m do r = r - m */
while (mpi_cmp(r, m) >= 0)
mpi_sub(r, r, m);
x->sign = sign;
}
void mpi_mul_barrett(MPI w, MPI u, MPI v, mpi_barrett_t ctx)
{
mpi_mul(w, u, v);
mpi_mod_barrett(w, w, ctx);
}