/*
* Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
* policies)
*/
#ifdef CONFIG_SMP
static cpumask_t rt_overload_mask;
static atomic_t rto_count;
static inline int rt_overloaded(void)
{
return atomic_read(&rto_count);
}
static inline cpumask_t *rt_overload(void)
{
return &rt_overload_mask;
}
static inline void rt_set_overload(struct rq *rq)
{
cpu_set(rq->cpu, rt_overload_mask);
/*
* Make sure the mask is visible before we set
* the overload count. That is checked to determine
* if we should look at the mask. It would be a shame
* if we looked at the mask, but the mask was not
* updated yet.
*/
wmb();
atomic_inc(&rto_count);
}
static inline void rt_clear_overload(struct rq *rq)
{
/* the order here really doesn't matter */
atomic_dec(&rto_count);
cpu_clear(rq->cpu, rt_overload_mask);
}
static void update_rt_migration(struct rq *rq)
{
if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1))
rt_set_overload(rq);
else
rt_clear_overload(rq);
}
#endif /* CONFIG_SMP */
/*
* Update the current task's runtime statistics. Skip current tasks that
* are not in our scheduling class.
*/
static void update_curr_rt(struct rq *rq)
{
struct task_struct *curr = rq->curr;
u64 delta_exec;
if (!task_has_rt_policy(curr))
return;
delta_exec = rq->clock - curr->se.exec_start;
if (unlikely((s64)delta_exec < 0))
delta_exec = 0;
schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
curr->se.sum_exec_runtime += delta_exec;
curr->se.exec_start = rq->clock;
cpuacct_charge(curr, delta_exec);
}
static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq)
{
WARN_ON(!rt_task(p));
rq->rt.rt_nr_running++;
#ifdef CONFIG_SMP
if (p->prio < rq->rt.highest_prio)
rq->rt.highest_prio = p->prio;
if (p->nr_cpus_allowed > 1)
rq->rt.rt_nr_migratory++;
update_rt_migration(rq);
#endif /* CONFIG_SMP */
}
static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq)
{
WARN_ON(!rt_task(p));
WARN_ON(!rq->rt.rt_nr_running);
rq->rt.rt_nr_running--;
#ifdef CONFIG_SMP
if (rq->rt.rt_nr_running) {
struct rt_prio_array *array;
WARN_ON(p->prio < rq->rt.highest_prio);
if (p->prio == rq->rt.highest_prio) {
/* recalculate */
array = &rq->rt.active;
rq->rt.highest_prio =
sched_find_first_bit(array->bitmap);
} /* otherwise leave rq->highest prio alone */
} else
rq->rt.highest_prio = MAX_RT_PRIO;
if (p->nr_cpus_allowed > 1)
rq->rt.rt_nr_migratory--;
update_rt_migration(rq);
#endif /* CONFIG_SMP */
}
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
{
struct rt_prio_array *array = &rq->rt.active;
list_add_tail(&p->run_list, array->queue + p->prio);
__set_bit(p->prio, array->bitmap);
inc_cpu_load(rq, p->se.load.weight);
inc_rt_tasks(p, rq);
}
/*
* Adding/removing a task to/from a priority array:
*/
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
{
struct rt_prio_array *array = &rq->rt.active;
update_curr_rt(rq);
list_del(&p->run_list);
if (list_empty(array->queue + p->prio))
__clear_bit(p->prio, array->bitmap);
dec_cpu_load(rq, p->se.load.weight);
dec_rt_tasks(p, rq);
}
/*
* Put task to the end of the run list without the overhead of dequeue
* followed by enqueue.
*/
static void requeue_task_rt(struct rq *rq, struct task_struct *p)
{
struct rt_prio_array *array = &rq->rt.active;
list_move_tail(&p->run_list, array->queue + p->prio);
}
static void
yield_task_rt(struct rq *rq)
{
requeue_task_rt(rq, rq->curr);
}
/*
* Preempt the current task with a newly woken task if needed:
*/
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
{
if (p->prio < rq->curr->prio)
resched_task(rq->curr);
}
static struct task_struct *pick_next_task_rt(struct rq *rq)
{
struct rt_prio_array *array = &rq->rt.active;
struct task_struct *next;
struct list_head *queue;
int idx;
idx = sched_find_first_bit(array->bitmap);
if (idx >= MAX_RT_PRIO)
return NULL;
queue = array->queue + idx;
next = list_entry(queue->next, struct task_struct, run_list);
next->se.exec_start = rq->clock;
return next;
}
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
{
update_curr_rt(rq);
p->se.exec_start = 0;
}
#ifdef CONFIG_SMP
/* Only try algorithms three times */
#define RT_MAX_TRIES 3
static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
if (!task_running(rq, p) &&
(cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
(p->nr_cpus_allowed > 1))
return 1;
return 0;
}
/* Return the second highest RT task, NULL otherwise */
static struct task_struct *pick_next_highest_task_rt(struct rq *rq,
int cpu)
{
struct rt_prio_array *array = &rq->rt.active;
struct task_struct *next;
struct list_head *queue;
int idx;
assert_spin_locked(&rq->lock);
if (likely(rq->rt.rt_nr_running < 2))
return NULL;
idx = sched_find_first_bit(array->bitmap);
if (unlikely(idx >= MAX_RT_PRIO)) {
WARN_ON(1); /* rt_nr_running is bad */
return NULL;
}
queue = array->queue + idx;
BUG_ON(list_empty(queue));
next = list_entry(queue->next, struct task_struct, run_list);
if (unlikely(pick_rt_task(rq, next, cpu)))
goto out;
if (queue->next->next != queue) {
/* same prio task */
next = list_entry(queue->next->next, struct task_struct, run_list);
if (pick_rt_task(rq, next, cpu))
goto out;
}
retry:
/* slower, but more flexible */
idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
if (unlikely(idx >= MAX_RT_PRIO))
return NULL;
queue = array->queue + idx;
BUG_ON(list_empty(queue));
list_for_each_entry(next, queue, run_list) {
if (pick_rt_task(rq, next, cpu))
goto out;
}
goto retry;
out:
return next;
}
static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
/* Will lock the rq it finds */
static struct rq *find_lock_lowest_rq(struct task_struct *task,
struct rq *this_rq)
{
struct rq *lowest_rq = NULL;
int cpu;
int tries;
cpumask_t *cpu_mask = &__get_cpu_var(local_cpu_mask);
cpus_and(*cpu_mask, cpu_online_map, task->cpus_allowed);
for (tries = 0; tries < RT_MAX_TRIES; tries++) {
/*
* Scan each rq for the lowest prio.
*/
for_each_cpu_mask(cpu, *cpu_mask) {
struct rq *rq = &per_cpu(runqueues, cpu);
if (cpu == this_rq->cpu)
continue;
/* We look for lowest RT prio or non-rt CPU */
if (rq->rt.highest_prio >= MAX_RT_PRIO) {
lowest_rq = rq;
break;
}
/* no locking for now */
if (rq->rt.highest_prio > task->prio &&
(!lowest_rq || rq->rt.highest_prio > lowest_rq->rt.highest_prio)) {
lowest_rq = rq;
}
}
if (!lowest_rq)
break;
/* if the prio of this runqueue changed, try again */
if (double_lock_balance(this_rq, lowest_rq)) {
/*
* We had to unlock the run queue. In
* the mean time, task could have
* migrated already or had its affinity changed.
* Also make sure that it wasn't scheduled on its rq.
*/
if (unlikely(task_rq(task) != this_rq ||
!cpu_isset(lowest_rq->cpu, task->cpus_allowed) ||
task_running(this_rq, task) ||
!task->se.on_rq)) {
spin_unlock(&lowest_rq->lock);
lowest_rq = NULL;
break;
}
}
/* If this rq is still suitable use it. */
if (lowest_rq->rt.highest_prio > task->prio)
break;
/* try again */
spin_unlock(&lowest_rq->lock);
lowest_rq = NULL;
}
return lowest_rq;
}
/*
* If the current CPU has more than one RT task, see if the non
* running task can migrate over to a CPU that is running a task
* of lesser priority.
*/
static int push_rt_task(struct rq *this_rq)
{
struct task_struct *next_task;
struct rq *lowest_rq;
int ret = 0;
int paranoid = RT_MAX_TRIES;
assert_spin_locked(&this_rq->lock);
next_task = pick_next_highest_task_rt(this_rq, -1);
if (!next_task)
return 0;
retry:
if (unlikely(next_task == this_rq->curr)) {
WARN_ON(1);
return 0;
}
/*
* It's possible that the next_task slipped in of
* higher priority than current. If that's the case
* just reschedule current.
*/
if (unlikely(next_task->prio < this_rq->curr->prio)) {
resched_task(this_rq->curr);
return 0;
}
/* We might release this_rq lock */
get_task_struct(next_task);
/* find_lock_lowest_rq locks the rq if found */
lowest_rq = find_lock_lowest_rq(next_task, this_rq);
if (!lowest_rq) {
struct task_struct *task;
/*
* find lock_lowest_rq releases this_rq->lock
* so it is possible that next_task has changed.
* If it has, then try again.
*/
task = pick_next_highest_task_rt(this_rq, -1);
if (unlikely(task != next_task) && task && paranoid--) {
put_task_struct(next_task);
next_task = task;
goto retry;
}
goto out;
}
assert_spin_locked(&lowest_rq->lock);
deactivate_task(this_rq, next_task, 0);
set_task_cpu(next_task, lowest_rq->cpu);
activate_task(lowest_rq, next_task, 0);
resched_task(lowest_rq->curr);
spin_unlock(&lowest_rq->lock);
ret = 1;
out:
put_task_struct(next_task);
return ret;
}
/*
* TODO: Currently we just use the second highest prio task on
* the queue, and stop when it can't migrate (or there's
* no more RT tasks). There may be a case where a lower
* priority RT task has a different affinity than the
* higher RT task. In this case the lower RT task could
* possibly be able to migrate where as the higher priority
* RT task could not. We currently ignore this issue.
* Enhancements are welcome!
*/
static void push_rt_tasks(struct rq *rq)
{
/* push_rt_task will return true if it moved an RT */
while (push_rt_task(rq))
;
}
static int pull_rt_task(struct rq *this_rq)
{
struct task_struct *next;
struct task_struct *p;
struct rq *src_rq;
cpumask_t *rto_cpumask;
int this_cpu = this_rq->cpu;
int cpu;
int ret = 0;
assert_spin_locked(&this_rq->lock);
/*
* If cpusets are used, and we have overlapping
* run queue cpusets, then this algorithm may not catch all.
* This is just the price you pay on trying to keep
* dirtying caches down on large SMP machines.
*/
if (likely(!rt_overloaded()))
return 0;
next = pick_next_task_rt(this_rq);
rto_cpumask = rt_overload();
for_each_cpu_mask(cpu, *rto_cpumask) {
if (this_cpu == cpu)
continue;
src_rq = cpu_rq(cpu);
if (unlikely(src_rq->rt.rt_nr_running <= 1)) {
/*
* It is possible that overlapping cpusets
* will miss clearing a non overloaded runqueue.
* Clear it now.
*/
if (double_lock_balance(this_rq, src_rq)) {
/* unlocked our runqueue lock */
struct task_struct *old_next = next;
next = pick_next_task_rt(this_rq);
if (next != old_next)
ret = 1;
}
if (likely(src_rq->rt.rt_nr_running <= 1))
/*
* Small chance that this_rq->curr changed
* but it's really harmless here.
*/
rt_clear_overload(this_rq);
else
/*
* Heh, the src_rq is now overloaded, since
* we already have the src_rq lock, go straight
* to pulling tasks from it.
*/
goto try_pulling;
spin_unlock(&src_rq->lock);
continue;
}
/*
* We can potentially drop this_rq's lock in
* double_lock_balance, and another CPU could
* steal our next task - hence we must cause
* the caller to recalculate the next task
* in that case:
*/
if (double_lock_balance(this_rq, src_rq)) {
struct task_struct *old_next = next;
next = pick_next_task_rt(this_rq);
if (next != old_next)
ret = 1;
}
/*
* Are there still pullable RT tasks?
*/
if (src_rq->rt.rt_nr_running <= 1) {
spin_unlock(&src_rq->lock);
continue;
}
try_pulling:
p = pick_next_highest_task_rt(src_rq, this_cpu);
/*
* Do we have an RT task that preempts
* the to-be-scheduled task?
*/
if (p && (!next || (p->prio < next->prio))) {
WARN_ON(p == src_rq->curr);
WARN_ON(!p->se.on_rq);
/*
* There's a chance that p is higher in priority
* than what's currently running on its cpu.
* This is just that p is wakeing up and hasn't
* had a chance to schedule. We only pull
* p if it is lower in priority than the
* current task on the run queue or
* this_rq next task is lower in prio than
* the current task on that rq.
*/
if (p->prio < src_rq->curr->prio ||
(next && next->prio < src_rq->curr->prio))
goto bail;
ret = 1;
deactivate_task(src_rq, p, 0);
set_task_cpu(p, this_cpu);
activate_task(this_rq, p, 0);
/*
* We continue with the search, just in
* case there's an even higher prio task
* in another runqueue. (low likelyhood
* but possible)
*/
/*
* Update next so that we won't pick a task
* on another cpu with a priority lower (or equal)
* than the one we just picked.
*/
next = p;
}
bail:
spin_unlock(&src_rq->lock);
}
return ret;
}
static void schedule_balance_rt(struct rq *rq,
struct task_struct *prev)
{
/* Try to pull RT tasks here if we lower this rq's prio */
if (unlikely(rt_task(prev)) &&
rq->rt.highest_prio > prev->prio)
pull_rt_task(rq);
}
static void schedule_tail_balance_rt(struct rq *rq)
{
/*
* If we have more than one rt_task queued, then
* see if we can push the other rt_tasks off to other CPUS.
* Note we may release the rq lock, and since
* the lock was owned by prev, we need to release it
* first via finish_lock_switch and then reaquire it here.
*/
if (unlikely(rq->rt.rt_nr_running > 1)) {
spin_lock_irq(&rq->lock);
push_rt_tasks(rq);
spin_unlock_irq(&rq->lock);
}
}
static void wakeup_balance_rt(struct rq *rq, struct task_struct *p)
{
if (unlikely(rt_task(p)) &&
!task_running(rq, p) &&
(p->prio >= rq->curr->prio))
push_rt_tasks(rq);
}
static unsigned long
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
unsigned long max_load_move,
struct sched_domain *sd, enum cpu_idle_type idle,
int *all_pinned, int *this_best_prio)
{
/* don't touch RT tasks */
return 0;
}
static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
struct sched_domain *sd, enum cpu_idle_type idle)
{
/* don't touch RT tasks */
return 0;
}
static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
{
int weight = cpus_weight(*new_mask);
BUG_ON(!rt_task(p));
/*
* Update the migration status of the RQ if we have an RT task
* which is running AND changing its weight value.
*/
if (p->se.on_rq && (weight != p->nr_cpus_allowed)) {
struct rq *rq = task_rq(p);
if ((p->nr_cpus_allowed <= 1) && (weight > 1))
rq->rt.rt_nr_migratory++;
else if((p->nr_cpus_allowed > 1) && (weight <= 1)) {
BUG_ON(!rq->rt.rt_nr_migratory);
rq->rt.rt_nr_migratory--;
}
update_rt_migration(rq);
}
p->cpus_allowed = *new_mask;
p->nr_cpus_allowed = weight;
}
#else /* CONFIG_SMP */
# define schedule_tail_balance_rt(rq) do { } while (0)
# define schedule_balance_rt(rq, prev) do { } while (0)
# define wakeup_balance_rt(rq, p) do { } while (0)
#endif /* CONFIG_SMP */
static void task_tick_rt(struct rq *rq, struct task_struct *p)
{
update_curr_rt(rq);
/*
* RR tasks need a special form of timeslice management.
* FIFO tasks have no timeslices.
*/
if (p->policy != SCHED_RR)
return;
if (--p->time_slice)
return;
p->time_slice = DEF_TIMESLICE;
/*
* Requeue to the end of queue if we are not the only element
* on the queue:
*/
if (p->run_list.prev != p->run_list.next) {
requeue_task_rt(rq, p);
set_tsk_need_resched(p);
}
}
static void set_curr_task_rt(struct rq *rq)
{
struct task_struct *p = rq->curr;
p->se.exec_start = rq->clock;
}
const struct sched_class rt_sched_class = {
.next = &fair_sched_class,
.enqueue_task = enqueue_task_rt,
.dequeue_task = dequeue_task_rt,
.yield_task = yield_task_rt,
.check_preempt_curr = check_preempt_curr_rt,
.pick_next_task = pick_next_task_rt,
.put_prev_task = put_prev_task_rt,
#ifdef CONFIG_SMP
.load_balance = load_balance_rt,
.move_one_task = move_one_task_rt,
.set_cpus_allowed = set_cpus_allowed_rt,
#endif
.set_curr_task = set_curr_task_rt,
.task_tick = task_tick_rt,
};