summaryrefslogblamecommitdiff
path: root/kernel/sched/topology.c
blob: 4f6fa7553d927112262ec56452058258439c50e5 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368











                                            
                                     
























                                                                              
                                                               








                                                                        
                                                 

































                                                                             


                                                                          

                                                                                         
                                                       


                                                                          

                                                                           
 





                                                                                                

                                       
                                    



                                              
























                                                                               
                                                                     












































































































































































































































































































































































                                                                                                    


                                                                           
   

                                                                                       
 
                                                             



                                          

                            
                                  
                                                   










                                                                               

                                 
                                         
         

                                               
                                          










                                                                             





















                                                                      
                                                            
 
                                                      

                                          



                                                            


                                                  
                                                         










                                                                           


                                                            
                                                            







                                                           
                                         






                                                   









                                                                              


                                                                     
                                                                       



                                               

                                                      
                                                 
 






                                        
                           























































































































































































































































































































































































































































































































































































































































































































































                                                                                                



                                    


































































































                                                                                    
                                                     





































































                                                                                  
                                                      








































                                                                           
                                                     


                
                                                               
                                                                

                                                       



































































































































                                                                                   
/*
 * Scheduler topology setup/handling methods
 */
#include <linux/sched.h>
#include <linux/mutex.h>

#include "sched.h"

DEFINE_MUTEX(sched_domains_mutex);

/* Protected by sched_domains_mutex: */
cpumask_var_t sched_domains_tmpmask;
cpumask_var_t sched_domains_tmpmask2;

#ifdef CONFIG_SCHED_DEBUG

static __read_mostly int sched_debug_enabled;

static int __init sched_debug_setup(char *str)
{
	sched_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}

static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  struct cpumask *groupmask)
{
	struct sched_group *group = sd->groups;

	cpumask_clear(groupmask);

	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
	}

	printk(KERN_CONT "span=%*pbl level=%s\n",
	       cpumask_pr_args(sched_domain_span(sd)), sd->name);

	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}

	printk(KERN_DEBUG "%*s groups:", level + 1, "");
	do {
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
			break;
		}

		if (!cpumask_weight(sched_group_cpus(group))) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}

		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}

		cpumask_or(groupmask, groupmask, sched_group_cpus(group));

		printk(KERN_CONT " %d:{ span=%*pbl",
				group->sgc->id,
				cpumask_pr_args(sched_group_cpus(group)));

		if ((sd->flags & SD_OVERLAP) && !cpumask_full(sched_group_mask(group))) {
			printk(KERN_CONT " mask=%*pbl",
				cpumask_pr_args(sched_group_mask(group)));
		}

		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
			printk(KERN_CONT " cap=%lu", group->sgc->capacity);

		if (group == sd->groups && sd->child &&
		    !cpumask_equal(sched_domain_span(sd->child),
				   sched_group_cpus(group))) {
			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
		}

		printk(KERN_CONT " }");

		group = group->next;

		if (group != sd->groups)
			printk(KERN_CONT ",");

	} while (group != sd->groups);
	printk(KERN_CONT "\n");

	if (!cpumask_equal(sched_domain_span(sd), groupmask))
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");

	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}

static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

	if (!sched_debug_enabled)
		return;

	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);

	for (;;) {
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
			break;
		level++;
		sd = sd->parent;
		if (!sd)
			break;
	}
}
#else /* !CONFIG_SCHED_DEBUG */

# define sched_debug_enabled 0
# define sched_domain_debug(sd, cpu) do { } while (0)
static inline bool sched_debug(void)
{
	return false;
}
#endif /* CONFIG_SCHED_DEBUG */

static int sd_degenerate(struct sched_domain *sd)
{
	if (cpumask_weight(sched_domain_span(sd)) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUCAPACITY |
			 SD_ASYM_CPUCAPACITY |
			 SD_SHARE_PKG_RESOURCES |
			 SD_SHARE_POWERDOMAIN)) {
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_AFFINE))
		return 0;

	return 1;
}

static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
				SD_BALANCE_EXEC |
				SD_ASYM_CPUCAPACITY |
				SD_SHARE_CPUCAPACITY |
				SD_SHARE_PKG_RESOURCES |
				SD_PREFER_SIBLING |
				SD_SHARE_POWERDOMAIN);
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

static void free_rootdomain(struct rcu_head *rcu)
{
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);

	cpupri_cleanup(&rd->cpupri);
	cpudl_cleanup(&rd->cpudl);
	free_cpumask_var(rd->dlo_mask);
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	struct root_domain *old_rd = NULL;
	unsigned long flags;

	raw_spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		old_rd = rq->rd;

		if (cpumask_test_cpu(rq->cpu, old_rd->online))
			set_rq_offline(rq);

		cpumask_clear_cpu(rq->cpu, old_rd->span);

		/*
		 * If we dont want to free the old_rd yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

	cpumask_set_cpu(rq->cpu, rd->span);
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
		set_rq_online(rq);

	raw_spin_unlock_irqrestore(&rq->lock, flags);

	if (old_rd)
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
}

static int init_rootdomain(struct root_domain *rd)
{
	memset(rd, 0, sizeof(*rd));

	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
		goto out;
	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
		goto free_span;
	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
		goto free_online;
	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_dlo_mask;

	init_dl_bw(&rd->dl_bw);
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_rto_mask;

	if (cpupri_init(&rd->cpupri) != 0)
		goto free_cpudl;
	return 0;

free_cpudl:
	cpudl_cleanup(&rd->cpudl);
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
out:
	return -ENOMEM;
}

/*
 * By default the system creates a single root-domain with all CPUs as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

void init_defrootdomain(void)
{
	init_rootdomain(&def_root_domain);

	atomic_set(&def_root_domain.refcount, 1);
}

static struct root_domain *alloc_rootdomain(void)
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

	if (init_rootdomain(rd) != 0) {
		kfree(rd);
		return NULL;
	}

	return rd;
}

static void free_sched_groups(struct sched_group *sg, int free_sgc)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
			kfree(sg->sgc);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

static void destroy_sched_domain(struct sched_domain *sd)
{
	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
		kfree(sd->groups->sgc);
		kfree(sd->groups);
	}
	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
		kfree(sd->shared);
	kfree(sd);
}

static void destroy_sched_domains_rcu(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);

	while (sd) {
		struct sched_domain *parent = sd->parent;
		destroy_sched_domain(sd);
		sd = parent;
	}
}

static void destroy_sched_domains(struct sched_domain *sd)
{
	if (sd)
		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
}

/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first CPU number in
 * the cpumask of the domain), this allows us to quickly tell if
 * two CPUs are in the same cache domain, see cpus_share_cache().
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_size);
DEFINE_PER_CPU(int, sd_llc_id);
DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain_shared *sds = NULL;
	struct sched_domain *sd;
	int id = cpu;
	int size = 1;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
	if (sd) {
		id = cpumask_first(sched_domain_span(sd));
		size = cpumask_weight(sched_domain_span(sd));
		sds = sd->shared;
	}

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_size, cpu) = size;
	per_cpu(sd_llc_id, cpu) = id;
	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
}

/*
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
 * hold the hotplug lock.
 */
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; ) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;

		if (sd_parent_degenerate(tmp, parent)) {
			tmp->parent = parent->parent;
			if (parent->parent)
				parent->parent->child = tmp;
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
			destroy_sched_domain(parent);
		} else
			tmp = tmp->parent;
	}

	if (sd && sd_degenerate(sd)) {
		tmp = sd;
		sd = sd->parent;
		destroy_sched_domain(tmp);
		if (sd)
			sd->child = NULL;
	}

	sched_domain_debug(sd, cpu);

	rq_attach_root(rq, rd);
	tmp = rq->sd;
	rcu_assign_pointer(rq->sd, sd);
	destroy_sched_domains(tmp);

	update_top_cache_domain(cpu);
}

/* Setup the mask of CPUs configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ret;

	alloc_bootmem_cpumask_var(&cpu_isolated_map);
	ret = cpulist_parse(str, cpu_isolated_map);
	if (ret) {
		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
		return 0;
	}
	return 1;
}
__setup("isolcpus=", isolated_cpu_setup);

struct s_data {
	struct sched_domain ** __percpu sd;
	struct root_domain	*rd;
};

enum s_alloc {
	sa_rootdomain,
	sa_sd,
	sa_sd_storage,
	sa_none,
};

/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Only CPUs that can arrive at this group should be considered to continue
 * balancing.
 */
static void
build_group_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
{
	const struct cpumask *sg_span = sched_group_cpus(sg);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	cpumask_clear(mask);

	for_each_cpu(i, sg_span) {
		sibling = *per_cpu_ptr(sdd->sd, i);

		/*
		 * Can happen in the asymmetric case, where these siblings are
		 * unused. The mask will not be empty because those CPUs that
		 * do have the top domain _should_ span the domain.
		 */
		if (!sibling->child)
			continue;

		/* If we would not end up here, we can't continue from here */
		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
			continue;

		cpumask_set_cpu(i, mask);
	}

	/* We must not have empty masks here */
	WARN_ON_ONCE(cpumask_empty(mask));
}

/*
 * Return the canonical balance CPU for this group, this is the first CPU
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

static struct sched_group *
build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
{
	struct sched_group *sg;
	struct cpumask *sg_span;

	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
			GFP_KERNEL, cpu_to_node(cpu));

	if (!sg)
		return NULL;

	sg_span = sched_group_cpus(sg);
	if (sd->child)
		cpumask_copy(sg_span, sched_domain_span(sd->child));
	else
		cpumask_copy(sg_span, sched_domain_span(sd));

	return sg;
}

static void init_overlap_sched_group(struct sched_domain *sd,
				     struct sched_group *sg)
{
	struct cpumask *mask = sched_domains_tmpmask2;
	struct sd_data *sdd = sd->private;
	struct cpumask *sg_span;
	int cpu;

	build_group_mask(sd, sg, mask);
	cpu = cpumask_first_and(sched_group_cpus(sg), mask);

	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
	if (atomic_inc_return(&sg->sgc->ref) == 1)
		cpumask_copy(sched_group_mask(sg), mask);

	/*
	 * Initialize sgc->capacity such that even if we mess up the
	 * domains and no possible iteration will get us here, we won't
	 * die on a /0 trap.
	 */
	sg_span = sched_group_cpus(sg);
	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
}

static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	cpumask_clear(covered);

	for_each_cpu_wrap(i, span, cpu) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

		sibling = *per_cpu_ptr(sdd->sd, i);

		/*
		 * Asymmetric node setups can result in situations where the
		 * domain tree is of unequal depth, make sure to skip domains
		 * that already cover the entire range.
		 *
		 * In that case build_sched_domains() will have terminated the
		 * iteration early and our sibling sd spans will be empty.
		 * Domains should always include the CPU they're built on, so
		 * check that.
		 */
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		sg = build_group_from_child_sched_domain(sibling, cpu);
		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		cpumask_or(covered, covered, sg_span);

		init_overlap_sched_group(sd, sg);

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = first;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
{
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;

	if (child)
		cpu = cpumask_first(sched_domain_span(child));

	if (sg) {
		*sg = *per_cpu_ptr(sdd->sg, cpu);
		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);

		/* For claim_allocations: */
		atomic_set(&(*sg)->sgc->ref, 1);
	}

	return cpu;
}

/*
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_capacity to 0.
 *
 * Assumes the sched_domain tree is fully constructed
 */
static int
build_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered;
	int i;

	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(span))
		return 0;

	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group, j;

		if (cpumask_test_cpu(i, covered))
			continue;

		group = get_group(i, sdd, &sg);
		cpumask_setall(sched_group_mask(sg));

		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;

			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;

	return 0;
}

/*
 * Initialize sched groups cpu_capacity.
 *
 * cpu_capacity indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_capacity for all the groups in a sched domain will be same
 * unless there are asymmetries in the topology. If there are asymmetries,
 * group having more cpu_capacity will pickup more load compared to the
 * group having less cpu_capacity.
 */
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
{
	struct sched_group *sg = sd->groups;

	WARN_ON(!sg);

	do {
		int cpu, max_cpu = -1;

		sg->group_weight = cpumask_weight(sched_group_cpus(sg));

		if (!(sd->flags & SD_ASYM_PACKING))
			goto next;

		for_each_cpu(cpu, sched_group_cpus(sg)) {
			if (max_cpu < 0)
				max_cpu = cpu;
			else if (sched_asym_prefer(cpu, max_cpu))
				max_cpu = cpu;
		}
		sg->asym_prefer_cpu = max_cpu;

next:
		sg = sg->next;
	} while (sg != sd->groups);

	if (cpu != group_balance_cpu(sg))
		return;

	update_group_capacity(sd, cpu);
}

/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

static int default_relax_domain_level = -1;
int sched_domain_level_max;

static int __init setup_relax_domain_level(char *str)
{
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");

	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* Turn off idle balance on this domain: */
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
	} else {
		/* Turn on idle balance on this domain: */
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
	}
}

static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu);
		/* Fall through */
	case sa_sd:
		free_percpu(d->sd);
		/* Fall through */
	case sa_sd_storage:
		__sdt_free(cpu_map);
		/* Fall through */
	case sa_none:
		break;
	}
}

static enum s_alloc
__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
{
	memset(d, 0, sizeof(*d));

	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
	d->rd = alloc_rootdomain();
	if (!d->rd)
		return sa_sd;
	return sa_rootdomain;
}

/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
		*per_cpu_ptr(sdd->sds, cpu) = NULL;

	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
		*per_cpu_ptr(sdd->sg, cpu) = NULL;

	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
}

#ifdef CONFIG_NUMA
static int sched_domains_numa_levels;
enum numa_topology_type sched_numa_topology_type;
static int *sched_domains_numa_distance;
int sched_max_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;
#endif

/*
 * SD_flags allowed in topology descriptions.
 *
 * These flags are purely descriptive of the topology and do not prescribe
 * behaviour. Behaviour is artificial and mapped in the below sd_init()
 * function:
 *
 *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
 *   SD_SHARE_PKG_RESOURCES - describes shared caches
 *   SD_NUMA                - describes NUMA topologies
 *   SD_SHARE_POWERDOMAIN   - describes shared power domain
 *   SD_ASYM_CPUCAPACITY    - describes mixed capacity topologies
 *
 * Odd one out, which beside describing the topology has a quirk also
 * prescribes the desired behaviour that goes along with it:
 *
 *   SD_ASYM_PACKING        - describes SMT quirks
 */
#define TOPOLOGY_SD_FLAGS		\
	(SD_SHARE_CPUCAPACITY |		\
	 SD_SHARE_PKG_RESOURCES |	\
	 SD_NUMA |			\
	 SD_ASYM_PACKING |		\
	 SD_ASYM_CPUCAPACITY |		\
	 SD_SHARE_POWERDOMAIN)

static struct sched_domain *
sd_init(struct sched_domain_topology_level *tl,
	const struct cpumask *cpu_map,
	struct sched_domain *child, int cpu)
{
	struct sd_data *sdd = &tl->data;
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	int sd_id, sd_weight, sd_flags = 0;

#ifdef CONFIG_NUMA
	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;
#endif

	sd_weight = cpumask_weight(tl->mask(cpu));

	if (tl->sd_flags)
		sd_flags = (*tl->sd_flags)();
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
			"wrong sd_flags in topology description\n"))
		sd_flags &= ~TOPOLOGY_SD_FLAGS;

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
		.imbalance_pct		= 125,

		.cache_nice_tries	= 0,
		.busy_idx		= 0,
		.idle_idx		= 0,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 1*SD_BALANCE_EXEC
					| 1*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 1*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUCAPACITY
					| 0*SD_SHARE_PKG_RESOURCES
					| 0*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| 0*SD_NUMA
					| sd_flags
					,

		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
		.smt_gain		= 0,
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
		.child			= child,
#ifdef CONFIG_SCHED_DEBUG
		.name			= tl->name,
#endif
	};

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
	sd_id = cpumask_first(sched_domain_span(sd));

	/*
	 * Convert topological properties into behaviour.
	 */

	if (sd->flags & SD_ASYM_CPUCAPACITY) {
		struct sched_domain *t = sd;

		for_each_lower_domain(t)
			t->flags |= SD_BALANCE_WAKE;
	}

	if (sd->flags & SD_SHARE_CPUCAPACITY) {
		sd->flags |= SD_PREFER_SIBLING;
		sd->imbalance_pct = 110;
		sd->smt_gain = 1178; /* ~15% */

	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->imbalance_pct = 117;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;

#ifdef CONFIG_NUMA
	} else if (sd->flags & SD_NUMA) {
		sd->cache_nice_tries = 2;
		sd->busy_idx = 3;
		sd->idle_idx = 2;

		sd->flags |= SD_SERIALIZE;
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
			sd->flags &= ~(SD_BALANCE_EXEC |
				       SD_BALANCE_FORK |
				       SD_WAKE_AFFINE);
		}

#endif
	} else {
		sd->flags |= SD_PREFER_SIBLING;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;
		sd->idle_idx = 1;
	}

	/*
	 * For all levels sharing cache; connect a sched_domain_shared
	 * instance.
	 */
	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
		atomic_inc(&sd->shared->ref);
		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
	}

	sd->private = sdd;

	return sd;
}

/*
 * Topology list, bottom-up.
 */
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology =
	default_topology;

#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->mask; tl++)

void set_sched_topology(struct sched_domain_topology_level *tl)
{
	if (WARN_ON_ONCE(sched_smp_initialized))
		return;

	sched_domain_topology = tl;
}

#ifdef CONFIG_NUMA

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

/*
 * A system can have three types of NUMA topology:
 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
 *
 * The difference between a glueless mesh topology and a backplane
 * topology lies in whether communication between not directly
 * connected nodes goes through intermediary nodes (where programs
 * could run), or through backplane controllers. This affects
 * placement of programs.
 *
 * The type of topology can be discerned with the following tests:
 * - If the maximum distance between any nodes is 1 hop, the system
 *   is directly connected.
 * - If for two nodes A and B, located N > 1 hops away from each other,
 *   there is an intermediary node C, which is < N hops away from both
 *   nodes A and B, the system is a glueless mesh.
 */
static void init_numa_topology_type(void)
{
	int a, b, c, n;

	n = sched_max_numa_distance;

	if (sched_domains_numa_levels <= 1) {
		sched_numa_topology_type = NUMA_DIRECT;
		return;
	}

	for_each_online_node(a) {
		for_each_online_node(b) {
			/* Find two nodes furthest removed from each other. */
			if (node_distance(a, b) < n)
				continue;

			/* Is there an intermediary node between a and b? */
			for_each_online_node(c) {
				if (node_distance(a, c) < n &&
				    node_distance(b, c) < n) {
					sched_numa_topology_type =
							NUMA_GLUELESS_MESH;
					return;
				}
			}

			sched_numa_topology_type = NUMA_BACKPLANE;
			return;
		}
	}
}

void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
		}

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
	}

	if (!level)
		return;

	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
	 * The sched_domains_numa_distance[] array includes the actual distance
	 * numbers.
	 */

	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * CPUs of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for_each_node(k) {
				if (node_distance(j, k) > sched_domains_numa_distance[i])
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	/* Compute default topology size */
	for (i = 0; sched_domain_topology[i].mask; i++);

	tl = kzalloc((i + level + 1) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; sched_domain_topology[i].mask; i++)
		tl[i] = sched_domain_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.mask = sd_numa_mask,
			.sd_flags = cpu_numa_flags,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
			SD_INIT_NAME(NUMA)
		};
	}

	sched_domain_topology = tl;

	sched_domains_numa_levels = level;
	sched_max_numa_distance = sched_domains_numa_distance[level - 1];

	init_numa_topology_type();
}

void sched_domains_numa_masks_set(unsigned int cpu)
{
	int node = cpu_to_node(cpu);
	int i, j;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

void sched_domains_numa_masks_clear(unsigned int cpu)
{
	int i, j;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

#endif /* CONFIG_NUMA */

static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for_each_sd_topology(tl) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sds = alloc_percpu(struct sched_domain_shared *);
		if (!sdd->sds)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
		if (!sdd->sgc)
			return -ENOMEM;

		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_domain_shared *sds;
			struct sched_group *sg;
			struct sched_group_capacity *sgc;

			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sds = kzalloc_node(sizeof(struct sched_domain_shared),
					GFP_KERNEL, cpu_to_node(j));
			if (!sds)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sds, j) = sds;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

			sg->next = sg;

			*per_cpu_ptr(sdd->sg, j) = sg;

			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sgc)
				return -ENOMEM;

#ifdef CONFIG_SCHED_DEBUG
			sgc->id = j;
#endif

			*per_cpu_ptr(sdd->sgc, j) = sgc;
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for_each_sd_topology(tl) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sds)
				kfree(*per_cpu_ptr(sdd->sds, j));
			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgc)
				kfree(*per_cpu_ptr(sdd->sgc, j));
		}
		free_percpu(sdd->sd);
		sdd->sd = NULL;
		free_percpu(sdd->sds);
		sdd->sds = NULL;
		free_percpu(sdd->sg);
		sdd->sg = NULL;
		free_percpu(sdd->sgc);
		sdd->sgc = NULL;
	}
}

struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
{
	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);

	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
		child->parent = sd;

		if (!cpumask_subset(sched_domain_span(child),
				    sched_domain_span(sd))) {
			pr_err("BUG: arch topology borken\n");
#ifdef CONFIG_SCHED_DEBUG
			pr_err("     the %s domain not a subset of the %s domain\n",
					child->name, sd->name);
#endif
			/* Fixup, ensure @sd has at least @child cpus. */
			cpumask_or(sched_domain_span(sd),
				   sched_domain_span(sd),
				   sched_domain_span(child));
		}

	}
	set_domain_attribute(sd, attr);

	return sd;
}

/*
 * Build sched domains for a given set of CPUs and attach the sched domains
 * to the individual CPUs
 */
static int
build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state;
	struct sched_domain *sd;
	struct s_data d;
	struct rq *rq = NULL;
	int i, ret = -ENOMEM;

	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;

	/* Set up domains for CPUs specified by the cpu_map: */
	for_each_cpu(i, cpu_map) {
		struct sched_domain_topology_level *tl;

		sd = NULL;
		for_each_sd_topology(tl) {
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
			if (tl->flags & SDTL_OVERLAP)
				sd->flags |= SD_OVERLAP;
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
		}
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
		}
	}

	/* Calculate CPU capacity for physical packages and nodes */
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;

		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
			init_sched_groups_capacity(i, sd);
		}
	}

	/* Attach the domains */
	rcu_read_lock();
	for_each_cpu(i, cpu_map) {
		rq = cpu_rq(i);
		sd = *per_cpu_ptr(d.sd, i);

		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);

		cpu_attach_domain(sd, d.rd, i);
	}
	rcu_read_unlock();

	if (rq && sched_debug_enabled) {
		pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
	}

	ret = 0;
error:
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return ret;
}

/* Current sched domains: */
static cpumask_var_t			*doms_cur;

/* Number of sched domains in 'doms_cur': */
static int				ndoms_cur;

/* Attribues of custom domains in 'doms_cur' */
static struct sched_domain_attr		*dattr_cur;

/*
 * Special case: If a kmalloc() of a doms_cur partition (array of
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
 */
static cpumask_var_t			fallback_doms;

/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * CPU core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __weak arch_update_cpu_topology(void)
{
	return 0;
}

cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

/*
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
 * For now this just excludes isolated CPUs, but could be used to
 * exclude other special cases in the future.
 */
int sched_init_domains(const struct cpumask *cpu_map)
{
	int err;

	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);

	arch_update_cpu_topology();
	ndoms_cur = 1;
	doms_cur = alloc_sched_domains(ndoms_cur);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
	err = build_sched_domains(doms_cur[0], NULL);
	register_sched_domain_sysctl();

	return err;
}

/*
 * Detach sched domains from a group of CPUs specified in cpu_map
 * These CPUs will now be attached to the NULL domain
 */
static void detach_destroy_domains(const struct cpumask *cpu_map)
{
	int i;

	rcu_read_lock();
	for_each_cpu(i, cpu_map)
		cpu_attach_domain(NULL, &def_root_domain, i);
	rcu_read_unlock();
}

/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* Fast path: */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

/*
 * Partition sched domains as specified by the 'ndoms_new'
 * cpumasks in the array doms_new[] of cpumasks. This compares
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
 *
 * If doms_new == NULL it will be replaced with cpu_online_mask.
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
			     struct sched_domain_attr *dattr_new)
{
	int i, j, n;
	int new_topology;

	mutex_lock(&sched_domains_mutex);

	/* Always unregister in case we don't destroy any domains: */
	unregister_sched_domain_sysctl();

	/* Let the architecture update CPU core mappings: */
	new_topology = arch_update_cpu_topology();

	n = doms_new ? ndoms_new : 0;

	/* Destroy deleted domains: */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < n && !new_topology; j++) {
			if (cpumask_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
				goto match1;
		}
		/* No match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur[i]);
match1:
		;
	}

	n = ndoms_cur;
	if (doms_new == NULL) {
		n = 0;
		doms_new = &fallback_doms;
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
		WARN_ON_ONCE(dattr_new);
	}

	/* Build new domains: */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < n && !new_topology; j++) {
			if (cpumask_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
				goto match2;
		}
		/* No match - add a new doms_new */
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
match2:
		;
	}

	/* Remember the new sched domains: */
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);

	kfree(dattr_cur);
	doms_cur = doms_new;
	dattr_cur = dattr_new;
	ndoms_cur = ndoms_new;

	register_sched_domain_sysctl();

	mutex_unlock(&sched_domains_mutex);
}