/*
* Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
*
* Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
*
* Interactivity improvements by Mike Galbraith
* (C) 2007 Mike Galbraith <efault@gmx.de>
*
* Various enhancements by Dmitry Adamushko.
* (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
*
* Group scheduling enhancements by Srivatsa Vaddagiri
* Copyright IBM Corporation, 2007
* Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
*
* Scaled math optimizations by Thomas Gleixner
* Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
*
* Adaptive scheduling granularity, math enhancements by Peter Zijlstra
* Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
*/
#include <linux/latencytop.h>
#include <linux/sched.h>
#include <linux/cpumask.h>
#include <linux/cpuidle.h>
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
#include <linux/mempolicy.h>
#include <linux/migrate.h>
#include <linux/task_work.h>
#include <trace/events/sched.h>
#include "sched.h"
/*
* Targeted preemption latency for CPU-bound tasks:
* (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
*
* NOTE: this latency value is not the same as the concept of
* 'timeslice length' - timeslices in CFS are of variable length
* and have no persistent notion like in traditional, time-slice
* based scheduling concepts.
*
* (to see the precise effective timeslice length of your workload,
* run vmstat and monitor the context-switches (cs) field)
*/
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
/*
* The initial- and re-scaling of tunables is configurable
* (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
*
* Options are:
* SCHED_TUNABLESCALING_NONE - unscaled, always *1
* SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
* SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
*/
enum sched_tunable_scaling sysctl_sched_tunable_scaling
= SCHED_TUNABLESCALING_LOG;
/*
* Minimal preemption granularity for CPU-bound tasks:
* (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
*/
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
/*
* is kept at sysctl_sched_latency / sysctl_sched_min_granularity
*/
static unsigned int sched_nr_latency = 8;
/*
* After fork, child runs first. If set to 0 (default) then
* parent will (try to) run first.
*/
unsigned int sysctl_sched_child_runs_first __read_mostly;
/*
* SCHED_OTHER wake-up granularity.
* (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
*
* This option delays the preemption effects of decoupled workloads
* and reduces their over-scheduling. Synchronous workloads will still
* have immediate wakeup/sleep latencies.
*/
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
/*
* The exponential sliding window over which load is averaged for shares
* distribution.
* (default: 10msec)
*/
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
#ifdef CONFIG_CFS_BANDWIDTH
/*
* Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
* each time a cfs_rq requests quota.
*
* Note: in the case that the slice exceeds the runtime remaining (either due
* to consumption or the quota being specified to be smaller than the slice)
* we will always only issue the remaining available time.
*
* default: 5 msec, units: microseconds
*/
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
lw->weight += inc;
lw->inv_weight = 0;
}
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
lw->weight -= dec;
lw->inv_weight = 0;
}
static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
lw->weight = w;
lw->inv_weight = 0;
}
/*
* Increase the granularity value when there are more CPUs,
* because with more CPUs the 'effective latency' as visible
* to users decreases. But the relationship is not linear,
* so pick a second-best guess by going with the log2 of the
* number of CPUs.
*
* This idea comes from the SD scheduler of Con Kolivas:
*/
static unsigned int get_update_sysctl_factor(void)
{
unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
unsigned int factor;
switch (sysctl_sched_tunable_scaling) {
case SCHED_TUNABLESCALING_NONE:
factor = 1;
break;
case SCHED_TUNABLESCALING_LINEAR:
factor = cpus;
break;
case SCHED_TUNABLESCALING_LOG:
default:
factor = 1 + ilog2(cpus);
break;
}
return factor;
}
static void update_sysctl(void)
{
unsigned int factor = get_update_sysctl_factor();
#define SET_SYSCTL(name) \
(sysctl_##name = (factor) * normalized_sysctl_##name)
SET_SYSCTL(sched_min_granularity);
SET_SYSCTL(sched_latency);
SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}
void sched_init_granularity(void)
{
update_sysctl();
}
#define WMULT_CONST (~0U)
#define WMULT_SHIFT 32
static void __update_inv_weight(struct load_weight *lw)
{
unsigned long w;
if (likely(lw->inv_weight))
return;
w = scale_load_down(lw->weight);
if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
lw->inv_weight = 1;
else if (unlikely(!w))
lw->inv_weight = WMULT_CONST;
else
lw->inv_weight = WMULT_CONST / w;
}
/*
* delta_exec * weight / lw.weight
* OR
* (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
*
* Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
* we're guaranteed shift stays positive because inv_weight is guaranteed to
* fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
*
* Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
* weight/lw.weight <= 1, and therefore our shift will also be positive.
*/
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
{
u64 fact = scale_load_down(weight);
int shift = WMULT_SHIFT;
__update_inv_weight(lw);
if (unlikely(fact >> 32)) {
while (fact >> 32) {
fact >>= 1;
shift--;
}
}
/* hint to use a 32x32->64 mul */
fact = (u64)(u32)fact * lw->inv_weight;
while (fact >> 32) {
fact >>= 1;
shift--;
}
return mul_u64_u32_shr(delta_exec, fact, shift);
}
const struct sched_class fair_sched_class;
/**************************************************************
* CFS operations on generic schedulable entities:
*/
#ifdef CONFIG_FAIR_GROUP_SCHED
/* cpu runqueue to which this cfs_rq is attached */
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
return cfs_rq->rq;
}
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se) (!se->my_q)
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
WARN_ON_ONCE(!entity_is_task(se));
#endif
return container_of(se, struct task_struct, se);
}
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
for (; se; se = se->parent)
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
return p->se.cfs_rq;
}
/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
return se->cfs_rq;
}
/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
return grp->my_q;
}
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
int force_update);
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
if (!cfs_rq->on_list) {
/*
* Ensure we either appear before our parent (if already
* enqueued) or force our parent to appear after us when it is
* enqueued. The fact that we always enqueue bottom-up
* reduces this to two cases.
*/
if (cfs_rq->tg->parent &&
cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
&rq_of(cfs_rq)->leaf_cfs_rq_list);
} else {
list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
&rq_of(cfs_rq)->leaf_cfs_rq_list);
}
cfs_rq->on_list = 1;
/* We should have no load, but we need to update last_decay. */
update_cfs_rq_blocked_load(cfs_rq, 0);
}
}
static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
if (cfs_rq->on_list) {
list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
cfs_rq->on_list = 0;
}
}
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
/* Do the two (enqueued) entities belong to the same group ? */
static inline struct cfs_rq *
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
if (se->cfs_rq == pse->cfs_rq)
return se->cfs_rq;
return NULL;
}
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
return se->parent;
}
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
int se_depth, pse_depth;
/*
* preemption test can be made between sibling entities who are in the
* same cfs_rq i.e who have a common parent. Walk up the hierarchy of
* both tasks until we find their ancestors who are siblings of common
* parent.
*/
/* First walk up until both entities are at same depth */
se_depth = (*se)->depth;
pse_depth = (*pse)->depth;
while (se_depth > pse_depth) {
se_depth--;
*se = parent_entity(*se);
}
while (pse_depth > se_depth) {
pse_depth--;
*pse = parent_entity(*pse);
}
while (!is_same_group(*se, *pse)) {
*se = parent_entity(*se);
*pse = parent_entity(*pse);
}
}
#else /* !CONFIG_FAIR_GROUP_SCHED */
static inline struct task_struct *task_of(struct sched_entity *se)
{
return container_of(se, struct task_struct, se);
}
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
return container_of(cfs_rq, struct rq, cfs);
}
#define entity_is_task(se) 1
#define for_each_sched_entity(se) \
for (; se; se = NULL)
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
return &task_rq(p)->cfs;
}
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
struct task_struct *p = task_of(se);
struct rq *rq = task_rq(p);
return &rq->cfs;
}
/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
return NULL;
}
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}
static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
return NULL;
}
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
/**************************************************************
* Scheduling class tree data structure manipulation methods:
*/
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
{
s64 delta = (s64)(vruntime - max_vruntime);
if (delta > 0)
max_vruntime = vruntime;
return max_vruntime;
}
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
{
s64 delta = (s64)(vruntime - min_vruntime);
if (delta < 0)
min_vruntime = vruntime;
return min_vruntime;
}
static inline int entity_before(struct sched_entity *a,
struct sched_entity *b)
{
return (s64)(a->vruntime - b->vruntime) < 0;
}
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
u64 vruntime = cfs_rq->min_vruntime;
if (cfs_rq->curr)
vruntime = cfs_rq->curr->vruntime;
if (cfs_rq->rb_leftmost) {
struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
struct sched_entity,
run_node);
if (!cfs_rq->curr)
vruntime = se->vruntime;
else
vruntime = min_vruntime(vruntime, se->vruntime);
}
/* ensure we never gain time by being placed backwards. */
cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
#ifndef CONFIG_64BIT
smp_wmb();
cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
}
/*
* Enqueue an entity into the rb-tree:
*/
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
struct rb_node *parent = NULL;
struct sched_entity *entry;
int leftmost = 1;
/*
* Find the right place in the rbtree:
*/
while (*link) {
parent = *link;
entry = rb_entry(parent, struct sched_entity, run_node);
/*
* We dont care about collisions. Nodes with
* the same key stay together.
*/
if (entity_before(se, entry)) {
link = &parent->rb_left;
} else {
link = &parent->rb_right;
leftmost = 0;
}
}
/*
* Maintain a cache of leftmost tree entries (it is frequently
* used):
*/
if (leftmost)
cfs_rq->rb_leftmost = &se->run_node;
rb_link_node(&se->run_node, parent, link);
rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
if (cfs_rq->rb_leftmost == &se->run_node) {
struct rb_node *next_node;
next_node = rb_next(&se->run_node);
cfs_rq->rb_leftmost = next_node;
}
rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
{
struct rb_node *left = cfs_rq->rb_leftmost;
if (!left)
return NULL;
return rb_entry(left, struct sched_entity, run_node);
}
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
struct rb_node *next = rb_next(&se->run_node);
if (!next)
return NULL;
return rb_entry(next, struct sched_entity, run_node);
}
#ifdef CONFIG_SCHED_DEBUG
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
if (!last)
return NULL;
return rb_entry(last, struct sched_entity, run_node);
}
/**************************************************************
* Scheduling class statistics methods:
*/
int sched_proc_update_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos)
{
int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
unsigned int factor = get_update_sysctl_factor();
if (ret || !write)
return ret;
sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
sysctl_sched_min_granularity);
#define WRT_SYSCTL(name) \
(normalized_sysctl_##name = sysctl_##name / (factor))
WRT_SYSCTL(sched_min_granularity);
WRT_SYSCTL(sched_latency);
WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL
return 0;
}
#endif
/*
* delta /= w
*/
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
{
if (unlikely(se->load.weight != NICE_0_LOAD))
delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
return delta;
}
/*
* The idea is to set a period in which each task runs once.
*
* When there are too many tasks (sched_nr_latency) we have to stretch
* this period because otherwise the slices get too small.
*
* p = (nr <= nl) ? l : l*nr/nl
*/
static u64 __sched_period(unsigned long nr_running)
{
u64 period = sysctl_sched_latency;
unsigned long nr_latency = sched_nr_latency;
if (unlikely(nr_running > nr_latency)) {
period = sysctl_sched_min_granularity;
period *= nr_running;
}
return period;
}
/*
* We calculate the wall-time slice from the period by taking a part
* proportional to the weight.
*
* s = p*P[w/rw]
*/
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
for_each_sched_entity(se) {
struct load_weight *load;
struct load_weight lw;
cfs_rq = cfs_rq_of(se);
load = &cfs_rq->load;
if (unlikely(!se->on_rq)) {
lw = cfs_rq->load;
update_load_add(&lw, se->load.weight);
load = &lw;
}
slice = __calc_delta(slice, se->load.weight, load);
}
return slice;
}
/*
* We calculate the vruntime slice of a to-be-inserted task.
*
* vs = s/w
*/
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
return calc_delta_fair(sched_slice(cfs_rq, se), se);
}
#ifdef CONFIG_SMP
static int select_idle_sibling(struct task_struct *p, int cpu);
static unsigned long task_h_load(struct task_struct *p);
static inline void __update_task_entity_contrib(struct sched_entity *se);
static inline void __update_task_entity_utilization(struct sched_entity *se);
/* Give new task start runnable values to heavy its load in infant time */
void init_task_runnable_average(struct task_struct *p)
{
u32 slice;
slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice;
p->se.avg.avg_period = slice;
__update_task_entity_contrib(&p->se);
__update_task_entity_utilization(&p->se);
}
#else
void init_task_runnable_average(struct task_struct *p)
{
}
#endif
/*
* Update the current task's runtime statistics.
*/
static void update_curr(struct cfs_rq *cfs_rq)
{
struct sched_entity *curr = cfs_rq->curr;
u64 now = rq_clock_task(rq_of(cfs_rq));
u64 delta_exec;
if (unlikely(!curr))
return;
delta_exec = now - curr->exec_start;
if (unlikely((s64)delta_exec <= 0))
return;
curr->exec_start = now;
schedstat_set(curr->statistics.exec_max,
max(delta_exec, curr->statistics.exec_max));
curr->sum_exec_runtime += delta_exec;
schedstat_add(cfs_rq, exec_clock, delta_exec);
curr->vruntime += calc_delta_fair(delta_exec, curr);
update_min_vruntime(cfs_rq);
if (entity_is_task(curr)) {
struct task_struct *curtask = task_of(curr);
trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
cpuacct_charge(curtask, delta_exec);
account_group_exec_runtime(curtask, delta_exec);
}
account_cfs_rq_runtime(cfs_rq, delta_exec);
}
static void update_curr_fair(struct rq *rq)
{
update_curr(cfs_rq_of(&rq->curr->se));
}
static inline void
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
}
/*
* Task is being enqueued - update stats:
*/
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
/*
* Are we enqueueing a waiting task? (for current tasks
* a dequeue/enqueue event is a NOP)
*/
if (se != cfs_rq->curr)
update_stats_wait_start(cfs_rq, se);
}
static void
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
#ifdef CONFIG_SCHEDSTATS
if (entity_is_task(se)) {
trace_sched_stat_wait(task_of(se),
rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
}
#endif
schedstat_set(se->statistics.wait_start, 0);
}
static inline void
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
/*
* Mark the end of the wait period if dequeueing a
* waiting task:
*/
if (se != cfs_rq->curr)
update_stats_wait_end(cfs_rq, se);
}
/*
* We are picking a new current task - update its stats:
*/
static inline void
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
/*
* We are starting a new run period:
*/
se->exec_start = rq_clock_task(rq_of(cfs_rq));
}
/**************************************************
* Scheduling class queueing methods:
*/
#ifdef CONFIG_NUMA_BALANCING
/*
* Approximate time to scan a full NUMA task in ms. The task scan period is
* calculated based on the tasks virtual memory size and
* numa_balancing_scan_size.
*/
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
unsigned long rss = 0;
unsigned long nr_scan_pages;
/*
* Calculations based on RSS as non-present and empty pages are skipped
* by the PTE scanner and NUMA hinting faults should be trapped based
* on resident pages
*/
nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
rss = get_mm_rss(p->mm);
if (!rss)
rss = nr_scan_pages;
rss = round_up(rss, nr_scan_pages);
return rss / nr_scan_pages;
}
/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560
static unsigned int task_scan_min(struct task_struct *p)
{
unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
unsigned int scan, floor;
unsigned int windows = 1;
if (scan_size < MAX_SCAN_WINDOW)
windows = MAX_SCAN_WINDOW / scan_size;
floor = 1000 / windows;
scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
return max_t(unsigned int, floor, scan);
}
static unsigned int task_scan_max(struct task_struct *p)
{
unsigned int smin = task_scan_min(p);
unsigned int smax;
/* Watch for min being lower than max due to floor calculations */
smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
return max(smin, smax);
}
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
rq->nr_numa_running += (p->numa_preferred_nid != -1);
rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}
static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
rq->nr_numa_running -= (p->numa_preferred_nid != -1);
rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}
struct numa_group {
atomic_t refcount;
spinlock_t lock; /* nr_tasks, tasks */
int nr_tasks;
pid_t gid;
struct rcu_head rcu;
nodemask_t active_nodes;
unsigned long total_faults;
/*
* Faults_cpu is used to decide whether memory should move
* towards the CPU. As a consequence, these stats are weighted
* more by CPU use than by memory faults.
*/
unsigned long *faults_cpu;
unsigned long faults[0];
};
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2
/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
pid_t task_numa_group_id(struct task_struct *p)
{
return p->numa_group ? p->numa_group->gid : 0;
}
/*
* The averaged statistics, shared & private, memory & cpu,
* occupy the first half of the array. The second half of the
* array is for current counters, which are averaged into the
* first set by task_numa_placement.
*/
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
{
return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
}
static inline unsigned long task_faults(struct task_struct *p, int nid)
{
if (!p->numa_faults)
return 0;
return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
}
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
if (!p->numa_group)
return 0;
return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
}
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
}
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
int maxdist, bool task)
{
unsigned long score = 0;
int node;
/*
* All nodes are directly connected, and the same distance
* from each other. No need for fancy placement algorithms.
*/
if (sched_numa_topology_type == NUMA_DIRECT)
return 0;
/*
* This code is called for each node, introducing N^2 complexity,
* which should be ok given the number of nodes rarely exceeds 8.
*/
for_each_online_node(node) {
unsigned long faults;
int dist = node_distance(nid, node);
/*
* The furthest away nodes in the system are not interesting
* for placement; nid was already counted.
*/
if (dist == sched_max_numa_distance || node == nid)
continue;
/*
* On systems with a backplane NUMA topology, compare groups
* of nodes, and move tasks towards the group with the most
* memory accesses. When comparing two nodes at distance
* "hoplimit", only nodes closer by than "hoplimit" are part
* of each group. Skip other nodes.
*/
if (sched_numa_topology_type == NUMA_BACKPLANE &&
dist > maxdist)
continue;
/* Add up the faults from nearby nodes. */
if (task)
faults = task_faults(p, node);
else
faults = group_faults(p, node);
/*
* On systems with a glueless mesh NUMA topology, there are
* no fixed "groups of nodes". Instead, nodes that are not
* directly connected bounce traffic through intermediate
* nodes; a numa_group can occupy any set of nodes.
* The further away a node is, the less the faults count.
* This seems to result in good task placement.
*/
if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
faults *= (sched_max_numa_distance - dist);
faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
}
score += faults;
}
return score;
}
/*
* These return the fraction of accesses done by a particular task, or
* task group, on a particular numa node. The group weight is given a
* larger multiplier, in order to group tasks together that are almost
* evenly spread out between numa nodes.
*/
static inline unsigned long task_weight(struct task_struct *p, int nid,
int dist)
{
unsigned long faults, total_faults;
if (!p->numa_faults)
return 0;
total_faults = p->total_numa_faults;
if (!total_faults)
return 0;
faults = task_faults(p, nid);
faults += score_nearby_nodes(p, nid, dist, true);
return 1000 * faults / total_faults;
}
static inline unsigned long group_weight(struct task_struct *p, int nid,
int dist)
{
unsigned long faults, total_faults;
if (!p->numa_group)
return 0;
total_faults = p->numa_group->total_faults;
if (!total_faults)
return 0;
faults = group_faults(p, nid);
faults += score_nearby_nodes(p, nid, dist, false);
return 1000 * faults / total_faults;
}
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
int src_nid, int dst_cpu)
{
struct numa_group *ng = p->numa_group;
int dst_nid = cpu_to_node(dst_cpu);
int last_cpupid, this_cpupid;
this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
/*
* Multi-stage node selection is used in conjunction with a periodic
* migration fault to build a temporal task<->page relation. By using
* a two-stage filter we remove short/unlikely relations.
*
* Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
* a task's usage of a particular page (n_p) per total usage of this
* page (n_t) (in a given time-span) to a probability.
*
* Our periodic faults will sample this probability and getting the
* same result twice in a row, given these samples are fully
* independent, is then given by P(n)^2, provided our sample period
* is sufficiently short compared to the usage pattern.
*
* This quadric squishes small probabilities, making it less likely we
* act on an unlikely task<->page relation.
*/
last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
if (!cpupid_pid_unset(last_cpupid) &&
cpupid_to_nid(last_cpupid) != dst_nid)
return false;
/* Always allow migrate on private faults */
if (cpupid_match_pid(p, last_cpupid))
return true;
/* A shared fault, but p->numa_group has not been set up yet. */
if (!ng)
return true;
/*
* Do not migrate if the destination is not a node that
* is actively used by this numa group.
*/
if (!node_isset(dst_nid, ng->active_nodes))
return false;
/*
* Source is a node that is not actively used by this
* numa group, while the destination is. Migrate.
*/
if (!node_isset(src_nid, ng->active_nodes))
return true;
/*
* Both source and destination are nodes in active
* use by this numa group. Maximize memory bandwidth
* by migrating from more heavily used groups, to less
* heavily used ones, spreading the load around.
* Use a 1/4 hysteresis to avoid spurious page movement.
*/
return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
}
static unsigned long weighted_cpuload(const int cpu);
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long capacity_of(int cpu);
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
/* Cached statistics for all CPUs within a node */
struct numa_stats {
unsigned long nr_running;
unsigned long load;
/* Total compute capacity of CPUs on a node */
unsigned long compute_capacity;
/* Approximate capacity in terms of runnable tasks on a node */
unsigned long task_capacity;
int has_free_capacity;
};
/*
* XXX borrowed from update_sg_lb_stats
*/
static void update_numa_stats(struct numa_stats *ns, int nid)
{
int smt, cpu, cpus = 0;
unsigned long capacity;
memset(ns, 0, sizeof(*ns));
for_each_cpu(cpu, cpumask_of_node(nid)) {
struct rq *rq = cpu_rq(cpu);
ns->nr_running += rq->nr_running;
ns->load += weighted_cpuload(cpu);
ns->compute_capacity += capacity_of(cpu);
cpus++;
}
/*
* If we raced with hotplug and there are no CPUs left in our mask
* the @ns structure is NULL'ed and task_numa_compare() will
* not find this node attractive.
*
* We'll either bail at !has_free_capacity, or we'll detect a huge
* imbalance and bail there.
*/
if (!cpus)
return;
/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
capacity = cpus / smt; /* cores */
ns->task_capacity = min_t(unsigned, capacity,
DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
}
struct task_numa_env {
struct task_struct *p;
int src_cpu, src_nid;
int dst_cpu, dst_nid;
struct numa_stats src_stats, dst_stats;
int imbalance_pct;
int dist;
struct task_struct *best_task;
long best_imp;
int best_cpu;
};
static void task_numa_assign(struct task_numa_env *env,
struct task_struct *p, long imp)
{
if (env->best_task)
put_task_struct(env->best_task);
if (p)
get_task_struct(p);
env->best_task = p;
env->best_imp = imp;
env->best_cpu = env->dst_cpu;
}
static bool load_too_imbalanced(long src_load, long dst_load,
struct task_numa_env *env)
{
long src_capacity, dst_capacity;
long orig_src_load;
long load_a, load_b;
long moved_load;
long imb;
/*
* The load is corrected for the CPU capacity available on each node.
*
* src_load dst_load
* ------------ vs ---------
* src_capacity dst_capacity
*/
src_capacity = env->src_stats.compute_capacity;
dst_capacity = env->dst_stats.compute_capacity;
/* We care about the slope of the imbalance, not the direction. */
load_a = dst_load;
load_b = src_load;
if (load_a < load_b)
swap(load_a, load_b);
/* Is the difference below the threshold? */
imb = load_a * src_capacity * 100 -
load_b * dst_capacity * env->imbalance_pct;
if (imb <= 0)
return false;
/*
* The imbalance is above the allowed threshold.
* Allow a move that brings us closer to a balanced situation,
* without moving things past the point of balance.
*/
orig_src_load = env->src_stats.load;
/*
* In a task swap, there will be one load moving from src to dst,
* and another moving back. This is the net sum of both moves.
* A simple task move will always have a positive value.
* Allow the move if it brings the system closer to a balanced
* situation, without crossing over the balance point.
*/
moved_load = orig_src_load - src_load;
if (moved_load > 0)
/* Moving src -> dst. Did we overshoot balance? */
return src_load * dst_capacity < dst_load * src_capacity;
else
/* Moving dst -> src. Did we overshoot balance? */
return dst_load * src_capacity < src_load * dst_capacity;
}
/*
* This checks if the overall compute and NUMA accesses of the system would
* be improved if the source tasks was migrated to the target dst_cpu taking
* into account that it might be best if task running on the dst_cpu should
* be exchanged with the source task
*/
static void task_numa_compare(struct task_numa_env *env,
long taskimp, long groupimp)
{
struct rq *src_rq = cpu_rq(env->src_cpu);
struct rq *dst_rq = cpu_rq(env->dst_cpu);
struct task_struct *cur;
long src_load, dst_load;
long load;
long imp = env->p->numa_group ? groupimp : taskimp;
long moveimp = imp;
int dist = env->dist;
rcu_read_lock();
raw_spin_lock_irq(&dst_rq->lock);
cur = dst_rq->curr;
/*
* No need to move the exiting task, and this ensures that ->curr
* wasn't reaped and thus get_task_struct() in task_numa_assign()
* is safe under RCU read lock.
* Note that rcu_read_lock() itself can't protect from the final
* put_task_struct() after the last schedule().
*/
if ((cur->flags & PF_EXITING) || is_idle_task(cur))
cur = NULL;
raw_spin_unlock_irq(&dst_rq->lock);
/*
* Because we have preemption enabled we can get migrated around and
* end try selecting ourselves (current == env->p) as a swap candidate.
*/
if (cur == env->p)
goto unlock;
/*
* "imp" is the fault differential for the source task between the
* source and destination node. Calculate the total differential for
* the source task and potential destination task. The more negative
* the value is, the more rmeote accesses that would be expected to
* be incurred if the tasks were swapped.
*/
if (cur) {
/* Skip this swap candidate if cannot move to the source cpu */
if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
goto unlock;
/*
* If dst and source tasks are in the same NUMA group, or not
* in any group then look only at task weights.
*/
if (cur->numa_group == env->p->numa_group) {
imp = taskimp + task_weight(cur, env->src_nid, dist) -
task_weight(cur, env->dst_nid, dist);
/*
* Add some hysteresis to prevent swapping the
* tasks within a group over tiny differences.
*/
if (cur->numa_group)
imp -= imp/16;
} else {
/*
* Compare the group weights. If a task is all by
* itself (not part of a group), use the task weight
* instead.
*/
if (cur->numa_group)
imp += group_weight(cur, env->src_nid, dist) -
group_weight(cur, env->dst_nid, dist);
else
imp += task_weight(cur, env->src_nid, dist) -
task_weight(cur, env->dst_nid, dist);
}
}
if (imp <= env->best_imp && moveimp <= env->best_imp)
goto unlock;
if (!cur) {
/* Is there capacity at our destination? */
if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
!env->dst_stats.has_free_capacity)
goto unlock;
goto balance;
}
/* Balance doesn't matter much if we're running a task per cpu */
if (imp > env->best_imp && src_rq->nr_running == 1 &&
dst_rq->nr_running == 1)
goto assign;
/*
* In the overloaded case, try and keep the load balanced.
*/
balance:
load = task_h_load(env->p);
dst_load = env->dst_stats.load + load;
src_load = env->src_stats.load - load;
if (moveimp > imp && moveimp > env->best_imp) {
/*
* If the improvement from just moving env->p direction is
* better than swapping tasks around, check if a move is
* possible. Store a slightly smaller score than moveimp,
* so an actually idle CPU will win.
*/
if (!load_too_imbalanced(src_load, dst_load, env)) {
imp = moveimp - 1;
cur = NULL;
goto assign;
}
}
if (imp <= env->best_imp)
goto unlock;
if (cur) {
load = task_h_load(cur);
dst_load -= load;
src_load += load;
}
if (load_too_imbalanced(src_load, dst_load, env))
goto unlock;
/*
* One idle CPU per node is evaluated for a task numa move.
* Call select_idle_sibling to maybe find a better one.
*/
if (!cur)
env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
assign:
task_numa_assign(env, cur, imp);
unlock:
rcu_read_unlock();
}
static void task_numa_find_cpu(struct task_numa_env *env,
long taskimp, long groupimp)
{
int cpu;
for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
/* Skip this CPU if the source task cannot migrate */
if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
continue;
env->dst_cpu = cpu;
task_numa_compare(env, taskimp, groupimp);
}
}
static int task_numa_migrate(struct task_struct *p)
{
struct task_numa_env env = {
.p = p,
.src_cpu = task_cpu(p),
.src_nid = task_node(p),
.imbalance_pct = 112,
.best_task = NULL,
.best_imp = 0,
.best_cpu = -1
};
struct sched_domain *sd;
unsigned long taskweight, groupweight;
int nid, ret, dist;
long taskimp, groupimp;
/*
* Pick the lowest SD_NUMA domain, as that would have the smallest
* imbalance and would be the first to start moving tasks about.
*
* And we want to avoid any moving of tasks about, as that would create
* random movement of tasks -- counter the numa conditions we're trying
* to satisfy here.
*/
rcu_read_lock();
sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
if (sd)
env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
rcu_read_unlock();
/*
* Cpusets can break the scheduler domain tree into smaller
* balance domains, some of which do not cross NUMA boundaries.
* Tasks that are "trapped" in such domains cannot be migrated
* elsewhere, so there is no point in (re)trying.
*/
if (unlikely(!sd)) {
p->numa_preferred_nid = task_node(p);
return -EINVAL;
}
env.dst_nid = p->numa_preferred_nid;
dist = env.dist = node_distance(env.src_nid, env.dst_nid);
taskweight = task_weight(p, env.src_nid, dist);
groupweight = group_weight(p, env.src_nid, dist);
update_numa_stats(&env.src_stats, env.src_nid);
taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
update_numa_stats(&env.dst_stats, env.dst_nid);
/* Try to find a spot on the preferred nid. */
task_numa_find_cpu(&env, taskimp, groupimp);
/*
* Look at other nodes in these cases:
* - there is no space available on the preferred_nid
* - the task is part of a numa_group that is interleaved across
* multiple NUMA nodes; in order to better consolidate the group,
* we need to check other locations.
*/
if (env.best_cpu == -1 || (p->numa_group &&
nodes_weight(p->numa_group->active_nodes) > 1)) {
for_each_online_node(nid) {
if (nid == env.src_nid || nid == p->numa_preferred_nid)
continue;
dist = node_distance(env.src_nid, env.dst_nid);
if (sched_numa_topology_type == NUMA_BACKPLANE &&
dist != env.dist) {
taskweight = task_weight(p, env.src_nid, dist);
groupweight = group_weight(p, env.src_nid, dist);
}
/* Only consider nodes where both task and groups benefit */
taskimp = task_weight(p, nid, dist) - taskweight;
groupimp = group_weight(p, nid, dist) - groupweight;
if (taskimp < 0 && groupimp < 0)
continue;
env.dist = dist;
env.dst_nid = nid;
update_numa_stats(&env.dst_stats, env.dst_nid);
task_numa_find_cpu(&env, taskimp, groupimp);
}
}
/*
* If the task is part of a workload that spans multiple NUMA nodes,
* and is migrating into one of the workload's active nodes, remember
* this node as the task's preferred numa node, so the workload can
* settle down.
* A task that migrated to a second choice node will be better off
* trying for a better one later. Do not set the preferred node here.
*/
if (p->numa_group) {
if (env.best_cpu == -1)
nid = env.src_nid;
else
nid = env.dst_nid;
if (node_isset(nid, p->numa_group->active_nodes))
sched_setnuma(p, env.dst_nid);
}
/* No better CPU than the current one was found. */
if (env.best_cpu == -1)
return -EAGAIN;
/*
* Reset the scan period if the task is being rescheduled on an
* alternative node to recheck if the tasks is now properly placed.
*/
p->numa_scan_period = task_scan_min(p);
if (env.best_task == NULL) {
ret = migrate_task_to(p, env.best_cpu);
if (ret != 0)
trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
return ret;
}
ret = migrate_swap(p, env.best_task);
if (ret != 0)
trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
put_task_struct(env.best_task);
return ret;
}
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
unsigned long interval = HZ;
/* This task has no NUMA fault statistics yet */
if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
return;
/* Periodically retry migrating the task to the preferred node */
interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
p->numa_migrate_retry = jiffies + interval;
/* Success if task is already running on preferred CPU */
if (task_node(p) == p->numa_preferred_nid)
return;
/* Otherwise, try migrate to a CPU on the preferred node */
task_numa_migrate(p);
}
/*
* Find the nodes on which the workload is actively running. We do this by
* tracking the nodes from which NUMA hinting faults are triggered. This can
* be different from the set of nodes where the workload's memory is currently
* located.
*
* The bitmask is used to make smarter decisions on when to do NUMA page
* migrations, To prevent flip-flopping, and excessive page migrations, nodes
* are added when they cause over 6/16 of the maximum number of faults, but
* only removed when they drop below 3/16.
*/
static void update_numa_active_node_mask(struct numa_group *numa_group)
{
unsigned long faults, max_faults = 0;
int nid;
for_each_online_node(nid) {
faults = group_faults_cpu(numa_group, nid);
if (faults > max_faults)
max_faults = faults;
}
for_each_online_node(nid) {
faults = group_faults_cpu(numa_group, nid);
if (!node_isset(nid, numa_group->active_nodes)) {
if (faults > max_faults * 6 / 16)
node_set(nid, numa_group->active_nodes);
} else if (faults < max_faults * 3 / 16)
node_clear(nid, numa_group->active_nodes);
}
}
/*
* When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
* increments. The more local the fault statistics are, the higher the scan
* period will be for the next scan window. If local/(local+remote) ratio is
* below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
* the scan period will decrease. Aim for 70% local accesses.
*/
#define NUMA_PERIOD_SLOTS 10
#define NUMA_PERIOD_THRESHOLD 7
/*
* Increase the scan period (slow down scanning) if the majority of
* our memory is already on our local node, or if the majority of
* the page accesses are shared with other processes.
* Otherwise, decrease the scan period.
*/
static void update_task_scan_period(struct task_struct *p,
unsigned long shared, unsigned long private)
{
unsigned int period_slot;
int ratio;
int diff;
unsigned long remote = p->numa_faults_locality[0];
unsigned long local = p->numa_faults_locality[1];
/*
* If there were no record hinting faults then either the task is
* completely idle or all activity is areas that are not of interest
* to automatic numa balancing. Related to that, if there were failed
* migration then it implies we are migrating too quickly or the local
* node is overloaded. In either case, scan slower
*/
if (local + shared == 0 || p->numa_faults_locality[2]) {
p->numa_scan_period = min(p->numa_scan_period_max,
p->numa_scan_period << 1);
p->mm->numa_next_scan = jiffies +
msecs_to_jiffies(p->numa_scan_period);
return;
}
/*
* Prepare to scale scan period relative to the current period.
* == NUMA_PERIOD_THRESHOLD scan period stays the same
* < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
* >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
*/
period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
if (ratio >= NUMA_PERIOD_THRESHOLD) {
int slot = ratio - NUMA_PERIOD_THRESHOLD;
if (!slot)
slot = 1;
diff = slot * period_slot;
} else {
diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
/*
* Scale scan rate increases based on sharing. There is an
* inverse relationship between the degree of sharing and
* the adjustment made to the scanning period. Broadly
* speaking the intent is that there is little point
* scanning faster if shared accesses dominate as it may
* simply bounce migrations uselessly
*/
ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
}
p->numa_scan_period = clamp(p->numa_scan_period + diff,
task_scan_min(p), task_scan_max(p));
memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}
/*
* Get the fraction of time the task has been running since the last
* NUMA placement cycle. The scheduler keeps similar statistics, but
* decays those on a 32ms period, which is orders of magnitude off
* from the dozens-of-seconds NUMA balancing period. Use the scheduler
* stats only if the task is so new there are no NUMA statistics yet.
*/
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
u64 runtime, delta, now;
/* Use the start of this time slice to avoid calculations. */
now = p->se.exec_start;
runtime = p->se.sum_exec_runtime;
if (p->last_task_numa_placement) {
delta = runtime - p->last_sum_exec_runtime;
*period = now - p->last_task_numa_placement;
} else {
delta = p->se.avg.runnable_avg_sum;
*period = p->se.avg.avg_period;
}
p->last_sum_exec_runtime = runtime;
p->last_task_numa_placement = now;
return delta;
}
/*
* Determine the preferred nid for a task in a numa_group. This needs to
* be done in a way that produces consistent results with group_weight,
* otherwise workloads might not converge.
*/
static int preferred_group_nid(struct task_struct *p, int nid)
{
nodemask_t nodes;
int dist;
/* Direct connections between all NUMA nodes. */
if (sched_numa_topology_type == NUMA_DIRECT)
return nid;
/*
* On a system with glueless mesh NUMA topology, group_weight
* scores nodes according to the number of NUMA hinting faults on
* both the node itself, and on nearby nodes.
*/
if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
unsigned long score, max_score = 0;
int node, max_node = nid;
dist = sched_max_numa_distance;
for_each_online_node(node) {
score = group_weight(p, node, dist);
if (score > max_score) {
max_score = score;
max_node = node;
}
}
return max_node;
}
/*
* Finding the preferred nid in a system with NUMA backplane
* interconnect topology is more involved. The goal is to locate
* tasks from numa_groups near each other in the system, and
* untangle workloads from different sides of the system. This requires
* searching down the hierarchy of node groups, recursively searching
* inside the highest scoring group of nodes. The nodemask tricks
* keep the complexity of the search down.
*/
nodes = node_online_map;
for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
unsigned long max_faults = 0;
nodemask_t max_group = NODE_MASK_NONE;
int a, b;
/* Are there nodes at this distance from each other? */
if (!find_numa_distance(dist))
continue;
for_each_node_mask(a, nodes) {
unsigned long faults = 0;
nodemask_t this_group;
nodes_clear(this_group);
/* Sum group's NUMA faults; includes a==b case. */
for_each_node_mask(b, nodes) {
if (node_distance(a, b) < dist) {
faults += group_faults(p, b);
node_set(b, this_group);
node_clear(b, nodes);
}
}
/* Remember the top group. */
if (faults > max_faults) {
max_faults = faults;
max_group = this_group;
/*
* subtle: at the smallest distance there is
* just one node left in each "group", the
* winner is the preferred nid.
*/
nid = a;
}
}
/* Next round, evaluate the nodes within max_group. */
if (!max_faults)
break;
nodes = max_group;
}
return nid;
}
static void task_numa_placement(struct task_struct *p)
{
int seq, nid, max_nid = -1, max_group_nid = -1;
unsigned long max_faults = 0, max_group_faults = 0;
unsigned long fault_types[2] = { 0, 0 };
unsigned long total_faults;
u64 runtime, period;
spinlock_t *group_lock = NULL;
/*
* The p->mm->numa_scan_seq field gets updated without
* exclusive access. Use READ_ONCE() here to ensure
* that the field is read in a single access:
*/
seq = READ_ONCE(p->mm->numa_scan_seq);
if (p->numa_scan_seq == seq)
return;
p->numa_scan_seq = seq;
p->numa_scan_period_max = task_scan_max(p);
total_faults = p->numa_faults_locality[0] +
p->numa_faults_locality[1];
runtime = numa_get_avg_runtime(p, &period);
/* If the task is part of a group prevent parallel updates to group stats */
if (p->numa_group) {
group_lock = &p->numa_group->lock;
spin_lock_irq(group_lock);
}
/* Find the node with the highest number of faults */
for_each_online_node(nid) {
/* Keep track of the offsets in numa_faults array */
int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
unsigned long faults = 0, group_faults = 0;
int priv;
for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
long diff, f_diff, f_weight;
mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
/* Decay existing window, copy faults since last scan */
diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
fault_types[priv] += p->numa_faults[membuf_idx];
p->numa_faults[membuf_idx] = 0;
/*
* Normalize the faults_from, so all tasks in a group
* count according to CPU use, instead of by the raw
* number of faults. Tasks with little runtime have
* little over-all impact on throughput, and thus their
* faults are less important.
*/
f_weight = div64_u64(runtime << 16, period + 1);
f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
(total_faults + 1);
f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
p->numa_faults[cpubuf_idx] = 0;
p->numa_faults[mem_idx] += diff;
p->numa_faults[cpu_idx] += f_diff;
faults += p->numa_faults[mem_idx];
p->total_numa_faults += diff;
if (p->numa_group) {
/*
* safe because we can only change our own group
*
* mem_idx represents the offset for a given
* nid and priv in a specific region because it
* is at the beginning of the numa_faults array.
*/
p->numa_group->faults[mem_idx] += diff;
p->numa_group->faults_cpu[mem_idx] += f_diff;
p->numa_group->total_faults += diff;
group_faults += p->numa_group->faults[mem_idx];
}
}
if (faults > max_faults) {
max_faults = faults;
max_nid = nid;
}
if (group_faults > max_group_faults) {
max_group_faults = group_faults;
max_group_nid = nid;
}
}
update_task_scan_period(p, fault_types[0], fault_types[1]);
if (p->numa_group) {
update_numa_active_node_mask(p->numa_group);
spin_unlock_irq(group_lock);
max_nid = preferred_group_nid(p, max_group_nid);
}
if (max_faults) {
/* Set the new preferred node */
if (max_nid != p->numa_preferred_nid)
sched_setnuma(p, max_nid);
if (task_node(p) != p->numa_preferred_nid)
numa_migrate_preferred(p);
}
}
static inline int get_numa_group(struct numa_group *grp)
{
return atomic_inc_not_zero(&grp->refcount);
}
static inline void put_numa_group(struct numa_group *grp)
{
if (atomic_dec_and_test(&grp->refcount))
kfree_rcu(grp, rcu);
}
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
int *priv)
{
struct numa_group *grp, *my_grp;
struct task_struct *tsk;
bool join = false;
int cpu = cpupid_to_cpu(cpupid);
int i;
if (unlikely(!p->numa_group)) {
unsigned int size = sizeof(struct numa_group) +
4*nr_node_ids*sizeof(unsigned long);
grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
if (!grp)
return;
atomic_set(&grp->refcount, 1);
spin_lock_init(&grp->lock);
grp->gid = p->pid;
/* Second half of the array tracks nids where faults happen */
grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
nr_node_ids;
node_set(task_node(current), grp->active_nodes);
for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
grp->faults[i] = p->numa_faults[i];
grp->total_faults = p->total_numa_faults;
grp->nr_tasks++;
rcu_assign_pointer(p->numa_group, grp);
}
rcu_read_lock();
tsk = READ_ONCE(cpu_rq(cpu)->curr);
if (!cpupid_match_pid(tsk, cpupid))
goto no_join;
grp = rcu_dereference(tsk->numa_group);
if (!grp)
goto no_join;
my_grp = p->numa_group;
if (grp == my_grp)
goto no_join;
/*
* Only join the other group if its bigger; if we're the bigger group,
* the other task will join us.
*/
if (my_grp->nr_tasks > grp->nr_tasks)
goto no_join;
/*
* Tie-break on the grp address.
*/
if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
goto no_join;
/* Always join threads in the same process. */
if (tsk->mm == current->mm)
join = true;
/* Simple filter to avoid false positives due to PID collisions */
if (flags & TNF_SHARED)
join = true;
/* Update priv based on whether false sharing was detected */
*priv = !join;
if (join && !get_numa_group(grp))
goto no_join;
rcu_read_unlock();
if (!join)
return;
BUG_ON(irqs_disabled());
double_lock_irq(&my_grp->lock, &grp->lock);
for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
my_grp->faults[i] -= p->numa_faults[i];
grp->faults[i] += p->numa_faults[i];
}
my_grp->total_faults -= p->total_numa_faults;
grp->total_faults += p->total_numa_faults;
my_grp->nr_tasks--;
grp->nr_tasks++;
spin_unlock(&my_grp->lock);
spin_unlock_irq(&grp->lock);
rcu_assign_pointer(p->numa_group, grp);
put_numa_group(my_grp);
return;
no_join:
rcu_read_unlock();
return;
}
void task_numa_free(struct task_struct *p)
{
struct numa_group *grp = p->numa_group;
void *numa_faults = p->numa_faults;
unsigned long flags;
int i;
if (grp) {
spin_lock_irqsave(&grp->lock, flags);
for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
grp->faults[i] -= p->numa_faults[i];
grp->total_faults -= p->total_numa_faults;
grp->nr_tasks--;
spin_unlock_irqrestore(&grp->lock, flags);
RCU_INIT_POINTER(p->numa_group, NULL);
put_numa_group(grp);
}
p->numa_faults = NULL;
kfree(numa_faults);
}
/*
* Got a PROT_NONE fault for a page on @node.
*/
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
{
struct task_struct *p = current;
bool migrated = flags & TNF_MIGRATED;
int cpu_node = task_node(current);
int local = !!(flags & TNF_FAULT_LOCAL);
int priv;
if (!numabalancing_enabled)
return;
/* for example, ksmd faulting in a user's mm */
if (!p->mm)
return;
/* Allocate buffer to track faults on a per-node basis */
if (unlikely(!p->numa_faults)) {
int size = sizeof(*p->numa_faults) *
NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
if (!p->numa_faults)
return;
p->total_numa_faults = 0;
memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}
/*
* First accesses are treated as private, otherwise consider accesses
* to be private if the accessing pid has not changed
*/
if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
priv = 1;
} else {
priv = cpupid_match_pid(p, last_cpupid);
if (!priv && !(flags & TNF_NO_GROUP))
task_numa_group(p, last_cpupid, flags, &priv);
}
/*
* If a workload spans multiple NUMA nodes, a shared fault that
* occurs wholly within the set of nodes that the workload is
* actively using should be counted as local. This allows the
* scan rate to slow down when a workload has settled down.
*/
if (!priv && !local && p->numa_group &&
node_isset(cpu_node, p->numa_group->active_nodes) &&
node_isset(mem_node, p->numa_group->active_nodes))
local = 1;
task_numa_placement(p);
/*
* Retry task to preferred node migration periodically, in case it
* case it previously failed, or the scheduler moved us.
*/
if (time_after(jiffies, p->numa_migrate_retry))
numa_migrate_preferred(p);
if (migrated)
p->numa_pages_migrated += pages;
if (flags & TNF_MIGRATE_FAIL)
p->numa_faults_locality[2] += pages;
p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
p->numa_faults_locality[local] += pages;
}
static void reset_ptenuma_scan(struct task_struct *p)
{
/*
* We only did a read acquisition of the mmap sem, so
* p->mm->numa_scan_seq is written to without exclusive access
* and the update is not guaranteed to be atomic. That's not
* much of an issue though, since this is just used for
* statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
* expensive, to avoid any form of compiler optimizations:
*/
WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
p->mm->numa_scan_offset = 0;
}
/*
* The expensive part of numa migration is done from task_work context.
* Triggered from task_tick_numa().
*/
void task_numa_work(struct callback_head *work)
{
unsigned long migrate, next_scan, now = jiffies;
struct task_struct *p = current;
struct mm_struct *mm = p->mm;
struct vm_area_struct *vma;
unsigned long start, end;
unsigned long nr_pte_updates = 0;
long pages;
WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
work->next = work; /* protect against double add */
/*
* Who cares about NUMA placement when they're dying.
*
* NOTE: make sure not to dereference p->mm before this check,
* exit_task_work() happens _after_ exit_mm() so we could be called
* without p->mm even though we still had it when we enqueued this
* work.
*/
if (p->flags & PF_EXITING)
return;
if (!mm->numa_next_scan) {
mm->numa_next_scan = now +
msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
}
/*
* Enforce maximal scan/migration frequency..
*/
migrate = mm->numa_next_scan;
if (time_before(now, migrate))
return;
if (p->numa_scan_period == 0) {
p->numa_scan_period_max = task_scan_max(p);
p->numa_scan_period = task_scan_min(p);
}
next_scan = now + msecs_to_jiffies(p->numa_scan_period);
if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
return;
/*
* Delay this task enough that another task of this mm will likely win
* the next time around.
*/
p->node_stamp += 2 * TICK_NSEC;
start = mm->numa_scan_offset;
pages = sysctl_numa_balancing_scan_size;
pages <<= 20 - PAGE_SHIFT; /* MB in pages */
if (!pages)
return;
down_read(&mm->mmap_sem);
vma = find_vma(mm, start);
if (!vma) {
reset_ptenuma_scan(p);
start = 0;
vma = mm->mmap;
}
for (; vma; vma = vma->vm_next) {
if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
is_vm_hugetlb_page(vma)) {
continue;
}
/*
* Shared library pages mapped by multiple processes are not
* migrated as it is expected they are cache replicated. Avoid
* hinting faults in read-only file-backed mappings or the vdso
* as migrating the pages will be of marginal benefit.
*/
if (!vma->vm_mm ||
(vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
continue;
/*
* Skip inaccessible VMAs to avoid any confusion between
* PROT_NONE and NUMA hinting ptes
*/
if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
continue;
do {
start = max(start, vma->vm_start);
end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
end = min(end, vma->vm_end);
nr_pte_updates += change_prot_numa(vma, start, end);
/*
* Scan sysctl_numa_balancing_scan_size but ensure that
* at least one PTE is updated so that unused virtual
* address space is quickly skipped.
*/
if (nr_pte_updates)
pages -= (end - start) >> PAGE_SHIFT;
start = end;
if (pages <= 0)
goto out;
cond_resched();
} while (end != vma->vm_end);
}
out:
/*
* It is possible to reach the end of the VMA list but the last few
* VMAs are not guaranteed to the vma_migratable. If they are not, we
* would find the !migratable VMA on the next scan but not reset the
* scanner to the start so check it now.
*/
if (vma)
mm->numa_scan_offset = start;
else
reset_ptenuma_scan(p);
up_read(&mm->mmap_sem);
}
/*
* Drive the periodic memory faults..
*/
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
struct callback_head *work = &curr->numa_work;
u64 period, now;
/*
* We don't care about NUMA placement if we don't have memory.
*/
if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
return;
/*
* Using runtime rather than walltime has the dual advantage that
* we (mostly) drive the selection from busy threads and that the
* task needs to have done some actual work before we bother with
* NUMA placement.
*/
now = curr->se.sum_exec_runtime;
period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
if (now - curr->node_stamp > period) {
if (!curr->node_stamp)
curr->numa_scan_period = task_scan_min(curr);
curr->node_stamp += period;
if (!time_before(jiffies, curr->mm->numa_next_scan)) {
init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
task_work_add(curr, work, true);
}
}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}
static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
#endif /* CONFIG_NUMA_BALANCING */
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
update_load_add(&cfs_rq->load, se->load.weight);
if (!parent_entity(se))
update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
#ifdef CONFIG_SMP
if (entity_is_task(se)) {
struct rq *rq = rq_of(cfs_rq);
account_numa_enqueue(rq, task_of(se));
list_add(&se->group_node, &rq->cfs_tasks);
}
#endif
cfs_rq->nr_running++;
}
static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
update_load_sub(&cfs_rq->load, se->load.weight);
if (!parent_entity(se))
update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
if (entity_is_task(se)) {
account_numa_dequeue(rq_of(cfs_rq), task_of(se));
list_del_init(&se->group_node);
}
cfs_rq->nr_running--;
}
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
long tg_weight;
/*
* Use this CPU's actual weight instead of the last load_contribution
* to gain a more accurate current total weight. See
* update_cfs_rq_load_contribution().
*/
tg_weight = atomic_long_read(&tg->load_avg);
tg_weight -= cfs_rq->tg_load_contrib;
tg_weight += cfs_rq->load.weight;
return tg_weight;
}
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
{
long tg_weight, load, shares;
tg_weight = calc_tg_weight(tg, cfs_rq);
load = cfs_rq->load.weight;
shares = (tg->shares * load);
if (tg_weight)
shares /= tg_weight;
if (shares < MIN_SHARES)
shares = MIN_SHARES;
if (shares > tg->shares)
shares = tg->shares;
return shares;
}
# else /* CONFIG_SMP */
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
{
return tg->shares;
}
# endif /* CONFIG_SMP */
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
unsigned long weight)
{
if (se->on_rq) {
/* commit outstanding execution time */
if (cfs_rq->curr == se)
update_curr(cfs_rq);
account_entity_dequeue(cfs_rq, se);
}
update_load_set(&se->load, weight);
if (se->on_rq)
account_entity_enqueue(cfs_rq, se);
}
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
static void update_cfs_shares(struct cfs_rq *cfs_rq)
{
struct task_group *tg;
struct sched_entity *se;
long shares;
tg = cfs_rq->tg;
se = tg->se[cpu_of(rq_of(cfs_rq))];
if (!se || throttled_hierarchy(cfs_rq))
return;
#ifndef CONFIG_SMP
if (likely(se->load.weight == tg->shares))
return;
#endif
shares = calc_cfs_shares(cfs_rq, tg);
reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */
#ifdef CONFIG_SMP
/*
* We choose a half-life close to 1 scheduling period.
* Note: The tables below are dependent on this value.
*/
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
0x85aac367, 0x82cd8698,
};
/*
* Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
* over-estimates when re-combining.
*/
static const u32 runnable_avg_yN_sum[] = {
0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};
/*
* Approximate:
* val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
*/
static __always_inline u64 decay_load(u64 val, u64 n)
{
unsigned int local_n;
if (!n)
return val;
else if (unlikely(n > LOAD_AVG_PERIOD * 63))
return 0;
/* after bounds checking we can collapse to 32-bit */
local_n = n;
/*
* As y^PERIOD = 1/2, we can combine
* y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
* With a look-up table which covers y^n (n<PERIOD)
*
* To achieve constant time decay_load.
*/
if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
val >>= local_n / LOAD_AVG_PERIOD;
local_n %= LOAD_AVG_PERIOD;
}
val *= runnable_avg_yN_inv[local_n];
/* We don't use SRR here since we always want to round down. */
return val >> 32;
}
/*
* For updates fully spanning n periods, the contribution to runnable
* average will be: \Sum 1024*y^n
*
* We can compute this reasonably efficiently by combining:
* y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
*/
static u32 __compute_runnable_contrib(u64 n)
{
u32 contrib = 0;
if (likely(n <= LOAD_AVG_PERIOD))
return runnable_avg_yN_sum[n];
else if (unlikely(n >= LOAD_AVG_MAX_N))
return LOAD_AVG_MAX;
/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
do {
contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
n -= LOAD_AVG_PERIOD;
} while (n > LOAD_AVG_PERIOD);
contrib = decay_load(contrib, n);
return contrib + runnable_avg_yN_sum[n];
}
/*
* We can represent the historical contribution to runnable average as the
* coefficients of a geometric series. To do this we sub-divide our runnable
* history into segments of approximately 1ms (1024us); label the segment that
* occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
*
* [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
* p0 p1 p2
* (now) (~1ms ago) (~2ms ago)
*
* Let u_i denote the fraction of p_i that the entity was runnable.
*
* We then designate the fractions u_i as our co-efficients, yielding the
* following representation of historical load:
* u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
*
* We choose y based on the with of a reasonably scheduling period, fixing:
* y^32 = 0.5
*
* This means that the contribution to load ~32ms ago (u_32) will be weighted
* approximately half as much as the contribution to load within the last ms
* (u_0).
*
* When a period "rolls over" and we have new u_0`, multiplying the previous
* sum again by y is sufficient to update:
* load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
* = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
*/
static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
struct sched_avg *sa,
int runnable,
int running)
{
u64 delta, periods;
u32 runnable_contrib;
int delta_w, decayed = 0;
unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
delta = now - sa->last_runnable_update;
/*
* This should only happen when time goes backwards, which it
* unfortunately does during sched clock init when we swap over to TSC.
*/
if ((s64)delta < 0) {
sa->last_runnable_update = now;
return 0;
}
/*
* Use 1024ns as the unit of measurement since it's a reasonable
* approximation of 1us and fast to compute.
*/
delta >>= 10;
if (!delta)
return 0;
sa->last_runnable_update = now;
/* delta_w is the amount already accumulated against our next period */
delta_w = sa->avg_period % 1024;
if (delta + delta_w >= 1024) {
/* period roll-over */
decayed = 1;
/*
* Now that we know we're crossing a period boundary, figure
* out how much from delta we need to complete the current
* period and accrue it.
*/
delta_w = 1024 - delta_w;
if (runnable)
sa->runnable_avg_sum += delta_w;
if (running)
sa->running_avg_sum += delta_w * scale_freq
>> SCHED_CAPACITY_SHIFT;
sa->avg_period += delta_w;
delta -= delta_w;
/* Figure out how many additional periods this update spans */
periods = delta / 1024;
delta %= 1024;
sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
periods + 1);
sa->running_avg_sum = decay_load(sa->running_avg_sum,
periods + 1);
sa->avg_period = decay_load(sa->avg_period,
periods + 1);
/* Efficiently calculate \sum (1..n_period) 1024*y^i */
runnable_contrib = __compute_runnable_contrib(periods);
if (runnable)
sa->runnable_avg_sum += runnable_contrib;
if (running)
sa->running_avg_sum += runnable_contrib * scale_freq
>> SCHED_CAPACITY_SHIFT;
sa->avg_period += runnable_contrib;
}
/* Remainder of delta accrued against u_0` */
if (runnable)
sa->runnable_avg_sum += delta;
if (running)
sa->running_avg_sum += delta * scale_freq
>> SCHED_CAPACITY_SHIFT;
sa->avg_period += delta;
return decayed;
}
/* Synchronize an entity's decay with its parenting cfs_rq.*/
static inline u64 __synchronize_entity_decay(struct sched_entity *se)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
u64 decays = atomic64_read(&cfs_rq->decay_counter);
decays -= se->avg.decay_count;
se->avg.decay_count = 0;
if (!decays)
return 0;
se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
se->avg.utilization_avg_contrib =
decay_load(se->avg.utilization_avg_contrib, decays);
return decays;
}
#ifdef CONFIG_FAIR_GROUP_SCHED
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
int force_update)
{
struct task_group *tg = cfs_rq->tg;
long tg_contrib;
tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
tg_contrib -= cfs_rq->tg_load_contrib;
if (!tg_contrib)
return;
if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
atomic_long_add(tg_contrib, &tg->load_avg);
cfs_rq->tg_load_contrib += tg_contrib;
}
}
/*
* Aggregate cfs_rq runnable averages into an equivalent task_group
* representation for computing load contributions.
*/
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
struct cfs_rq *cfs_rq)
{
struct task_group *tg = cfs_rq->tg;
long contrib;
/* The fraction of a cpu used by this cfs_rq */
contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
sa->avg_period + 1);
contrib -= cfs_rq->tg_runnable_contrib;
if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
atomic_add(contrib, &tg->runnable_avg);
cfs_rq->tg_runnable_contrib += contrib;
}
}
static inline void __update_group_entity_contrib(struct sched_entity *se)
{
struct cfs_rq *cfs_rq = group_cfs_rq(se);
struct task_group *tg = cfs_rq->tg;
int runnable_avg;
u64 contrib;
contrib = cfs_rq->tg_load_contrib * tg->shares;
se->avg.load_avg_contrib = div_u64(contrib,
atomic_long_read(&tg->load_avg) + 1);
/*
* For group entities we need to compute a correction term in the case
* that they are consuming <1 cpu so that we would contribute the same
* load as a task of equal weight.
*
* Explicitly co-ordinating this measurement would be expensive, but
* fortunately the sum of each cpus contribution forms a usable
* lower-bound on the true value.
*
* Consider the aggregate of 2 contributions. Either they are disjoint
* (and the sum represents true value) or they are disjoint and we are
* understating by the aggregate of their overlap.
*
* Extending this to N cpus, for a given overlap, the maximum amount we
* understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
* cpus that overlap for this interval and w_i is the interval width.
*
* On a small machine; the first term is well-bounded which bounds the
* total error since w_i is a subset of the period. Whereas on a
* larger machine, while this first term can be larger, if w_i is the
* of consequential size guaranteed to see n_i*w_i quickly converge to
* our upper bound of 1-cpu.
*/
runnable_avg = atomic_read(&tg->runnable_avg);
if (runnable_avg < NICE_0_LOAD) {
se->avg.load_avg_contrib *= runnable_avg;
se->avg.load_avg_contrib >>= NICE_0_SHIFT;
}
}
static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
{
__update_entity_runnable_avg(rq_clock_task(rq), cpu_of(rq), &rq->avg,
runnable, runnable);
__update_tg_runnable_avg(&rq->avg, &rq->cfs);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
int force_update) {}
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
struct cfs_rq *cfs_rq) {}
static inline void __update_group_entity_contrib(struct sched_entity *se) {}
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
#endif /* CONFIG_FAIR_GROUP_SCHED */
static inline void __update_task_entity_contrib(struct sched_entity *se)
{
u32 contrib;
/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
contrib /= (se->avg.avg_period + 1);
se->avg.load_avg_contrib = scale_load(contrib);
}
/* Compute the current contribution to load_avg by se, return any delta */
static long __update_entity_load_avg_contrib(struct sched_entity *se)
{
long old_contrib = se->avg.load_avg_contrib;
if (entity_is_task(se)) {
__update_task_entity_contrib(se);
} else {
__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
__update_group_entity_contrib(se);
}
return se->avg.load_avg_contrib - old_contrib;
}
static inline void __update_task_entity_utilization(struct sched_entity *se)
{
u32 contrib;
/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE);
contrib /= (se->avg.avg_period + 1);
se->avg.utilization_avg_contrib = scale_load(contrib);
}
static long __update_entity_utilization_avg_contrib(struct sched_entity *se)
{
long old_contrib = se->avg.utilization_avg_contrib;
if (entity_is_task(se))
__update_task_entity_utilization(se);
else
se->avg.utilization_avg_contrib =
group_cfs_rq(se)->utilization_load_avg;
return se->avg.utilization_avg_contrib - old_contrib;
}
static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
long load_contrib)
{
if (likely(load_contrib < cfs_rq->blocked_load_avg))
cfs_rq->blocked_load_avg -= load_contrib;
else
cfs_rq->blocked_load_avg = 0;
}
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
/* Update a sched_entity's runnable average */
static inline void update_entity_load_avg(struct sched_entity *se,
int update_cfs_rq)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
long contrib_delta, utilization_delta;
int cpu = cpu_of(rq_of(cfs_rq));
u64 now;
/*
* For a group entity we need to use their owned cfs_rq_clock_task() in
* case they are the parent of a throttled hierarchy.
*/
if (entity_is_task(se))
now = cfs_rq_clock_task(cfs_rq);
else
now = cfs_rq_clock_task(group_cfs_rq(se));
if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq,
cfs_rq->curr == se))
return;
contrib_delta = __update_entity_load_avg_contrib(se);
utilization_delta = __update_entity_utilization_avg_contrib(se);
if (!update_cfs_rq)
return;
if (se->on_rq) {
cfs_rq->runnable_load_avg += contrib_delta;
cfs_rq->utilization_load_avg += utilization_delta;
} else {
subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
}
}
/*
* Decay the load contributed by all blocked children and account this so that
* their contribution may appropriately discounted when they wake up.
*/
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
{
u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
u64 decays;
decays = now - cfs_rq->last_decay;
if (!decays && !force_update)
return;
if (atomic_long_read(&cfs_rq->removed_load)) {
unsigned long removed_load;
removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
subtract_blocked_load_contrib(cfs_rq, removed_load);
}
if (decays) {
cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
decays);
atomic64_add(decays, &cfs_rq->decay_counter);
cfs_rq->last_decay = now;
}
__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
}
/* Add the load generated by se into cfs_rq's child load-average */
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
struct sched_entity *se,
int wakeup)
{
/*
* We track migrations using entity decay_count <= 0, on a wake-up
* migration we use a negative decay count to track the remote decays
* accumulated while sleeping.
*
* Newly forked tasks are enqueued with se->avg.decay_count == 0, they
* are seen by enqueue_entity_load_avg() as a migration with an already
* constructed load_avg_contrib.
*/
if (unlikely(se->avg.decay_count <= 0)) {
se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
if (se->avg.decay_count) {
/*
* In a wake-up migration we have to approximate the
* time sleeping. This is because we can't synchronize
* clock_task between the two cpus, and it is not
* guaranteed to be read-safe. Instead, we can
* approximate this using our carried decays, which are
* explicitly atomically readable.
*/
se->avg.last_runnable_update -= (-se->avg.decay_count)
<< 20;
update_entity_load_avg(se, 0);
/* Indicate that we're now synchronized and on-rq */
se->avg.decay_count = 0;
}
wakeup = 0;
} else {
__synchronize_entity_decay(se);
}
/* migrated tasks did not contribute to our blocked load */
if (wakeup) {
subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
update_entity_load_avg(se, 0);
}
cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib;
/* we force update consideration on load-balancer moves */
update_cfs_rq_blocked_load(cfs_rq, !wakeup);
}
/*
* Remove se's load from this cfs_rq child load-average, if the entity is
* transitioning to a blocked state we track its projected decay using
* blocked_load_avg.
*/
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
struct sched_entity *se,
int sleep)
{
update_entity_load_avg(se, 1);
/* we force update consideration on load-balancer moves */
update_cfs_rq_blocked_load(cfs_rq, !sleep);
cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib;
if (sleep) {
cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
} /* migrations, e.g. sleep=0 leave decay_count == 0 */
}
/*
* Update the rq's load with the elapsed running time before entering
* idle. if the last scheduled task is not a CFS task, idle_enter will
* be the only way to update the runnable statistic.
*/
void idle_enter_fair(struct rq *this_rq)
{
update_rq_runnable_avg(this_rq, 1);
}
/*
* Update the rq's load with the elapsed idle time before a task is
* scheduled. if the newly scheduled task is not a CFS task, idle_exit will
* be the only way to update the runnable statistic.
*/
void idle_exit_fair(struct rq *this_rq)
{
update_rq_runnable_avg(this_rq, 0);
}
static int idle_balance(struct rq *this_rq);
#else /* CONFIG_SMP */
static inline void update_entity_load_avg(struct sched_entity *se,
int update_cfs_rq) {}
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
struct sched_entity *se,
int wakeup) {}
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
struct sched_entity *se,
int sleep) {}
static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
int force_update) {}
static inline int idle_balance(struct rq *rq)
{
return 0;
}
#endif /* CONFIG_SMP */
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHEDSTATS
struct task_struct *tsk = NULL;
if (entity_is_task(se))
tsk = task_of(se);
if (se->statistics.sleep_start) {
u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
if ((s64)delta < 0)
delta = 0;
if (unlikely(delta > se->statistics.sleep_max))
se->statistics.sleep_max = delta;
se->statistics.sleep_start = 0;
se->statistics.sum_sleep_runtime += delta;
if (tsk) {
account_scheduler_latency(tsk, delta >> 10, 1);
trace_sched_stat_sleep(tsk, delta);
}
}
if (se->statistics.block_start) {
u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
if ((s64)delta < 0)
delta = 0;
if (unlikely(delta > se->statistics.block_max))
se->statistics.block_max = delta;
se->statistics.block_start = 0;
se->statistics.sum_sleep_runtime += delta;
if (tsk) {
if (tsk->in_iowait) {
se->statistics.iowait_sum += delta;
se->statistics.iowait_count++;
trace_sched_stat_iowait(tsk, delta);
}
trace_sched_stat_blocked(tsk, delta);
/*
* Blocking time is in units of nanosecs, so shift by
* 20 to get a milliseconds-range estimation of the
* amount of time that the task spent sleeping:
*/
if (unlikely(prof_on == SLEEP_PROFILING)) {
profile_hits(SLEEP_PROFILING,
(void *)get_wchan(tsk),
delta >> 20);
}
account_scheduler_latency(tsk, delta >> 10, 0);
}
}
#endif
}
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
s64 d = se->vruntime - cfs_rq->min_vruntime;
if (d < 0)
d = -d;
if (d > 3*sysctl_sched_latency)
schedstat_inc(cfs_rq, nr_spread_over);
#endif
}
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
u64 vruntime = cfs_rq->min_vruntime;
/*
* The 'current' period is already promised to the current tasks,
* however the extra weight of the new task will slow them down a
* little, place the new task so that it fits in the slot that
* stays open at the end.
*/
if (initial && sched_feat(START_DEBIT))
vruntime += sched_vslice(cfs_rq, se);
/* sleeps up to a single latency don't count. */
if (!initial) {
unsigned long thresh = sysctl_sched_latency;
/*
* Halve their sleep time's effect, to allow
* for a gentler effect of sleepers:
*/
if (sched_feat(GENTLE_FAIR_SLEEPERS))
thresh >>= 1;
vruntime -= thresh;
}
/* ensure we never gain time by being placed backwards. */
se->vruntime = max_vruntime(se->vruntime, vruntime);
}
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
static void
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
/*
* Update the normalized vruntime before updating min_vruntime
* through calling update_curr().
*/
if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
se->vruntime += cfs_rq->min_vruntime;
/*
* Update run-time statistics of the 'current'.
*/
update_curr(cfs_rq);
enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
account_entity_enqueue(cfs_rq, se);
update_cfs_shares(cfs_rq);
if (flags & ENQUEUE_WAKEUP) {
place_entity(cfs_rq, se, 0);
enqueue_sleeper(cfs_rq, se);
}
update_stats_enqueue(cfs_rq, se);
check_spread(cfs_rq, se);
if (se != cfs_rq->curr)
__enqueue_entity(cfs_rq, se);
se->on_rq = 1;
if (cfs_rq->nr_running == 1) {
list_add_leaf_cfs_rq(cfs_rq);
check_enqueue_throttle(cfs_rq);
}
}
static void __clear_buddies_last(struct sched_entity *se)
{
for_each_sched_entity(se) {
struct cfs_rq *cfs_rq = cfs_rq_of(se);
if (cfs_rq->last != se)
break;
cfs_rq->last = NULL;
}
}
static void __clear_buddies_next(struct sched_entity *se)
{
for_each_sched_entity(se) {
struct cfs_rq *cfs_rq = cfs_rq_of(se);
if (cfs_rq->next != se)
break;
cfs_rq->next = NULL;
}
}
static void __clear_buddies_skip(struct sched_entity *se)
{
for_each_sched_entity(se) {
struct cfs_rq *cfs_rq = cfs_rq_of(se);
if (cfs_rq->skip != se)
break;
cfs_rq->skip = NULL;
}
}
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
if (cfs_rq->last == se)
__clear_buddies_last(se);
if (cfs_rq->next == se)
__clear_buddies_next(se);
if (cfs_rq->skip == se)
__clear_buddies_skip(se);
}
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
static void
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
/*
* Update run-time statistics of the 'current'.
*/
update_curr(cfs_rq);
dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
update_stats_dequeue(cfs_rq, se);
if (flags & DEQUEUE_SLEEP) {
#ifdef CONFIG_SCHEDSTATS
if (entity_is_task(se)) {
struct task_struct *tsk = task_of(se);
if (tsk->state & TASK_INTERRUPTIBLE)
se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
if (tsk->state & TASK_UNINTERRUPTIBLE)
se->statistics.block_start = rq_clock(rq_of(cfs_rq));
}
#endif
}
clear_buddies(cfs_rq, se);
if (se != cfs_rq->curr)
__dequeue_entity(cfs_rq, se);
se->on_rq = 0;
account_entity_dequeue(cfs_rq, se);
/*
* Normalize the entity after updating the min_vruntime because the
* update can refer to the ->curr item and we need to reflect this
* movement in our normalized position.
*/
if (!(flags & DEQUEUE_SLEEP))
se->vruntime -= cfs_rq->min_vruntime;
/* return excess runtime on last dequeue */
return_cfs_rq_runtime(cfs_rq);
update_min_vruntime(cfs_rq);
update_cfs_shares(cfs_rq);
}
/*
* Preempt the current task with a newly woken task if needed:
*/
static void
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
{
unsigned long ideal_runtime, delta_exec;
struct sched_entity *se;
s64 delta;
ideal_runtime = sched_slice(cfs_rq, curr);
delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
if (delta_exec > ideal_runtime) {
resched_curr(rq_of(cfs_rq));
/*
* The current task ran long enough, ensure it doesn't get
* re-elected due to buddy favours.
*/
clear_buddies(cfs_rq, curr);
return;
}
/*
* Ensure that a task that missed wakeup preemption by a
* narrow margin doesn't have to wait for a full slice.
* This also mitigates buddy induced latencies under load.
*/
if (delta_exec < sysctl_sched_min_granularity)
return;
se = __pick_first_entity(cfs_rq);
delta = curr->vruntime - se->vruntime;
if (delta < 0)
return;
if (delta > ideal_runtime)
resched_curr(rq_of(cfs_rq));
}
static void
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
/* 'current' is not kept within the tree. */
if (se->on_rq) {
/*
* Any task has to be enqueued before it get to execute on
* a CPU. So account for the time it spent waiting on the
* runqueue.
*/
update_stats_wait_end(cfs_rq, se);
__dequeue_entity(cfs_rq, se);
update_entity_load_avg(se, 1);
}
update_stats_curr_start(cfs_rq, se);
cfs_rq->curr = se;
#ifdef CONFIG_SCHEDSTATS
/*
* Track our maximum slice length, if the CPU's load is at
* least twice that of our own weight (i.e. dont track it
* when there are only lesser-weight tasks around):
*/
if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
se->statistics.slice_max = max(se->statistics.slice_max,
se->sum_exec_runtime - se->prev_sum_exec_runtime);
}
#endif
se->prev_sum_exec_runtime = se->sum_exec_runtime;
}
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
/*
* Pick the next process, keeping these things in mind, in this order:
* 1) keep things fair between processes/task groups
* 2) pick the "next" process, since someone really wants that to run
* 3) pick the "last" process, for cache locality
* 4) do not run the "skip" process, if something else is available
*/
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
{
struct sched_entity *left = __pick_first_entity(cfs_rq);
struct sched_entity *se;
/*
* If curr is set we have to see if its left of the leftmost entity
* still in the tree, provided there was anything in the tree at all.
*/
if (!left || (curr && entity_before(curr, left)))
left = curr;
se = left; /* ideally we run the leftmost entity */
/*
* Avoid running the skip buddy, if running something else can
* be done without getting too unfair.
*/
if (cfs_rq->skip == se) {
struct sched_entity *second;
if (se == curr) {
second = __pick_first_entity(cfs_rq);
} else {
second = __pick_next_entity(se);
if (!second || (curr && entity_before(curr, second)))
second = curr;
}
if (second && wakeup_preempt_entity(second, left) < 1)
se = second;
}
/*
* Prefer last buddy, try to return the CPU to a preempted task.
*/
if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
se = cfs_rq->last;
/*
* Someone really wants this to run. If it's not unfair, run it.
*/
if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
se = cfs_rq->next;
clear_buddies(cfs_rq, se);
return se;
}
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
{
/*
* If still on the runqueue then deactivate_task()
* was not called and update_curr() has to be done:
*/
if (prev->on_rq)
update_curr(cfs_rq);
/* throttle cfs_rqs exceeding runtime */
check_cfs_rq_runtime(cfs_rq);
check_spread(cfs_rq, prev);
if (prev->on_rq) {
update_stats_wait_start(cfs_rq, prev);
/* Put 'current' back into the tree. */
__enqueue_entity(cfs_rq, prev);
/* in !on_rq case, update occurred at dequeue */
update_entity_load_avg(prev, 1);
}
cfs_rq->curr = NULL;
}
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
{
/*
* Update run-time statistics of the 'current'.
*/
update_curr(cfs_rq);
/*
* Ensure that runnable average is periodically updated.
*/
update_entity_load_avg(curr, 1);
update_cfs_rq_blocked_load(cfs_rq, 1);
update_cfs_shares(cfs_rq);
#ifdef CONFIG_SCHED_HRTICK
/*
* queued ticks are scheduled to match the slice, so don't bother
* validating it and just reschedule.
*/
if (queued) {
resched_curr(rq_of(cfs_rq));
return;
}
/*
* don't let the period tick interfere with the hrtick preemption
*/
if (!sched_feat(DOUBLE_TICK) &&
hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
return;
#endif
if (cfs_rq->nr_running > 1)
check_preempt_tick(cfs_rq, curr);
}
/**************************************************
* CFS bandwidth control machinery
*/
#ifdef CONFIG_CFS_BANDWIDTH
#ifdef HAVE_JUMP_LABEL
static struct static_key __cfs_bandwidth_used;
static inline bool cfs_bandwidth_used(void)
{
return static_key_false(&__cfs_bandwidth_used);
}
void cfs_bandwidth_usage_inc(void)
{
static_key_slow_inc(&__cfs_bandwidth_used);
}
void cfs_bandwidth_usage_dec(void)
{
static_key_slow_dec(&__cfs_bandwidth_used);
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
return true;
}
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
#endif /* HAVE_JUMP_LABEL */
/*
* default period for cfs group bandwidth.
* default: 0.1s, units: nanoseconds
*/
static inline u64 default_cfs_period(void)
{
return 100000000ULL;
}
static inline u64 sched_cfs_bandwidth_slice(void)
{
return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}
/*
* Replenish runtime according to assigned quota and update expiration time.
* We use sched_clock_cpu directly instead of rq->clock to avoid adding
* additional synchronization around rq->lock.
*
* requires cfs_b->lock
*/
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
{
u64 now;
if (cfs_b->quota == RUNTIME_INF)
return;
now = sched_clock_cpu(smp_processor_id());
cfs_b->runtime = cfs_b->quota;
cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
return &tg->cfs_bandwidth;
}
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
if (unlikely(cfs_rq->throttle_count))
return cfs_rq->throttled_clock_task;
return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
}
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
struct task_group *tg = cfs_rq->tg;
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
u64 amount = 0, min_amount, expires;
/* note: this is a positive sum as runtime_remaining <= 0 */
min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
raw_spin_lock(&cfs_b->lock);
if (cfs_b->quota == RUNTIME_INF)
amount = min_amount;
else {
/*
* If the bandwidth pool has become inactive, then at least one
* period must have elapsed since the last consumption.
* Refresh the global state and ensure bandwidth timer becomes
* active.
*/
if (!cfs_b->timer_active) {
__refill_cfs_bandwidth_runtime(cfs_b);
__start_cfs_bandwidth(cfs_b, false);
}
if (cfs_b->runtime > 0) {
amount = min(cfs_b->runtime, min_amount);
cfs_b->runtime -= amount;
cfs_b->idle = 0;
}
}
expires = cfs_b->runtime_expires;
raw_spin_unlock(&cfs_b->lock);
cfs_rq->runtime_remaining += amount;
/*
* we may have advanced our local expiration to account for allowed
* spread between our sched_clock and the one on which runtime was
* issued.
*/
if ((s64)(expires - cfs_rq->runtime_expires) > 0)
cfs_rq->runtime_expires = expires;
return cfs_rq->runtime_remaining > 0;
}
/*
* Note: This depends on the synchronization provided by sched_clock and the
* fact that rq->clock snapshots this value.
*/
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
/* if the deadline is ahead of our clock, nothing to do */
if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
return;
if (cfs_rq->runtime_remaining < 0)
return;
/*
* If the local deadline has passed we have to consider the
* possibility that our sched_clock is 'fast' and the global deadline
* has not truly expired.
*
* Fortunately we can check determine whether this the case by checking
* whether the global deadline has advanced. It is valid to compare
* cfs_b->runtime_expires without any locks since we only care about
* exact equality, so a partial write will still work.
*/
if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
/* extend local deadline, drift is bounded above by 2 ticks */
cfs_rq->runtime_expires += TICK_NSEC;
} else {
/* global deadline is ahead, expiration has passed */
cfs_rq->runtime_remaining = 0;
}
}
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
{
/* dock delta_exec before expiring quota (as it could span periods) */
cfs_rq->runtime_remaining -= delta_exec;
expire_cfs_rq_runtime(cfs_rq);
if (likely(cfs_rq->runtime_remaining > 0))
return;
/*
* if we're unable to extend our runtime we resched so that the active
* hierarchy can be throttled
*/
if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
resched_curr(rq_of(cfs_rq));
}
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
{
if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
return;
__account_cfs_rq_runtime(cfs_rq, delta_exec);
}
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
return cfs_bandwidth_used() && cfs_rq->throttled;
}
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
return cfs_bandwidth_used() && cfs_rq->throttle_count;
}
/*
* Ensure that neither of the group entities corresponding to src_cpu or
* dest_cpu are members of a throttled hierarchy when performing group
* load-balance operations.
*/
static inline int throttled_lb_pair(struct task_group *tg,
int src_cpu, int dest_cpu)
{
struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
src_cfs_rq = tg->cfs_rq[src_cpu];
dest_cfs_rq = tg->cfs_rq[dest_cpu];
return throttled_hierarchy(src_cfs_rq) ||
throttled_hierarchy(dest_cfs_rq);
}
/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
struct rq *rq = data;
struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
if (!cfs_rq->throttle_count) {
/* adjust cfs_rq_clock_task() */
cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
cfs_rq->throttled_clock_task;
}
#endif
return 0;
}
static int tg_throttle_down(struct task_group *tg, void *data)
{
struct rq *rq = data;
struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
/* group is entering throttled state, stop time */
if (!cfs_rq->throttle_count)
cfs_rq->throttled_clock_task = rq_clock_task(rq);
cfs_rq->throttle_count++;
return 0;
}
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
{
struct rq *rq = rq_of(cfs_rq);
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
struct sched_entity *se;
long task_delta, dequeue = 1;
se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
/* freeze hierarchy runnable averages while throttled */
rcu_read_lock();
walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
rcu_read_unlock();
task_delta = cfs_rq->h_nr_running;
for_each_sched_entity(se) {
struct cfs_rq *qcfs_rq = cfs_rq_of(se);
/* throttled entity or throttle-on-deactivate */
if (!se->on_rq)
break;
if (dequeue)
dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
qcfs_rq->h_nr_running -= task_delta;
if (qcfs_rq->load.weight)
dequeue = 0;
}
if (!se)
sub_nr_running(rq, task_delta);
cfs_rq->throttled = 1;
cfs_rq->throttled_clock = rq_clock(rq);
raw_spin_lock(&cfs_b->lock);
/*
* Add to the _head_ of the list, so that an already-started
* distribute_cfs_runtime will not see us
*/
list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
if (!cfs_b->timer_active)
__start_cfs_bandwidth(cfs_b, false);
raw_spin_unlock(&cfs_b->lock);
}
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
{
struct rq *rq = rq_of(cfs_rq);
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
struct sched_entity *se;
int enqueue = 1;
long task_delta;
se = cfs_rq->tg->se[cpu_of(rq)];
cfs_rq->throttled = 0;
update_rq_clock(rq);
raw_spin_lock(&cfs_b->lock);
cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
list_del_rcu(&cfs_rq->throttled_list);
raw_spin_unlock(&cfs_b->lock);
/* update hierarchical throttle state */
walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
if (!cfs_rq->load.weight)
return;
task_delta = cfs_rq->h_nr_running;
for_each_sched_entity(se) {
if (se->on_rq)
enqueue = 0;
cfs_rq = cfs_rq_of(se);
if (enqueue)
enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
cfs_rq->h_nr_running += task_delta;
if (cfs_rq_throttled(cfs_rq))
break;
}
if (!se)
add_nr_running(rq, task_delta);
/* determine whether we need to wake up potentially idle cpu */
if (rq->curr == rq->idle && rq->cfs.nr_running)
resched_curr(rq);
}
static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
u64 remaining, u64 expires)
{
struct cfs_rq *cfs_rq;
u64 runtime;
u64 starting_runtime = remaining;
rcu_read_lock();
list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
throttled_list) {
struct rq *rq = rq_of(cfs_rq);
raw_spin_lock(&rq->lock);
if (!cfs_rq_throttled(cfs_rq))
goto next;
runtime = -cfs_rq->runtime_remaining + 1;
if (runtime > remaining)
runtime = remaining;
remaining -= runtime;
cfs_rq->runtime_remaining += runtime;
cfs_rq->runtime_expires = expires;
/* we check whether we're throttled above */
if (cfs_rq->runtime_remaining > 0)
unthrottle_cfs_rq(cfs_rq);
next:
raw_spin_unlock(&rq->lock);
if (!remaining)
break;
}
rcu_read_unlock();
return starting_runtime - remaining;
}
/*
* Responsible for refilling a task_group's bandwidth and unthrottling its
* cfs_rqs as appropriate. If there has been no activity within the last
* period the timer is deactivated until scheduling resumes; cfs_b->idle is
* used to track this state.
*/
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
u64 runtime, runtime_expires;
int throttled;
/* no need to continue the timer with no bandwidth constraint */
if (cfs_b->quota == RUNTIME_INF)
goto out_deactivate;
throttled = !list_empty(&cfs_b->throttled_cfs_rq);
cfs_b->nr_periods += overrun;
/*
* idle depends on !throttled (for the case of a large deficit), and if
* we're going inactive then everything else can be deferred
*/
if (cfs_b->idle && !throttled)
goto out_deactivate;
/*
* if we have relooped after returning idle once, we need to update our
* status as actually running, so that other cpus doing
* __start_cfs_bandwidth will stop trying to cancel us.
*/
cfs_b->timer_active = 1;
__refill_cfs_bandwidth_runtime(cfs_b);
if (!throttled) {
/* mark as potentially idle for the upcoming period */
cfs_b->idle = 1;
return 0;
}
/* account preceding periods in which throttling occurred */
cfs_b->nr_throttled += overrun;
runtime_expires = cfs_b->runtime_expires;
/*
* This check is repeated as we are holding onto the new bandwidth while
* we unthrottle. This can potentially race with an unthrottled group
* trying to acquire new bandwidth from the global pool. This can result
* in us over-using our runtime if it is all used during this loop, but
* only by limited amounts in that extreme case.
*/
while (throttled && cfs_b->runtime > 0) {
runtime = cfs_b->runtime;
raw_spin_unlock(&cfs_b->lock);
/* we can't nest cfs_b->lock while distributing bandwidth */
runtime = distribute_cfs_runtime(cfs_b, runtime,
runtime_expires);
raw_spin_lock(&cfs_b->lock);
throttled = !list_empty(&cfs_b->throttled_cfs_rq);
cfs_b->runtime -= min(runtime, cfs_b->runtime);
}
/*
* While we are ensured activity in the period following an
* unthrottle, this also covers the case in which the new bandwidth is
* insufficient to cover the existing bandwidth deficit. (Forcing the
* timer to remain active while there are any throttled entities.)
*/
cfs_b->idle = 0;
return 0;
out_deactivate:
cfs_b->timer_active = 0;
return 1;
}
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
/*
* Are we near the end of the current quota period?
*
* Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
* hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
* migrate_hrtimers, base is never cleared, so we are fine.
*/
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
struct hrtimer *refresh_timer = &cfs_b->period_timer;
u64 remaining;
/* if the call-back is running a quota refresh is already occurring */
if (hrtimer_callback_running(refresh_timer))
return 1;
/* is a quota refresh about to occur? */
remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
if (remaining < min_expire)
return 1;
return 0;
}
static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
/* if there's a quota refresh soon don't bother with slack */
if (runtime_refresh_within(cfs_b, min_left))
return;
start_bandwidth_timer(&cfs_b->slack_timer,
ns_to_ktime(cfs_bandwidth_slack_period));
}
/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
if (slack_runtime <= 0)
return;
raw_spin_lock(&cfs_b->lock);
if (cfs_b->quota != RUNTIME_INF &&
cfs_rq->runtime_expires == cfs_b->runtime_expires) {
cfs_b->runtime += slack_runtime;
/* we are under rq->lock, defer unthrottling using a timer */
if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
!list_empty(&cfs_b->throttled_cfs_rq))
start_cfs_slack_bandwidth(cfs_b);
}
raw_spin_unlock(&cfs_b->lock);
/* even if it's not valid for return we don't want to try again */
cfs_rq->runtime_remaining -= slack_runtime;
}
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
if (!cfs_bandwidth_used())
return;
if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
return;
__return_cfs_rq_runtime(cfs_rq);
}
/*
* This is done with a timer (instead of inline with bandwidth return) since
* it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
*/
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
u64 expires;
/* confirm we're still not at a refresh boundary */
raw_spin_lock(&cfs_b->lock);
if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
raw_spin_unlock(&cfs_b->lock);
return;
}
if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
runtime = cfs_b->runtime;
expires = cfs_b->runtime_expires;
raw_spin_unlock(&cfs_b->lock);
if (!runtime)
return;
runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
raw_spin_lock(&cfs_b->lock);
if (expires == cfs_b->runtime_expires)
cfs_b->runtime -= min(runtime, cfs_b->runtime);
raw_spin_unlock(&cfs_b->lock);
}
/*
* When a group wakes up we want to make sure that its quota is not already
* expired/exceeded, otherwise it may be allowed to steal additional ticks of
* runtime as update_curr() throttling can not not trigger until it's on-rq.
*/
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
if (!cfs_bandwidth_used())
return;
/* an active group must be handled by the update_curr()->put() path */
if (!cfs_rq->runtime_enabled || cfs_rq->curr)
return;
/* ensure the group is not already throttled */
if (cfs_rq_throttled(cfs_rq))
return;
/* update runtime allocation */
account_cfs_rq_runtime(cfs_rq, 0);
if (cfs_rq->runtime_remaining <= 0)
throttle_cfs_rq(cfs_rq);
}
/* conditionally throttle active cfs_rq's from put_prev_entity() */
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
if (!cfs_bandwidth_used())
return false;
if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
return false;
/*
* it's possible for a throttled entity to be forced into a running
* state (e.g. set_curr_task), in this case we're finished.
*/
if (cfs_rq_throttled(cfs_rq))
return true;
throttle_cfs_rq(cfs_rq);
return true;
}
static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
struct cfs_bandwidth *cfs_b =
container_of(timer, struct cfs_bandwidth, slack_timer);
do_sched_cfs_slack_timer(cfs_b);
return HRTIMER_NORESTART;
}
static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
struct cfs_bandwidth *cfs_b =
container_of(timer, struct cfs_bandwidth, period_timer);
ktime_t now;
int overrun;
int idle = 0;
raw_spin_lock(&cfs_b->lock);
for (;;) {
now = hrtimer_cb_get_time(timer);
overrun = hrtimer_forward(timer, now, cfs_b->period);
if (!overrun)
break;
idle = do_sched_cfs_period_timer(cfs_b, overrun);
}
raw_spin_unlock(&cfs_b->lock);
return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}
void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
raw_spin_lock_init(&cfs_b->lock);
cfs_b->runtime = 0;
cfs_b->quota = RUNTIME_INF;
cfs_b->period = ns_to_ktime(default_cfs_period());
INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
cfs_b->period_timer.function = sched_cfs_period_timer;
hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
cfs_b->slack_timer.function = sched_cfs_slack_timer;
}
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
cfs_rq->runtime_enabled = 0;
INIT_LIST_HEAD(&cfs_rq->throttled_list);
}
/* requires cfs_b->lock, may release to reprogram timer */
void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
{
/*
* The timer may be active because we're trying to set a new bandwidth
* period or because we're racing with the tear-down path
* (timer_active==0 becomes visible before the hrtimer call-back
* terminates). In either case we ensure that it's re-programmed
*/
while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
/* bounce the lock to allow do_sched_cfs_period_timer to run */
raw_spin_unlock(&cfs_b->lock);
cpu_relax();
raw_spin_lock(&cfs_b->lock);
/* if someone else restarted the timer then we're done */
if (!force && cfs_b->timer_active)
return;
}
cfs_b->timer_active = 1;
start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
}
static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
/* init_cfs_bandwidth() was not called */
if (!cfs_b->throttled_cfs_rq.next)
return;
hrtimer_cancel(&cfs_b->period_timer);
hrtimer_cancel(&cfs_b->slack_timer);
}
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
struct cfs_rq *cfs_rq;
for_each_leaf_cfs_rq(rq, cfs_rq) {
struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
raw_spin_lock(&cfs_b->lock);
cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
raw_spin_unlock(&cfs_b->lock);
}
}
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
{
struct cfs_rq *cfs_rq;
for_each_leaf_cfs_rq(rq, cfs_rq) {
if (!cfs_rq->runtime_enabled)
continue;
/*
* clock_task is not advancing so we just need to make sure
* there's some valid quota amount
*/
cfs_rq->runtime_remaining = 1;
/*
* Offline rq is schedulable till cpu is completely disabled
* in take_cpu_down(), so we prevent new cfs throttling here.
*/
cfs_rq->runtime_enabled = 0;
if (cfs_rq_throttled(cfs_rq))
unthrottle_cfs_rq(cfs_rq);
}
}
#else /* CONFIG_CFS_BANDWIDTH */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
return rq_clock_task(rq_of(cfs_rq));
}
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
return 0;
}
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
return 0;
}
static inline int throttled_lb_pair(struct task_group *tg,
int src_cpu, int dest_cpu)
{
return 0;
}
void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
#endif
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
static inline void update_runtime_enabled(struct rq *rq) {}
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
#endif /* CONFIG_CFS_BANDWIDTH */
/**************************************************
* CFS operations on tasks:
*/
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
struct sched_entity *se = &p->se;
struct cfs_rq *cfs_rq = cfs_rq_of(se);
WARN_ON(task_rq(p) != rq);
if (cfs_rq->nr_running > 1) {
u64 slice = sched_slice(cfs_rq, se);
u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
s64 delta = slice - ran;
if (delta < 0) {
if (rq->curr == p)
resched_curr(rq);
return;
}
hrtick_start(rq, delta);
}
}
/*
* called from enqueue/dequeue and updates the hrtick when the
* current task is from our class and nr_running is low enough
* to matter.
*/
static void hrtick_update(struct rq *rq)
{
struct task_struct *curr = rq->curr;
if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
return;
if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
hrtick_start_fair(rq, curr);
}
#else /* !CONFIG_SCHED_HRTICK */
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
static inline void hrtick_update(struct rq *rq)
{
}
#endif
/*
* The enqueue_task method is called before nr_running is
* increased. Here we update the fair scheduling stats and
* then put the task into the rbtree:
*/
static void
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
{
struct cfs_rq *cfs_rq;
struct sched_entity *se = &p->se;
for_each_sched_entity(se) {
if (se->on_rq)
break;
cfs_rq = cfs_rq_of(se);
enqueue_entity(cfs_rq, se, flags);
/*
* end evaluation on encountering a throttled cfs_rq
*
* note: in the case of encountering a throttled cfs_rq we will
* post the final h_nr_running increment below.
*/
if (cfs_rq_throttled(cfs_rq))
break;
cfs_rq->h_nr_running++;
flags = ENQUEUE_WAKEUP;
}
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
cfs_rq->h_nr_running++;
if (cfs_rq_throttled(cfs_rq))
break;
update_cfs_shares(cfs_rq);
update_entity_load_avg(se, 1);
}
if (!se) {
update_rq_runnable_avg(rq, rq->nr_running);
add_nr_running(rq, 1);
}
hrtick_update(rq);
}
static void set_next_buddy(struct sched_entity *se);
/*
* The dequeue_task method is called before nr_running is
* decreased. We remove the task from the rbtree and
* update the fair scheduling stats:
*/
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
{
struct cfs_rq *cfs_rq;
struct sched_entity *se = &p->se;
int task_sleep = flags & DEQUEUE_SLEEP;
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
dequeue_entity(cfs_rq, se, flags);
/*
* end evaluation on encountering a throttled cfs_rq
*
* note: in the case of encountering a throttled cfs_rq we will
* post the final h_nr_running decrement below.
*/
if (cfs_rq_throttled(cfs_rq))
break;
cfs_rq->h_nr_running--;
/* Don't dequeue parent if it has other entities besides us */
if (cfs_rq->load.weight) {
/*
* Bias pick_next to pick a task from this cfs_rq, as
* p is sleeping when it is within its sched_slice.
*/
if (task_sleep && parent_entity(se))
set_next_buddy(parent_entity(se));
/* avoid re-evaluating load for this entity */
se = parent_entity(se);
break;
}
flags |= DEQUEUE_SLEEP;
}
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
cfs_rq->h_nr_running--;
if (cfs_rq_throttled(cfs_rq))
break;
update_cfs_shares(cfs_rq);
update_entity_load_avg(se, 1);
}
if (!se) {
sub_nr_running(rq, 1);
update_rq_runnable_avg(rq, 1);
}
hrtick_update(rq);
}
#ifdef CONFIG_SMP
/*
* per rq 'load' arrray crap; XXX kill this.
*/
/*
* The exact cpuload at various idx values, calculated at every tick would be
* load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
*
* If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
* on nth tick when cpu may be busy, then we have:
* load = ((2^idx - 1) / 2^idx)^(n-1) * load
* load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
*
* decay_load_missed() below does efficient calculation of
* load = ((2^idx - 1) / 2^idx)^(n-1) * load
* avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
*
* The calculation is approximated on a 128 point scale.
* degrade_zero_ticks is the number of ticks after which load at any
* particular idx is approximated to be zero.
* degrade_factor is a precomputed table, a row for each load idx.
* Each column corresponds to degradation factor for a power of two ticks,
* based on 128 point scale.
* Example:
* row 2, col 3 (=12) says that the degradation at load idx 2 after
* 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
*
* With this power of 2 load factors, we can degrade the load n times
* by looking at 1 bits in n and doing as many mult/shift instead of
* n mult/shifts needed by the exact degradation.
*/
#define DEGRADE_SHIFT 7
static const unsigned char
degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
{0, 0, 0, 0, 0, 0, 0, 0},
{64, 32, 8, 0, 0, 0, 0, 0},
{96, 72, 40, 12, 1, 0, 0},
{112, 98, 75, 43, 15, 1, 0},
{120, 112, 98, 76, 45, 16, 2} };
/*
* Update cpu_load for any missed ticks, due to tickless idle. The backlog
* would be when CPU is idle and so we just decay the old load without
* adding any new load.
*/
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
int j = 0;
if (!missed_updates)
return load;
if (missed_updates >= degrade_zero_ticks[idx])
return 0;
if (idx == 1)
return load >> missed_updates;
while (missed_updates) {
if (missed_updates % 2)
load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
missed_updates >>= 1;
j++;
}
return load;
}
/*
* Update rq->cpu_load[] statistics. This function is usually called every
* scheduler tick (TICK_NSEC). With tickless idle this will not be called
* every tick. We fix it up based on jiffies.
*/
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
unsigned long pending_updates)
{
int i, scale;
this_rq->nr_load_updates++;
/* Update our load: */
this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
unsigned long old_load, new_load;
/* scale is effectively 1 << i now, and >> i divides by scale */
old_load = this_rq->cpu_load[i];
old_load = decay_load_missed(old_load, pending_updates - 1, i);
new_load = this_load;
/*
* Round up the averaging division if load is increasing. This
* prevents us from getting stuck on 9 if the load is 10, for
* example.
*/
if (new_load > old_load)
new_load += scale - 1;
this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
}
sched_avg_update(this_rq);
}
#ifdef CONFIG_NO_HZ_COMMON
/*
* There is no sane way to deal with nohz on smp when using jiffies because the
* cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
* causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
*
* Therefore we cannot use the delta approach from the regular tick since that
* would seriously skew the load calculation. However we'll make do for those
* updates happening while idle (nohz_idle_balance) or coming out of idle
* (tick_nohz_idle_exit).
*
* This means we might still be one tick off for nohz periods.
*/
/*
* Called from nohz_idle_balance() to update the load ratings before doing the
* idle balance.
*/
static void update_idle_cpu_load(struct rq *this_rq)
{
unsigned long curr_jiffies = READ_ONCE(jiffies);
unsigned long load = this_rq->cfs.runnable_load_avg;
unsigned long pending_updates;
/*
* bail if there's load or we're actually up-to-date.
*/
if (load || curr_jiffies == this_rq->last_load_update_tick)
return;
pending_updates = curr_jiffies - this_rq->last_load_update_tick;
this_rq->last_load_update_tick = curr_jiffies;
__update_cpu_load(this_rq, load, pending_updates);
}
/*
* Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
*/
void update_cpu_load_nohz(void)
{
struct rq *this_rq = this_rq();
unsigned long curr_jiffies = READ_ONCE(jiffies);
unsigned long pending_updates;
if (curr_jiffies == this_rq->last_load_update_tick)
return;
raw_spin_lock(&this_rq->lock);
pending_updates = curr_jiffies - this_rq->last_load_update_tick;
if (pending_updates) {
this_rq->last_load_update_tick = curr_jiffies;
/*
* We were idle, this means load 0, the current load might be
* !0 due to remote wakeups and the sort.
*/
__update_cpu_load(this_rq, 0, pending_updates);
}
raw_spin_unlock(&this_rq->lock);
}
#endif /* CONFIG_NO_HZ */
/*
* Called from scheduler_tick()
*/
void update_cpu_load_active(struct rq *this_rq)
{
unsigned long load = this_rq->cfs.runnable_load_avg;
/*
* See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
*/
this_rq->last_load_update_tick = jiffies;
__update_cpu_load(this_rq, load, 1);
}
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
return cpu_rq(cpu)->cfs.runnable_load_avg;
}
/*
* Return a low guess at the load of a migration-source cpu weighted
* according to the scheduling class and "nice" value.
*
* We want to under-estimate the load of migration sources, to
* balance conservatively.
*/
static unsigned long source_load(int cpu, int type)
{
struct rq *rq = cpu_rq(cpu);
unsigned long total = weighted_cpuload(cpu);
if (type == 0 || !sched_feat(LB_BIAS))
return total;
return min(rq->cpu_load[type-1], total);
}
/*
* Return a high guess at the load of a migration-target cpu weighted
* according to the scheduling class and "nice" value.
*/
static unsigned long target_load(int cpu, int type)
{
struct rq *rq = cpu_rq(cpu);
unsigned long total = weighted_cpuload(cpu);
if (type == 0 || !sched_feat(LB_BIAS))
return total;
return max(rq->cpu_load[type-1], total);
}
static unsigned long capacity_of(int cpu)
{
return cpu_rq(cpu)->cpu_capacity;
}
static unsigned long capacity_orig_of(int cpu)
{
return cpu_rq(cpu)->cpu_capacity_orig;
}
static unsigned long cpu_avg_load_per_task(int cpu)
{
struct rq *rq = cpu_rq(cpu);
unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
unsigned long load_avg = rq->cfs.runnable_load_avg;
if (nr_running)
return load_avg / nr_running;
return 0;
}
static void record_wakee(struct task_struct *p)
{
/*
* Rough decay (wiping) for cost saving, don't worry
* about the boundary, really active task won't care
* about the loss.
*/
if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
current->wakee_flips >>= 1;
current->wakee_flip_decay_ts = jiffies;
}
if (current->last_wakee != p) {
current->last_wakee = p;
current->wakee_flips++;
}
}
static void task_waking_fair(struct task_struct *p)
{
struct sched_entity *se = &p->se;
struct cfs_rq *cfs_rq = cfs_rq_of(se);
u64 min_vruntime;
#ifndef CONFIG_64BIT
u64 min_vruntime_copy;
do {
min_vruntime_copy = cfs_rq->min_vruntime_copy;
smp_rmb();
min_vruntime = cfs_rq->min_vruntime;
} while (min_vruntime != min_vruntime_copy);
#else
min_vruntime = cfs_rq->min_vruntime;
#endif
se->vruntime -= min_vruntime;
record_wakee(p);
}
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
* effective_load() calculates the load change as seen from the root_task_group
*
* Adding load to a group doesn't make a group heavier, but can cause movement
* of group shares between cpus. Assuming the shares were perfectly aligned one
* can calculate the shift in shares.
*
* Calculate the effective load difference if @wl is added (subtracted) to @tg
* on this @cpu and results in a total addition (subtraction) of @wg to the
* total group weight.
*
* Given a runqueue weight distribution (rw_i) we can compute a shares
* distribution (s_i) using:
*
* s_i = rw_i / \Sum rw_j (1)
*
* Suppose we have 4 CPUs and our @tg is a direct child of the root group and
* has 7 equal weight tasks, distributed as below (rw_i), with the resulting
* shares distribution (s_i):
*
* rw_i = { 2, 4, 1, 0 }
* s_i = { 2/7, 4/7, 1/7, 0 }
*
* As per wake_affine() we're interested in the load of two CPUs (the CPU the
* task used to run on and the CPU the waker is running on), we need to
* compute the effect of waking a task on either CPU and, in case of a sync
* wakeup, compute the effect of the current task going to sleep.
*
* So for a change of @wl to the local @cpu with an overall group weight change
* of @wl we can compute the new shares distribution (s'_i) using:
*
* s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
*
* Suppose we're interested in CPUs 0 and 1, and want to compute the load
* differences in waking a task to CPU 0. The additional task changes the
* weight and shares distributions like:
*
* rw'_i = { 3, 4, 1, 0 }
* s'_i = { 3/8, 4/8, 1/8, 0 }
*
* We can then compute the difference in effective weight by using:
*
* dw_i = S * (s'_i - s_i) (3)
*
* Where 'S' is the group weight as seen by its parent.
*
* Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
* times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
* 4/7) times the weight of the group.
*/
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
{
struct sched_entity *se = tg->se[cpu];
if (!tg->parent) /* the trivial, non-cgroup case */
return wl;
for_each_sched_entity(se) {
long w, W;
tg = se->my_q->tg;
/*
* W = @wg + \Sum rw_j
*/
W = wg + calc_tg_weight(tg, se->my_q);
/*
* w = rw_i + @wl
*/
w = se->my_q->load.weight + wl;
/*
* wl = S * s'_i; see (2)
*/
if (W > 0 && w < W)
wl = (w * (long)tg->shares) / W;
else
wl = tg->shares;
/*
* Per the above, wl is the new se->load.weight value; since
* those are clipped to [MIN_SHARES, ...) do so now. See
* calc_cfs_shares().
*/
if (wl < MIN_SHARES)
wl = MIN_SHARES;
/*
* wl = dw_i = S * (s'_i - s_i); see (3)
*/
wl -= se->load.weight;
/*
* Recursively apply this logic to all parent groups to compute
* the final effective load change on the root group. Since
* only the @tg group gets extra weight, all parent groups can
* only redistribute existing shares. @wl is the shift in shares
* resulting from this level per the above.
*/
wg = 0;
}
return wl;
}
#else
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
{
return wl;
}
#endif
static int wake_wide(struct task_struct *p)
{
int factor = this_cpu_read(sd_llc_size);
/*
* Yeah, it's the switching-frequency, could means many wakee or
* rapidly switch, use factor here will just help to automatically
* adjust the loose-degree, so bigger node will lead to more pull.
*/
if (p->wakee_flips > factor) {
/*
* wakee is somewhat hot, it needs certain amount of cpu
* resource, so if waker is far more hot, prefer to leave
* it alone.
*/
if (current->wakee_flips > (factor * p->wakee_flips))
return 1;
}
return 0;
}
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
{
s64 this_load, load;
s64 this_eff_load, prev_eff_load;
int idx, this_cpu, prev_cpu;
struct task_group *tg;
unsigned long weight;
int balanced;
/*
* If we wake multiple tasks be careful to not bounce
* ourselves around too much.
*/
if (wake_wide(p))
return 0;
idx = sd->wake_idx;
this_cpu = smp_processor_id();
prev_cpu = task_cpu(p);
load = source_load(prev_cpu, idx);
this_load = target_load(this_cpu, idx);
/*
* If sync wakeup then subtract the (maximum possible)
* effect of the currently running task from the load
* of the current CPU:
*/
if (sync) {
tg = task_group(current);
weight = current->se.load.weight;
this_load += effective_load(tg, this_cpu, -weight, -weight);
load += effective_load(tg, prev_cpu, 0, -weight);
}
tg = task_group(p);
weight = p->se.load.weight;
/*
* In low-load situations, where prev_cpu is idle and this_cpu is idle
* due to the sync cause above having dropped this_load to 0, we'll
* always have an imbalance, but there's really nothing you can do
* about that, so that's good too.
*
* Otherwise check if either cpus are near enough in load to allow this
* task to be woken on this_cpu.
*/
this_eff_load = 100;
this_eff_load *= capacity_of(prev_cpu);
prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
prev_eff_load *= capacity_of(this_cpu);
if (this_load > 0) {
this_eff_load *= this_load +
effective_load(tg, this_cpu, weight, weight);
prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
}
balanced = this_eff_load <= prev_eff_load;
schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
if (!balanced)
return 0;
schedstat_inc(sd, ttwu_move_affine);
schedstat_inc(p, se.statistics.nr_wakeups_affine);
return 1;
}
/*
* find_idlest_group finds and returns the least busy CPU group within the
* domain.
*/
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
int this_cpu, int sd_flag)
{
struct sched_group *idlest = NULL, *group = sd->groups;
unsigned long min_load = ULONG_MAX, this_load = 0;
int load_idx = sd->forkexec_idx;
int imbalance = 100 + (sd->imbalance_pct-100)/2;
if (sd_flag & SD_BALANCE_WAKE)
load_idx = sd->wake_idx;
do {
unsigned long load, avg_load;
int local_group;
int i;
/* Skip over this group if it has no CPUs allowed */
if (!cpumask_intersects(sched_group_cpus(group),
tsk_cpus_allowed(p)))
continue;
local_group = cpumask_test_cpu(this_cpu,
sched_group_cpus(group));
/* Tally up the load of all CPUs in the group */
avg_load = 0;
for_each_cpu(i, sched_group_cpus(group)) {
/* Bias balancing toward cpus of our domain */
if (local_group)
load = source_load(i, load_idx);
else
load = target_load(i, load_idx);
avg_load += load;
}
/* Adjust by relative CPU capacity of the group */
avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
if (local_group) {
this_load = avg_load;
} else if (avg_load < min_load) {
min_load = avg_load;
idlest = group;
}
} while (group = group->next, group != sd->groups);
if (!idlest || 100*this_load < imbalance*min_load)
return NULL;
return idlest;
}
/*
* find_idlest_cpu - find the idlest cpu among the cpus in group.
*/
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
unsigned long load, min_load = ULONG_MAX;
unsigned int min_exit_latency = UINT_MAX;
u64 latest_idle_timestamp = 0;
int least_loaded_cpu = this_cpu;
int shallowest_idle_cpu = -1;
int i;
/* Traverse only the allowed CPUs */
for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
if (idle_cpu(i)) {
struct rq *rq = cpu_rq(i);
struct cpuidle_state *idle = idle_get_state(rq);
if (idle && idle->exit_latency < min_exit_latency) {
/*
* We give priority to a CPU whose idle state
* has the smallest exit latency irrespective
* of any idle timestamp.
*/
min_exit_latency = idle->exit_latency;
latest_idle_timestamp = rq->idle_stamp;
shallowest_idle_cpu = i;
} else if ((!idle || idle->exit_latency == min_exit_latency) &&
rq->idle_stamp > latest_idle_timestamp) {
/*
* If equal or no active idle state, then
* the most recently idled CPU might have
* a warmer cache.
*/
latest_idle_timestamp = rq->idle_stamp;
shallowest_idle_cpu = i;
}
} else if (shallowest_idle_cpu == -1) {
load = weighted_cpuload(i);
if (load < min_load || (load == min_load && i == this_cpu)) {
min_load = load;
least_loaded_cpu = i;
}
}
}
return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
}
/*
* Try and locate an idle CPU in the sched_domain.
*/
static int select_idle_sibling(struct task_struct *p, int target)
{
struct sched_domain *sd;
struct sched_group *sg;
int i = task_cpu(p);
if (idle_cpu(target))
return target;
/*
* If the prevous cpu is cache affine and idle, don't be stupid.
*/
if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
return i;
/*
* Otherwise, iterate the domains and find an elegible idle cpu.
*/
sd = rcu_dereference(per_cpu(sd_llc, target));
for_each_lower_domain(sd) {
sg = sd->groups;
do {
if (!cpumask_intersects(sched_group_cpus(sg),
tsk_cpus_allowed(p)))
goto next;
for_each_cpu(i, sched_group_cpus(sg)) {
if (i == target || !idle_cpu(i))
goto next;
}
target = cpumask_first_and(sched_group_cpus(sg),
tsk_cpus_allowed(p));
goto done;
next:
sg = sg->next;
} while (sg != sd->groups);
}
done:
return target;
}
/*
* get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
* tasks. The unit of the return value must be the one of capacity so we can
* compare the usage with the capacity of the CPU that is available for CFS
* task (ie cpu_capacity).
* cfs.utilization_load_avg is the sum of running time of runnable tasks on a
* CPU. It represents the amount of utilization of a CPU in the range
* [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full
* capacity of the CPU because it's about the running time on this CPU.
* Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE
* because of unfortunate rounding in avg_period and running_load_avg or just
* after migrating tasks until the average stabilizes with the new running
* time. So we need to check that the usage stays into the range
* [0..cpu_capacity_orig] and cap if necessary.
* Without capping the usage, a group could be seen as overloaded (CPU0 usage
* at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
*/
static int get_cpu_usage(int cpu)
{
unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg;
unsigned long capacity = capacity_orig_of(cpu);
if (usage >= SCHED_LOAD_SCALE)
return capacity;
return (usage * capacity) >> SCHED_LOAD_SHIFT;
}
/*
* select_task_rq_fair: Select target runqueue for the waking task in domains
* that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
* SD_BALANCE_FORK, or SD_BALANCE_EXEC.
*
* Balances load by selecting the idlest cpu in the idlest group, or under
* certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
*
* Returns the target cpu number.
*
* preempt must be disabled.
*/
static int
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
{
struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
int cpu = smp_processor_id();
int new_cpu = cpu;
int want_affine = 0;
int sync = wake_flags & WF_SYNC;
if (sd_flag & SD_BALANCE_WAKE)
want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
rcu_read_lock();
for_each_domain(cpu, tmp) {
if (!(tmp->flags & SD_LOAD_BALANCE))
continue;
/*
* If both cpu and prev_cpu are part of this domain,
* cpu is a valid SD_WAKE_AFFINE target.
*/
if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
affine_sd = tmp;
break;
}
if (tmp->flags & sd_flag)
sd = tmp;
}
if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
prev_cpu = cpu;
if (sd_flag & SD_BALANCE_WAKE) {
new_cpu = select_idle_sibling(p, prev_cpu);
goto unlock;
}
while (sd) {
struct sched_group *group;
int weight;
if (!(sd->flags & sd_flag)) {
sd = sd->child;
continue;
}
group = find_idlest_group(sd, p, cpu, sd_flag);
if (!group) {
sd = sd->child;
continue;
}
new_cpu = find_idlest_cpu(group, p, cpu);
if (new_cpu == -1 || new_cpu == cpu) {
/* Now try balancing at a lower domain level of cpu */
sd = sd->child;
continue;
}
/* Now try balancing at a lower domain level of new_cpu */
cpu = new_cpu;
weight = sd->span_weight;
sd = NULL;
for_each_domain(cpu, tmp) {
if (weight <= tmp->span_weight)
break;
if (tmp->flags & sd_flag)
sd = tmp;
}
/* while loop will break here if sd == NULL */
}
unlock:
rcu_read_unlock();
return new_cpu;
}
/*
* Called immediately before a task is migrated to a new cpu; task_cpu(p) and
* cfs_rq_of(p) references at time of call are still valid and identify the
* previous cpu. However, the caller only guarantees p->pi_lock is held; no
* other assumptions, including the state of rq->lock, should be made.
*/
static void
migrate_task_rq_fair(struct task_struct *p, int next_cpu)
{
struct sched_entity *se = &p->se;
struct cfs_rq *cfs_rq = cfs_rq_of(se);
/*
* Load tracking: accumulate removed load so that it can be processed
* when we next update owning cfs_rq under rq->lock. Tasks contribute
* to blocked load iff they have a positive decay-count. It can never
* be negative here since on-rq tasks have decay-count == 0.
*/
if (se->avg.decay_count) {
se->avg.decay_count = -__synchronize_entity_decay(se);
atomic_long_add(se->avg.load_avg_contrib,
&cfs_rq->removed_load);
}
/* We have migrated, no longer consider this task hot */
se->exec_start = 0;
}
#endif /* CONFIG_SMP */
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
{
unsigned long gran = sysctl_sched_wakeup_granularity;
/*
* Since its curr running now, convert the gran from real-time
* to virtual-time in his units.
*
* By using 'se' instead of 'curr' we penalize light tasks, so
* they get preempted easier. That is, if 'se' < 'curr' then
* the resulting gran will be larger, therefore penalizing the
* lighter, if otoh 'se' > 'curr' then the resulting gran will
* be smaller, again penalizing the lighter task.
*
* This is especially important for buddies when the leftmost
* task is higher priority than the buddy.
*/
return calc_delta_fair(gran, se);
}
/*
* Should 'se' preempt 'curr'.
*
* |s1
* |s2
* |s3
* g
* |<--->|c
*
* w(c, s1) = -1
* w(c, s2) = 0
* w(c, s3) = 1
*
*/
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
s64 gran, vdiff = curr->vruntime - se->vruntime;
if (vdiff <= 0)
return -1;
gran = wakeup_gran(curr, se);
if (vdiff > gran)
return 1;
return 0;
}
static void set_last_buddy(struct sched_entity *se)
{
if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
return;
for_each_sched_entity(se)
cfs_rq_of(se)->last = se;
}
static void set_next_buddy(struct sched_entity *se)
{
if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
return;
for_each_sched_entity(se)
cfs_rq_of(se)->next = se;
}
static void set_skip_buddy(struct sched_entity *se)
{
for_each_sched_entity(se)
cfs_rq_of(se)->skip = se;
}
/*
* Preempt the current task with a newly woken task if needed:
*/
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
{
struct task_struct *curr = rq->curr;
struct sched_entity *se = &curr->se, *pse = &p->se;
struct cfs_rq *cfs_rq = task_cfs_rq(curr);
int scale = cfs_rq->nr_running >= sched_nr_latency;
int next_buddy_marked = 0;
if (unlikely(se == pse))
return;
/*
* This is possible from callers such as attach_tasks(), in which we
* unconditionally check_prempt_curr() after an enqueue (which may have
* lead to a throttle). This both saves work and prevents false
* next-buddy nomination below.
*/
if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
return;
if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
set_next_buddy(pse);
next_buddy_marked = 1;
}
/*
* We can come here with TIF_NEED_RESCHED already set from new task
* wake up path.
*
* Note: this also catches the edge-case of curr being in a throttled
* group (e.g. via set_curr_task), since update_curr() (in the
* enqueue of curr) will have resulted in resched being set. This
* prevents us from potentially nominating it as a false LAST_BUDDY
* below.
*/
if (test_tsk_need_resched(curr))
return;
/* Idle tasks are by definition preempted by non-idle tasks. */
if (unlikely(curr->policy == SCHED_IDLE) &&
likely(p->policy != SCHED_IDLE))
goto preempt;
/*
* Batch and idle tasks do not preempt non-idle tasks (their preemption
* is driven by the tick):
*/
if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
return;
find_matching_se(&se, &pse);
update_curr(cfs_rq_of(se));
BUG_ON(!pse);
if (wakeup_preempt_entity(se, pse) == 1) {
/*
* Bias pick_next to pick the sched entity that is
* triggering this preemption.
*/
if (!next_buddy_marked)
set_next_buddy(pse);
goto preempt;
}
return;
preempt:
resched_curr(rq);
/*
* Only set the backward buddy when the current task is still
* on the rq. This can happen when a wakeup gets interleaved
* with schedule on the ->pre_schedule() or idle_balance()
* point, either of which can * drop the rq lock.
*
* Also, during early boot the idle thread is in the fair class,
* for obvious reasons its a bad idea to schedule back to it.
*/
if (unlikely(!se->on_rq || curr == rq->idle))
return;
if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
set_last_buddy(se);
}
static struct task_struct *
pick_next_task_fair(struct rq *rq, struct task_struct *prev)
{
struct cfs_rq *cfs_rq = &rq->cfs;
struct sched_entity *se;
struct task_struct *p;
int new_tasks;
again:
#ifdef CONFIG_FAIR_GROUP_SCHED
if (!cfs_rq->nr_running)
goto idle;
if (prev->sched_class != &fair_sched_class)
goto simple;
/*
* Because of the set_next_buddy() in dequeue_task_fair() it is rather
* likely that a next task is from the same cgroup as the current.
*
* Therefore attempt to avoid putting and setting the entire cgroup
* hierarchy, only change the part that actually changes.
*/
do {
struct sched_entity *curr = cfs_rq->curr;
/*
* Since we got here without doing put_prev_entity() we also
* have to consider cfs_rq->curr. If it is still a runnable
* entity, update_curr() will update its vruntime, otherwise
* forget we've ever seen it.
*/
if (curr && curr->on_rq)
update_curr(cfs_rq);
else
curr = NULL;
/*
* This call to check_cfs_rq_runtime() will do the throttle and
* dequeue its entity in the parent(s). Therefore the 'simple'
* nr_running test will indeed be correct.
*/
if (unlikely(check_cfs_rq_runtime(cfs_rq)))
goto simple;
se = pick_next_entity(cfs_rq, curr);
cfs_rq = group_cfs_rq(se);
} while (cfs_rq);
p = task_of(se);
/*
* Since we haven't yet done put_prev_entity and if the selected task
* is a different task than we started out with, try and touch the
* least amount of cfs_rqs.
*/
if (prev != p) {
struct sched_entity *pse = &prev->se;
while (!(cfs_rq = is_same_group(se, pse))) {
int se_depth = se->depth;
int pse_depth = pse->depth;
if (se_depth <= pse_depth) {
put_prev_entity(cfs_rq_of(pse), pse);
pse = parent_entity(pse);
}
if (se_depth >= pse_depth) {
set_next_entity(cfs_rq_of(se), se);
se = parent_entity(se);
}
}
put_prev_entity(cfs_rq, pse);
set_next_entity(cfs_rq, se);
}
if (hrtick_enabled(rq))
hrtick_start_fair(rq, p);
return p;
simple:
cfs_rq = &rq->cfs;
#endif
if (!cfs_rq->nr_running)
goto idle;
put_prev_task(rq, prev);
do {
se = pick_next_entity(cfs_rq, NULL);
set_next_entity(cfs_rq, se);
cfs_rq = group_cfs_rq(se);
} while (cfs_rq);
p = task_of(se);
if (hrtick_enabled(rq))
hrtick_start_fair(rq, p);
return p;
idle:
new_tasks = idle_balance(rq);
/*
* Because idle_balance() releases (and re-acquires) rq->lock, it is
* possible for any higher priority task to appear. In that case we
* must re-start the pick_next_entity() loop.
*/
if (new_tasks < 0)
return RETRY_TASK;
if (new_tasks > 0)
goto again;
return NULL;
}
/*
* Account for a descheduled task:
*/
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
{
struct sched_entity *se = &prev->se;
struct cfs_rq *cfs_rq;
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
put_prev_entity(cfs_rq, se);
}
}
/*
* sched_yield() is very simple
*
* The magic of dealing with the ->skip buddy is in pick_next_entity.
*/
static void yield_task_fair(struct rq *rq)
{
struct task_struct *curr = rq->curr;
struct cfs_rq *cfs_rq = task_cfs_rq(curr);
struct sched_entity *se = &curr->se;
/*
* Are we the only task in the tree?
*/
if (unlikely(rq->nr_running == 1))
return;
clear_buddies(cfs_rq, se);
if (curr->policy != SCHED_BATCH) {
update_rq_clock(rq);
/*
* Update run-time statistics of the 'current'.
*/
update_curr(cfs_rq);
/*
* Tell update_rq_clock() that we've just updated,
* so we don't do microscopic update in schedule()
* and double the fastpath cost.
*/
rq_clock_skip_update(rq, true);
}
set_skip_buddy(se);
}
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
struct sched_entity *se = &p->se;
/* throttled hierarchies are not runnable */
if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
return false;
/* Tell the scheduler that we'd really like pse to run next. */
set_next_buddy(se);
yield_task_fair(rq);
return true;
}
#ifdef CONFIG_SMP
/**************************************************
* Fair scheduling class load-balancing methods.
*
* BASICS
*
* The purpose of load-balancing is to achieve the same basic fairness the
* per-cpu scheduler provides, namely provide a proportional amount of compute
* time to each task. This is expressed in the following equation:
*
* W_i,n/P_i == W_j,n/P_j for all i,j (1)
*
* Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
* W_i,0 is defined as:
*
* W_i,0 = \Sum_j w_i,j (2)
*
* Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
* is derived from the nice value as per prio_to_weight[].
*
* The weight average is an exponential decay average of the instantaneous
* weight:
*
* W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
*
* C_i is the compute capacity of cpu i, typically it is the
* fraction of 'recent' time available for SCHED_OTHER task execution. But it
* can also include other factors [XXX].
*
* To achieve this balance we define a measure of imbalance which follows
* directly from (1):
*
* imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
*
* We them move tasks around to minimize the imbalance. In the continuous
* function space it is obvious this converges, in the discrete case we get
* a few fun cases generally called infeasible weight scenarios.
*
* [XXX expand on:
* - infeasible weights;
* - local vs global optima in the discrete case. ]
*
*
* SCHED DOMAINS
*
* In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
* for all i,j solution, we create a tree of cpus that follows the hardware
* topology where each level pairs two lower groups (or better). This results
* in O(log n) layers. Furthermore we reduce the number of cpus going up the
* tree to only the first of the previous level and we decrease the frequency
* of load-balance at each level inv. proportional to the number of cpus in
* the groups.
*
* This yields:
*
* log_2 n 1 n
* \Sum { --- * --- * 2^i } = O(n) (5)
* i = 0 2^i 2^i
* `- size of each group
* | | `- number of cpus doing load-balance
* | `- freq
* `- sum over all levels
*
* Coupled with a limit on how many tasks we can migrate every balance pass,
* this makes (5) the runtime complexity of the balancer.
*
* An important property here is that each CPU is still (indirectly) connected
* to every other cpu in at most O(log n) steps:
*
* The adjacency matrix of the resulting graph is given by:
*
* log_2 n
* A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
* k = 0
*
* And you'll find that:
*
* A^(log_2 n)_i,j != 0 for all i,j (7)
*
* Showing there's indeed a path between every cpu in at most O(log n) steps.
* The task movement gives a factor of O(m), giving a convergence complexity
* of:
*
* O(nm log n), n := nr_cpus, m := nr_tasks (8)
*
*
* WORK CONSERVING
*
* In order to avoid CPUs going idle while there's still work to do, new idle
* balancing is more aggressive and has the newly idle cpu iterate up the domain
* tree itself instead of relying on other CPUs to bring it work.
*
* This adds some complexity to both (5) and (8) but it reduces the total idle
* time.
*
* [XXX more?]
*
*
* CGROUPS
*
* Cgroups make a horror show out of (2), instead of a simple sum we get:
*
* s_k,i
* W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
* S_k
*
* Where
*
* s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
*
* w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
*
* The big problem is S_k, its a global sum needed to compute a local (W_i)
* property.
*
* [XXX write more on how we solve this.. _after_ merging pjt's patches that
* rewrite all of this once again.]
*/
static unsigned long __read_mostly max_load_balance_interval = HZ/10;
enum fbq_type { regular, remote, all };
#define LBF_ALL_PINNED 0x01
#define LBF_NEED_BREAK 0x02
#define LBF_DST_PINNED 0x04
#define LBF_SOME_PINNED 0x08
struct lb_env {
struct sched_domain *sd;
struct rq *src_rq;
int src_cpu;
int dst_cpu;
struct rq *dst_rq;
struct cpumask *dst_grpmask;
int new_dst_cpu;
enum cpu_idle_type idle;
long imbalance;
/* The set of CPUs under consideration for load-balancing */
struct cpumask *cpus;
unsigned int flags;
unsigned int loop;
unsigned int loop_break;
unsigned int loop_max;
enum fbq_type fbq_type;
struct list_head tasks;
};
/*
* Is this task likely cache-hot:
*/
static int task_hot(struct task_struct *p, struct lb_env *env)
{
s64 delta;
lockdep_assert_held(&env->src_rq->lock);
if (p->sched_class != &fair_sched_class)
return 0;
if (unlikely(p->policy == SCHED_IDLE))
return 0;
/*
* Buddy candidates are cache hot:
*/
if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
(&p->se == cfs_rq_of(&p->se)->next ||
&p->se == cfs_rq_of(&p->se)->last))
return 1;
if (sysctl_sched_migration_cost == -1)
return 1;
if (sysctl_sched_migration_cost == 0)
return 0;
delta = rq_clock_task(env->src_rq) - p->se.exec_start;
return delta < (s64)sysctl_sched_migration_cost;
}
#ifdef CONFIG_NUMA_BALANCING
/* Returns true if the destination node has incurred more faults */
static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
{
struct numa_group *numa_group = rcu_dereference(p->numa_group);
int src_nid, dst_nid;
if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
!(env->sd->flags & SD_NUMA)) {
return false;
}
src_nid = cpu_to_node(env->src_cpu);
dst_nid = cpu_to_node(env->dst_cpu);
if (src_nid == dst_nid)
return false;
if (numa_group) {
/* Task is already in the group's interleave set. */
if (node_isset(src_nid, numa_group->active_nodes))
return false;
/* Task is moving into the group's interleave set. */
if (node_isset(dst_nid, numa_group->active_nodes))
return true;
return group_faults(p, dst_nid) > group_faults(p, src_nid);
}
/* Encourage migration to the preferred node. */
if (dst_nid == p->numa_preferred_nid)
return true;
return task_faults(p, dst_nid) > task_faults(p, src_nid);
}
static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
{
struct numa_group *numa_group = rcu_dereference(p->numa_group);
int src_nid, dst_nid;
if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
return false;
if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
return false;
src_nid = cpu_to_node(env->src_cpu);
dst_nid = cpu_to_node(env->dst_cpu);
if (src_nid == dst_nid)
return false;
if (numa_group) {
/* Task is moving within/into the group's interleave set. */
if (node_isset(dst_nid, numa_group->active_nodes))
return false;
/* Task is moving out of the group's interleave set. */
if (node_isset(src_nid, numa_group->active_nodes))
return true;
return group_faults(p, dst_nid) < group_faults(p, src_nid);
}
/* Migrating away from the preferred node is always bad. */
if (src_nid == p->numa_preferred_nid)
return true;
return task_faults(p, dst_nid) < task_faults(p, src_nid);
}
#else
static inline bool migrate_improves_locality(struct task_struct *p,
struct lb_env *env)
{
return false;
}
static inline bool migrate_degrades_locality(struct task_struct *p,
struct lb_env *env)
{
return false;
}
#endif
/*
* can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
*/
static
int can_migrate_task(struct task_struct *p, struct lb_env *env)
{
int tsk_cache_hot = 0;
lockdep_assert_held(&env->src_rq->lock);
/*
* We do not migrate tasks that are:
* 1) throttled_lb_pair, or
* 2) cannot be migrated to this CPU due to cpus_allowed, or
* 3) running (obviously), or
* 4) are cache-hot on their current CPU.
*/
if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
return 0;
if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
int cpu;
schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
env->flags |= LBF_SOME_PINNED;
/*
* Remember if this task can be migrated to any other cpu in
* our sched_group. We may want to revisit it if we couldn't
* meet load balance goals by pulling other tasks on src_cpu.
*
* Also avoid computing new_dst_cpu if we have already computed
* one in current iteration.
*/
if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
return 0;
/* Prevent to re-select dst_cpu via env's cpus */
for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
env->flags |= LBF_DST_PINNED;
env->new_dst_cpu = cpu;
break;
}
}
return 0;
}
/* Record that we found atleast one task that could run on dst_cpu */
env->flags &= ~LBF_ALL_PINNED;
if (task_running(env->src_rq, p)) {
schedstat_inc(p, se.statistics.nr_failed_migrations_running);
return 0;
}
/*
* Aggressive migration if:
* 1) destination numa is preferred
* 2) task is cache cold, or
* 3) too many balance attempts have failed.
*/
tsk_cache_hot = task_hot(p, env);
if (!tsk_cache_hot)
tsk_cache_hot = migrate_degrades_locality(p, env);
if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
if (tsk_cache_hot) {
schedstat_inc(env->sd, lb_hot_gained[env->idle]);
schedstat_inc(p, se.statistics.nr_forced_migrations);
}
return 1;
}
schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
return 0;
}
/*
* detach_task() -- detach the task for the migration specified in env
*/
static void detach_task(struct task_struct *p, struct lb_env *env)
{
lockdep_assert_held(&env->src_rq->lock);
deactivate_task(env->src_rq, p, 0);
p->on_rq = TASK_ON_RQ_MIGRATING;
set_task_cpu(p, env->dst_cpu);
}
/*
* detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
* part of active balancing operations within "domain".
*
* Returns a task if successful and NULL otherwise.
*/
static struct task_struct *detach_one_task(struct lb_env *env)
{
struct task_struct *p, *n;
lockdep_assert_held(&env->src_rq->lock);
list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
if (!can_migrate_task(p, env))
continue;
detach_task(p, env);
/*
* Right now, this is only the second place where
* lb_gained[env->idle] is updated (other is detach_tasks)
* so we can safely collect stats here rather than
* inside detach_tasks().
*/
schedstat_inc(env->sd, lb_gained[env->idle]);
return p;
}
return NULL;
}
static const unsigned int sched_nr_migrate_break = 32;
/*
* detach_tasks() -- tries to detach up to imbalance weighted load from
* busiest_rq, as part of a balancing operation within domain "sd".
*
* Returns number of detached tasks if successful and 0 otherwise.
*/
static int detach_tasks(struct lb_env *env)
{
struct list_head *tasks = &env->src_rq->cfs_tasks;
struct task_struct *p;
unsigned long load;
int detached = 0;
lockdep_assert_held(&env->src_rq->lock);
if (env->imbalance <= 0)
return 0;
while (!list_empty(tasks)) {
p = list_first_entry(tasks, struct task_struct, se.group_node);
env->loop++;
/* We've more or less seen every task there is, call it quits */
if (env->loop > env->loop_max)
break;
/* take a breather every nr_migrate tasks */
if (env->loop > env->loop_break) {
env->loop_break += sched_nr_migrate_break;
env->flags |= LBF_NEED_BREAK;
break;
}
if (!can_migrate_task(p, env))
goto next;
load = task_h_load(p);
if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
goto next;
if ((load / 2) > env->imbalance)
goto next;
detach_task(p, env);
list_add(&p->se.group_node, &env->tasks);
detached++;
env->imbalance -= load;
#ifdef CONFIG_PREEMPT
/*
* NEWIDLE balancing is a source of latency, so preemptible
* kernels will stop after the first task is detached to minimize
* the critical section.
*/
if (env->idle == CPU_NEWLY_IDLE)
break;
#endif
/*
* We only want to steal up to the prescribed amount of
* weighted load.
*/
if (env->imbalance <= 0)
break;
continue;
next:
list_move_tail(&p->se.group_node, tasks);
}
/*
* Right now, this is one of only two places we collect this stat
* so we can safely collect detach_one_task() stats here rather
* than inside detach_one_task().
*/
schedstat_add(env->sd, lb_gained[env->idle], detached);
return detached;
}
/*
* attach_task() -- attach the task detached by detach_task() to its new rq.
*/
static void attach_task(struct rq *rq, struct task_struct *p)
{
lockdep_assert_held(&rq->lock);
BUG_ON(task_rq(p) != rq);
p->on_rq = TASK_ON_RQ_QUEUED;
activate_task(rq, p, 0);
check_preempt_curr(rq, p, 0);
}
/*
* attach_one_task() -- attaches the task returned from detach_one_task() to
* its new rq.
*/
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
raw_spin_lock(&rq->lock);
attach_task(rq, p);
raw_spin_unlock(&rq->lock);
}
/*
* attach_tasks() -- attaches all tasks detached by detach_tasks() to their
* new rq.
*/
static void attach_tasks(struct lb_env *env)
{
struct list_head *tasks = &env->tasks;
struct task_struct *p;
raw_spin_lock(&env->dst_rq->lock);
while (!list_empty(tasks)) {
p = list_first_entry(tasks, struct task_struct, se.group_node);
list_del_init(&p->se.group_node);
attach_task(env->dst_rq, p);
}
raw_spin_unlock(&env->dst_rq->lock);
}
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
* update tg->load_weight by folding this cpu's load_avg
*/
static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
{
struct sched_entity *se = tg->se[cpu];
struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
/* throttled entities do not contribute to load */
if (throttled_hierarchy(cfs_rq))
return;
update_cfs_rq_blocked_load(cfs_rq, 1);
if (se) {
update_entity_load_avg(se, 1);
/*
* We pivot on our runnable average having decayed to zero for
* list removal. This generally implies that all our children
* have also been removed (modulo rounding error or bandwidth
* control); however, such cases are rare and we can fix these
* at enqueue.
*
* TODO: fix up out-of-order children on enqueue.
*/
if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
list_del_leaf_cfs_rq(cfs_rq);
} else {
struct rq *rq = rq_of(cfs_rq);
update_rq_runnable_avg(rq, rq->nr_running);
}
}
static void update_blocked_averages(int cpu)
{
struct rq *rq = cpu_rq(cpu);
struct cfs_rq *cfs_rq;
unsigned long flags;
raw_spin_lock_irqsave(&rq->lock, flags);
update_rq_clock(rq);
/*
* Iterates the task_group tree in a bottom up fashion, see
* list_add_leaf_cfs_rq() for details.
*/
for_each_leaf_cfs_rq(rq, cfs_rq) {
/*
* Note: We may want to consider periodically releasing
* rq->lock about these updates so that creating many task
* groups does not result in continually extending hold time.
*/
__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
}
raw_spin_unlock_irqrestore(&rq->lock, flags);
}
/*
* Compute the hierarchical load factor for cfs_rq and all its ascendants.
* This needs to be done in a top-down fashion because the load of a child
* group is a fraction of its parents load.
*/
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
{
struct rq *rq = rq_of(cfs_rq);
struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
unsigned long now = jiffies;
unsigned long load;
if (cfs_rq->last_h_load_update == now)
return;
cfs_rq->h_load_next = NULL;
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
cfs_rq->h_load_next = se;
if (cfs_rq->last_h_load_update == now)
break;
}
if (!se) {
cfs_rq->h_load = cfs_rq->runnable_load_avg;
cfs_rq->last_h_load_update = now;
}
while ((se = cfs_rq->h_load_next) != NULL) {
load = cfs_rq->h_load;
load = div64_ul(load * se->avg.load_avg_contrib,
cfs_rq->runnable_load_avg + 1);
cfs_rq = group_cfs_rq(se);
cfs_rq->h_load = load;
cfs_rq->last_h_load_update = now;
}
}
static unsigned long task_h_load(struct task_struct *p)
{
struct cfs_rq *cfs_rq = task_cfs_rq(p);
update_cfs_rq_h_load(cfs_rq);
return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
cfs_rq->runnable_load_avg + 1);
}
#else
static inline void update_blocked_averages(int cpu)
{
}
static unsigned long task_h_load(struct task_struct *p)
{
return p->se.avg.load_avg_contrib;
}
#endif
/********** Helpers for find_busiest_group ************************/
enum group_type {
group_other = 0,
group_imbalanced,
group_overloaded,
};
/*
* sg_lb_stats - stats of a sched_group required for load_balancing
*/
struct sg_lb_stats {
unsigned long avg_load; /*Avg load across the CPUs of the group */
unsigned long group_load; /* Total load over the CPUs of the group */
unsigned long sum_weighted_load; /* Weighted load of group's tasks */
unsigned long load_per_task;
unsigned long group_capacity;
unsigned long group_usage; /* Total usage of the group */
unsigned int sum_nr_running; /* Nr tasks running in the group */
unsigned int idle_cpus;
unsigned int group_weight;
enum group_type group_type;
int group_no_capacity;
#ifdef CONFIG_NUMA_BALANCING
unsigned int nr_numa_running;
unsigned int nr_preferred_running;
#endif
};
/*
* sd_lb_stats - Structure to store the statistics of a sched_domain
* during load balancing.
*/
struct sd_lb_stats {
struct sched_group *busiest; /* Busiest group in this sd */
struct sched_group *local; /* Local group in this sd */
unsigned long total_load; /* Total load of all groups in sd */
unsigned long total_capacity; /* Total capacity of all groups in sd */
unsigned long avg_load; /* Average load across all groups in sd */
struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
struct sg_lb_stats local_stat; /* Statistics of the local group */
};
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
/*
* Skimp on the clearing to avoid duplicate work. We can avoid clearing
* local_stat because update_sg_lb_stats() does a full clear/assignment.
* We must however clear busiest_stat::avg_load because
* update_sd_pick_busiest() reads this before assignment.
*/
*sds = (struct sd_lb_stats){
.busiest = NULL,
.local = NULL,
.total_load = 0UL,
.total_capacity = 0UL,
.busiest_stat = {
.avg_load = 0UL,
.sum_nr_running = 0,
.group_type = group_other,
},
};
}
/**
* get_sd_load_idx - Obtain the load index for a given sched domain.
* @sd: The sched_domain whose load_idx is to be obtained.
* @idle: The idle status of the CPU for whose sd load_idx is obtained.
*
* Return: The load index.
*/
static inline int get_sd_load_idx(struct sched_domain *sd,
enum cpu_idle_type idle)
{
int load_idx;
switch (idle) {
case CPU_NOT_IDLE:
load_idx = sd->busy_idx;
break;
case CPU_NEWLY_IDLE:
load_idx = sd->newidle_idx;
break;
default:
load_idx = sd->idle_idx;
break;
}
return load_idx;
}
static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
{
if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
return sd->smt_gain / sd->span_weight;
return SCHED_CAPACITY_SCALE;
}
unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
{
return default_scale_cpu_capacity(sd, cpu);
}
static unsigned long scale_rt_capacity(int cpu)
{
struct rq *rq = cpu_rq(cpu);
u64 total, used, age_stamp, avg;
s64 delta;
/*
* Since we're reading these variables without serialization make sure
* we read them once before doing sanity checks on them.
*/
age_stamp = READ_ONCE(rq->age_stamp);
avg = READ_ONCE(rq->rt_avg);
delta = __rq_clock_broken(rq) - age_stamp;
if (unlikely(delta < 0))
delta = 0;
total = sched_avg_period() + delta;
used = div_u64(avg, total);
if (likely(used < SCHED_CAPACITY_SCALE))
return SCHED_CAPACITY_SCALE - used;
return 1;
}
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
{
unsigned long capacity = SCHED_CAPACITY_SCALE;
struct sched_group *sdg = sd->groups;
if (sched_feat(ARCH_CAPACITY))
capacity *= arch_scale_cpu_capacity(sd, cpu);
else
capacity *= default_scale_cpu_capacity(sd, cpu);
capacity >>= SCHED_CAPACITY_SHIFT;
cpu_rq(cpu)->cpu_capacity_orig = capacity;
capacity *= scale_rt_capacity(cpu);
capacity >>= SCHED_CAPACITY_SHIFT;
if (!capacity)
capacity = 1;
cpu_rq(cpu)->cpu_capacity = capacity;
sdg->sgc->capacity = capacity;
}
void update_group_capacity(struct sched_domain *sd, int cpu)
{
struct sched_domain *child = sd->child;
struct sched_group *group, *sdg = sd->groups;
unsigned long capacity;
unsigned long interval;
interval = msecs_to_jiffies(sd->balance_interval);
interval = clamp(interval, 1UL, max_load_balance_interval);
sdg->sgc->next_update = jiffies + interval;
if (!child) {
update_cpu_capacity(sd, cpu);
return;
}
capacity = 0;
if (child->flags & SD_OVERLAP) {
/*
* SD_OVERLAP domains cannot assume that child groups
* span the current group.
*/
for_each_cpu(cpu, sched_group_cpus(sdg)) {
struct sched_group_capacity *sgc;
struct rq *rq = cpu_rq(cpu);
/*
* build_sched_domains() -> init_sched_groups_capacity()
* gets here before we've attached the domains to the
* runqueues.
*
* Use capacity_of(), which is set irrespective of domains
* in update_cpu_capacity().
*
* This avoids capacity from being 0 and
* causing divide-by-zero issues on boot.
*/
if (unlikely(!rq->sd)) {
capacity += capacity_of(cpu);
continue;
}
sgc = rq->sd->groups->sgc;
capacity += sgc->capacity;
}
} else {
/*
* !SD_OVERLAP domains can assume that child groups
* span the current group.
*/
group = child->groups;
do {
capacity += group->sgc->capacity;
group = group->next;
} while (group != child->groups);
}
sdg->sgc->capacity = capacity;
}
/*
* Check whether the capacity of the rq has been noticeably reduced by side
* activity. The imbalance_pct is used for the threshold.
* Return true is the capacity is reduced
*/
static inline int
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
{
return ((rq->cpu_capacity * sd->imbalance_pct) <
(rq->cpu_capacity_orig * 100));
}
/*
* Group imbalance indicates (and tries to solve) the problem where balancing
* groups is inadequate due to tsk_cpus_allowed() constraints.
*
* Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
* cpumask covering 1 cpu of the first group and 3 cpus of the second group.
* Something like:
*
* { 0 1 2 3 } { 4 5 6 7 }
* * * * *
*
* If we were to balance group-wise we'd place two tasks in the first group and
* two tasks in the second group. Clearly this is undesired as it will overload
* cpu 3 and leave one of the cpus in the second group unused.
*
* The current solution to this issue is detecting the skew in the first group
* by noticing the lower domain failed to reach balance and had difficulty
* moving tasks due to affinity constraints.
*
* When this is so detected; this group becomes a candidate for busiest; see
* update_sd_pick_busiest(). And calculate_imbalance() and
* find_busiest_group() avoid some of the usual balance conditions to allow it
* to create an effective group imbalance.
*
* This is a somewhat tricky proposition since the next run might not find the
* group imbalance and decide the groups need to be balanced again. A most
* subtle and fragile situation.
*/
static inline int sg_imbalanced(struct sched_group *group)
{
return group->sgc->imbalance;
}
/*
* group_has_capacity returns true if the group has spare capacity that could
* be used by some tasks.
* We consider that a group has spare capacity if the * number of task is
* smaller than the number of CPUs or if the usage is lower than the available
* capacity for CFS tasks.
* For the latter, we use a threshold to stabilize the state, to take into
* account the variance of the tasks' load and to return true if the available
* capacity in meaningful for the load balancer.
* As an example, an available capacity of 1% can appear but it doesn't make
* any benefit for the load balance.
*/
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
{
if (sgs->sum_nr_running < sgs->group_weight)
return true;
if ((sgs->group_capacity * 100) >
(sgs->group_usage * env->sd->imbalance_pct))
return true;
return false;
}
/*
* group_is_overloaded returns true if the group has more tasks than it can
* handle.
* group_is_overloaded is not equals to !group_has_capacity because a group
* with the exact right number of tasks, has no more spare capacity but is not
* overloaded so both group_has_capacity and group_is_overloaded return
* false.
*/
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
if (sgs->sum_nr_running <= sgs->group_weight)
return false;
if ((sgs->group_capacity * 100) <
(sgs->group_usage * env->sd->imbalance_pct))
return true;
return false;
}
static enum group_type group_classify(struct lb_env *env,
struct sched_group *group,
struct sg_lb_stats *sgs)
{
if (sgs->group_no_capacity)
return group_overloaded;
if (sg_imbalanced(group))
return group_imbalanced;
return group_other;
}
/**
* update_sg_lb_stats - Update sched_group's statistics for load balancing.
* @env: The load balancing environment.
* @group: sched_group whose statistics are to be updated.
* @load_idx: Load index of sched_domain of this_cpu for load calc.
* @local_group: Does group contain this_cpu.
* @sgs: variable to hold the statistics for this group.
* @overload: Indicate more than one runnable task for any CPU.
*/
static inline void update_sg_lb_stats(struct lb_env *env,
struct sched_group *group, int load_idx,
int local_group, struct sg_lb_stats *sgs,
bool *overload)
{
unsigned long load;
int i;
memset(sgs, 0, sizeof(*sgs));
for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
struct rq *rq = cpu_rq(i);
/* Bias balancing toward cpus of our domain */
if (local_group)
load = target_load(i, load_idx);
else
load = source_load(i, load_idx);
sgs->group_load += load;
sgs->group_usage += get_cpu_usage(i);
sgs->sum_nr_running += rq->cfs.h_nr_running;
if (rq->nr_running > 1)
*overload = true;
#ifdef CONFIG_NUMA_BALANCING
sgs->nr_numa_running += rq->nr_numa_running;
sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
sgs->sum_weighted_load += weighted_cpuload(i);
if (idle_cpu(i))
sgs->idle_cpus++;
}
/* Adjust by relative CPU capacity of the group */
sgs->group_capacity = group->sgc->capacity;
sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
if (sgs->sum_nr_running)
sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
sgs->group_weight = group->group_weight;
sgs->group_no_capacity = group_is_overloaded(env, sgs);
sgs->group_type = group_classify(env, group, sgs);
}
/**
* update_sd_pick_busiest - return 1 on busiest group
* @env: The load balancing environment.
* @sds: sched_domain statistics
* @sg: sched_group candidate to be checked for being the busiest
* @sgs: sched_group statistics
*
* Determine if @sg is a busier group than the previously selected
* busiest group.
*
* Return: %true if @sg is a busier group than the previously selected
* busiest group. %false otherwise.
*/
static bool update_sd_pick_busiest(struct lb_env *env,
struct sd_lb_stats *sds,
struct sched_group *sg,
struct sg_lb_stats *sgs)
{
struct sg_lb_stats *busiest = &sds->busiest_stat;
if (sgs->group_type > busiest->group_type)
return true;
if (sgs->group_type < busiest->group_type)
return false;
if (sgs->avg_load <= busiest->avg_load)
return false;
/* This is the busiest node in its class. */
if (!(env->sd->flags & SD_ASYM_PACKING))
return true;
/*
* ASYM_PACKING needs to move all the work to the lowest
* numbered CPUs in the group, therefore mark all groups
* higher than ourself as busy.
*/
if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
if (!sds->busiest)
return true;
if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
return true;
}
return false;
}
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
if (sgs->sum_nr_running > sgs->nr_numa_running)
return regular;
if (sgs->sum_nr_running > sgs->nr_preferred_running)
return remote;
return all;
}
static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
if (rq->nr_running > rq->nr_numa_running)
return regular;
if (rq->nr_running > rq->nr_preferred_running)
return remote;
return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
return all;
}
static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
return regular;
}
#endif /* CONFIG_NUMA_BALANCING */
/**
* update_sd_lb_stats - Update sched_domain's statistics for load balancing.
* @env: The load balancing environment.
* @sds: variable to hold the statistics for this sched_domain.
*/
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
{
struct sched_domain *child = env->sd->child;
struct sched_group *sg = env->sd->groups;
struct sg_lb_stats tmp_sgs;
int load_idx, prefer_sibling = 0;
bool overload = false;
if (child && child->flags & SD_PREFER_SIBLING)
prefer_sibling = 1;
load_idx = get_sd_load_idx(env->sd, env->idle);
do {
struct sg_lb_stats *sgs = &tmp_sgs;
int local_group;
local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
if (local_group) {
sds->local = sg;
sgs = &sds->local_stat;
if (env->idle != CPU_NEWLY_IDLE ||
time_after_eq(jiffies, sg->sgc->next_update))
update_group_capacity(env->sd, env->dst_cpu);
}
update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
&overload);
if (local_group)
goto next_group;
/*
* In case the child domain prefers tasks go to siblings
* first, lower the sg capacity so that we'll try
* and move all the excess tasks away. We lower the capacity
* of a group only if the local group has the capacity to fit
* these excess tasks. The extra check prevents the case where
* you always pull from the heaviest group when it is already
* under-utilized (possible with a large weight task outweighs
* the tasks on the system).
*/
if (prefer_sibling && sds->local &&
group_has_capacity(env, &sds->local_stat) &&
(sgs->sum_nr_running > 1)) {
sgs->group_no_capacity = 1;
sgs->group_type = group_overloaded;
}
if (update_sd_pick_busiest(env, sds, sg, sgs)) {
sds->busiest = sg;
sds->busiest_stat = *sgs;
}
next_group:
/* Now, start updating sd_lb_stats */
sds->total_load += sgs->group_load;
sds->total_capacity += sgs->group_capacity;
sg = sg->next;
} while (sg != env->sd->groups);
if (env->sd->flags & SD_NUMA)
env->fbq_type = fbq_classify_group(&sds->busiest_stat);
if (!env->sd->parent) {
/* update overload indicator if we are at root domain */
if (env->dst_rq->rd->overload != overload)
env->dst_rq->rd->overload = overload;
}
}
/**
* check_asym_packing - Check to see if the group is packed into the
* sched doman.
*
* This is primarily intended to used at the sibling level. Some
* cores like POWER7 prefer to use lower numbered SMT threads. In the
* case of POWER7, it can move to lower SMT modes only when higher
* threads are idle. When in lower SMT modes, the threads will
* perform better since they share less core resources. Hence when we
* have idle threads, we want them to be the higher ones.
*
* This packing function is run on idle threads. It checks to see if
* the busiest CPU in this domain (core in the P7 case) has a higher
* CPU number than the packing function is being run on. Here we are
* assuming lower CPU number will be equivalent to lower a SMT thread
* number.
*
* Return: 1 when packing is required and a task should be moved to
* this CPU. The amount of the imbalance is returned in *imbalance.
*
* @env: The load balancing environment.
* @sds: Statistics of the sched_domain which is to be packed
*/
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
{
int busiest_cpu;
if (!(env->sd->flags & SD_ASYM_PACKING))
return 0;
if (!sds->busiest)
return 0;
busiest_cpu = group_first_cpu(sds->busiest);
if (env->dst_cpu > busiest_cpu)
return 0;
env->imbalance = DIV_ROUND_CLOSEST(
sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
SCHED_CAPACITY_SCALE);
return 1;
}
/**
* fix_small_imbalance - Calculate the minor imbalance that exists
* amongst the groups of a sched_domain, during
* load balancing.
* @env: The load balancing environment.
* @sds: Statistics of the sched_domain whose imbalance is to be calculated.
*/
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
{
unsigned long tmp, capa_now = 0, capa_move = 0;
unsigned int imbn = 2;
unsigned long scaled_busy_load_per_task;
struct sg_lb_stats *local, *busiest;
local = &sds->local_stat;
busiest = &sds->busiest_stat;
if (!local->sum_nr_running)
local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
else if (busiest->load_per_task > local->load_per_task)
imbn = 1;
scaled_busy_load_per_task =
(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
busiest->group_capacity;
if (busiest->avg_load + scaled_busy_load_per_task >=
local->avg_load + (scaled_busy_load_per_task * imbn)) {
env->imbalance = busiest->load_per_task;
return;
}
/*
* OK, we don't have enough imbalance to justify moving tasks,
* however we may be able to increase total CPU capacity used by
* moving them.
*/
capa_now += busiest->group_capacity *
min(busiest->load_per_task, busiest->avg_load);
capa_now += local->group_capacity *
min(local->load_per_task, local->avg_load);
capa_now /= SCHED_CAPACITY_SCALE;
/* Amount of load we'd subtract */
if (busiest->avg_load > scaled_busy_load_per_task) {
capa_move += busiest->group_capacity *
min(busiest->load_per_task,
busiest->avg_load - scaled_busy_load_per_task);
}
/* Amount of load we'd add */
if (busiest->avg_load * busiest->group_capacity <
busiest->load_per_task * SCHED_CAPACITY_SCALE) {
tmp = (busiest->avg_load * busiest->group_capacity) /
local->group_capacity;
} else {
tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
local->group_capacity;
}
capa_move += local->group_capacity *
min(local->load_per_task, local->avg_load + tmp);
capa_move /= SCHED_CAPACITY_SCALE;
/* Move if we gain throughput */
if (capa_move > capa_now)
env->imbalance = busiest->load_per_task;
}
/**
* calculate_imbalance - Calculate the amount of imbalance present within the
* groups of a given sched_domain during load balance.
* @env: load balance environment
* @sds: statistics of the sched_domain whose imbalance is to be calculated.
*/
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
{
unsigned long max_pull, load_above_capacity = ~0UL;
struct sg_lb_stats *local, *busiest;
local = &sds->local_stat;
busiest = &sds->busiest_stat;
if (busiest->group_type == group_imbalanced) {
/*
* In the group_imb case we cannot rely on group-wide averages
* to ensure cpu-load equilibrium, look at wider averages. XXX
*/
busiest->load_per_task =
min(busiest->load_per_task, sds->avg_load);
}
/*
* In the presence of smp nice balancing, certain scenarios can have
* max load less than avg load(as we skip the groups at or below
* its cpu_capacity, while calculating max_load..)
*/
if (busiest->avg_load <= sds->avg_load ||
local->avg_load >= sds->avg_load) {
env->imbalance = 0;
return fix_small_imbalance(env, sds);
}
/*
* If there aren't any idle cpus, avoid creating some.
*/
if (busiest->group_type == group_overloaded &&
local->group_type == group_overloaded) {
load_above_capacity = busiest->sum_nr_running *
SCHED_LOAD_SCALE;
if (load_above_capacity > busiest->group_capacity)
load_above_capacity -= busiest->group_capacity;
else
load_above_capacity = ~0UL;
}
/*
* We're trying to get all the cpus to the average_load, so we don't
* want to push ourselves above the average load, nor do we wish to
* reduce the max loaded cpu below the average load. At the same time,
* we also don't want to reduce the group load below the group capacity
* (so that we can implement power-savings policies etc). Thus we look
* for the minimum possible imbalance.
*/
max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
/* How much load to actually move to equalise the imbalance */
env->imbalance = min(
max_pull * busiest->group_capacity,
(sds->avg_load - local->avg_load) * local->group_capacity
) / SCHED_CAPACITY_SCALE;
/*
* if *imbalance is less than the average load per runnable task
* there is no guarantee that any tasks will be moved so we'll have
* a think about bumping its value to force at least one task to be
* moved
*/
if (env->imbalance < busiest->load_per_task)
return fix_small_imbalance(env, sds);
}
/******* find_busiest_group() helpers end here *********************/
/**
* find_busiest_group - Returns the busiest group within the sched_domain
* if there is an imbalance. If there isn't an imbalance, and
* the user has opted for power-savings, it returns a group whose
* CPUs can be put to idle by rebalancing those tasks elsewhere, if
* such a group exists.
*
* Also calculates the amount of weighted load which should be moved
* to restore balance.
*
* @env: The load balancing environment.
*
* Return: - The busiest group if imbalance exists.
* - If no imbalance and user has opted for power-savings balance,
* return the least loaded group whose CPUs can be
* put to idle by rebalancing its tasks onto our group.
*/
static struct sched_group *find_busiest_group(struct lb_env *env)
{
struct sg_lb_stats *local, *busiest;
struct sd_lb_stats sds;
init_sd_lb_stats(&sds);
/*
* Compute the various statistics relavent for load balancing at
* this level.
*/
update_sd_lb_stats(env, &sds);
local = &sds.local_stat;
busiest = &sds.busiest_stat;
/* ASYM feature bypasses nice load balance check */
if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
check_asym_packing(env, &sds))
return sds.busiest;
/* There is no busy sibling group to pull tasks from */
if (!sds.busiest || busiest->sum_nr_running == 0)
goto out_balanced;
sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
/ sds.total_capacity;
/*
* If the busiest group is imbalanced the below checks don't
* work because they assume all things are equal, which typically
* isn't true due to cpus_allowed constraints and the like.
*/
if (busiest->group_type == group_imbalanced)
goto force_balance;
/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
busiest->group_no_capacity)
goto force_balance;
/*
* If the local group is busier than the selected busiest group
* don't try and pull any tasks.
*/
if (local->avg_load >= busiest->avg_load)
goto out_balanced;
/*
* Don't pull any tasks if this group is already above the domain
* average load.
*/
if (local->avg_load >= sds.avg_load)
goto out_balanced;
if (env->idle == CPU_IDLE) {
/*
* This cpu is idle. If the busiest group is not overloaded
* and there is no imbalance between this and busiest group
* wrt idle cpus, it is balanced. The imbalance becomes
* significant if the diff is greater than 1 otherwise we
* might end up to just move the imbalance on another group
*/
if ((busiest->group_type != group_overloaded) &&
(local->idle_cpus <= (busiest->idle_cpus + 1)))
goto out_balanced;
} else {
/*
* In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
* imbalance_pct to be conservative.
*/
if (100 * busiest->avg_load <=
env->sd->imbalance_pct * local->avg_load)
goto out_balanced;
}
force_balance:
/* Looks like there is an imbalance. Compute it */
calculate_imbalance(env, &sds);
return sds.busiest;
out_balanced:
env->imbalance = 0;
return NULL;
}
/*
* find_busiest_queue - find the busiest runqueue among the cpus in group.
*/
static struct rq *find_busiest_queue(struct lb_env *env,
struct sched_group *group)
{
struct rq *busiest = NULL, *rq;
unsigned long busiest_load = 0, busiest_capacity = 1;
int i;
for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
unsigned long capacity, wl;
enum fbq_type rt;
rq = cpu_rq(i);
rt = fbq_classify_rq(rq);
/*
* We classify groups/runqueues into three groups:
* - regular: there are !numa tasks
* - remote: there are numa tasks that run on the 'wrong' node
* - all: there is no distinction
*
* In order to avoid migrating ideally placed numa tasks,
* ignore those when there's better options.
*
* If we ignore the actual busiest queue to migrate another
* task, the next balance pass can still reduce the busiest
* queue by moving tasks around inside the node.
*
* If we cannot move enough load due to this classification
* the next pass will adjust the group classification and
* allow migration of more tasks.
*
* Both cases only affect the total convergence complexity.
*/
if (rt > env->fbq_type)
continue;
capacity = capacity_of(i);
wl = weighted_cpuload(i);
/*
* When comparing with imbalance, use weighted_cpuload()
* which is not scaled with the cpu capacity.
*/
if (rq->nr_running == 1 && wl > env->imbalance &&
!check_cpu_capacity(rq, env->sd))
continue;
/*
* For the load comparisons with the other cpu's, consider
* the weighted_cpuload() scaled with the cpu capacity, so
* that the load can be moved away from the cpu that is
* potentially running at a lower capacity.
*
* Thus we're looking for max(wl_i / capacity_i), crosswise
* multiplication to rid ourselves of the division works out
* to: wl_i * capacity_j > wl_j * capacity_i; where j is
* our previous maximum.
*/
if (wl * busiest_capacity > busiest_load * capacity) {
busiest_load = wl;
busiest_capacity = capacity;
busiest = rq;
}
}
return busiest;
}
/*
* Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
* so long as it is large enough.
*/
#define MAX_PINNED_INTERVAL 512
/* Working cpumask for load_balance and load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
static int need_active_balance(struct lb_env *env)
{
struct sched_domain *sd = env->sd;
if (env->idle == CPU_NEWLY_IDLE) {
/*
* ASYM_PACKING needs to force migrate tasks from busy but
* higher numbered CPUs in order to pack all tasks in the
* lowest numbered CPUs.
*/
if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
return 1;
}
/*
* The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
* It's worth migrating the task if the src_cpu's capacity is reduced
* because of other sched_class or IRQs if more capacity stays
* available on dst_cpu.
*/
if ((env->idle != CPU_NOT_IDLE) &&
(env->src_rq->cfs.h_nr_running == 1)) {
if ((check_cpu_capacity(env->src_rq, sd)) &&
(capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
return 1;
}
return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}
static int active_load_balance_cpu_stop(void *data);
static int should_we_balance(struct lb_env *env)
{
struct sched_group *sg = env->sd->groups;
struct cpumask *sg_cpus, *sg_mask;
int cpu, balance_cpu = -1;
/*
* In the newly idle case, we will allow all the cpu's
* to do the newly idle load balance.
*/
if (env->idle == CPU_NEWLY_IDLE)
return 1;
sg_cpus = sched_group_cpus(sg);
sg_mask = sched_group_mask(sg);
/* Try to find first idle cpu */
for_each_cpu_and(cpu, sg_cpus, env->cpus) {
if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
continue;
balance_cpu = cpu;
break;
}
if (balance_cpu == -1)
balance_cpu = group_balance_cpu(sg);
/*
* First idle cpu or the first cpu(busiest) in this sched group
* is eligible for doing load balancing at this and above domains.
*/
return balance_cpu == env->dst_cpu;
}
/*
* Check this_cpu to ensure it is balanced within domain. Attempt to move
* tasks if there is an imbalance.
*/
static int load_balance(int this_cpu, struct rq *this_rq,
struct sched_domain *sd, enum cpu_idle_type idle,
int *continue_balancing)
{
int ld_moved, cur_ld_moved, active_balance = 0;
struct sched_domain *sd_parent = sd->parent;
struct sched_group *group;
struct rq *busiest;
unsigned long flags;
struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
struct lb_env env = {
.sd = sd,
.dst_cpu = this_cpu,
.dst_rq = this_rq,
.dst_grpmask = sched_group_cpus(sd->groups),
.idle = idle,
.loop_break = sched_nr_migrate_break,
.cpus = cpus,
.fbq_type = all,
.tasks = LIST_HEAD_INIT(env.tasks),
};
/*
* For NEWLY_IDLE load_balancing, we don't need to consider
* other cpus in our group
*/
if (idle == CPU_NEWLY_IDLE)
env.dst_grpmask = NULL;
cpumask_copy(cpus, cpu_active_mask);
schedstat_inc(sd, lb_count[idle]);
redo:
if (!should_we_balance(&env)) {
*continue_balancing = 0;
goto out_balanced;
}
group = find_busiest_group(&env);
if (!group) {
schedstat_inc(sd, lb_nobusyg[idle]);
goto out_balanced;
}
busiest = find_busiest_queue(&env, group);
if (!busiest) {
schedstat_inc(sd, lb_nobusyq[idle]);
goto out_balanced;
}
BUG_ON(busiest == env.dst_rq);
schedstat_add(sd, lb_imbalance[idle], env.imbalance);
env.src_cpu = busiest->cpu;
env.src_rq = busiest;
ld_moved = 0;
if (busiest->nr_running > 1) {
/*
* Attempt to move tasks. If find_busiest_group has found
* an imbalance but busiest->nr_running <= 1, the group is
* still unbalanced. ld_moved simply stays zero, so it is
* correctly treated as an imbalance.
*/
env.flags |= LBF_ALL_PINNED;
env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
more_balance:
raw_spin_lock_irqsave(&busiest->lock, flags);
/*
* cur_ld_moved - load moved in current iteration
* ld_moved - cumulative load moved across iterations
*/
cur_ld_moved = detach_tasks(&env);
/*
* We've detached some tasks from busiest_rq. Every
* task is masked "TASK_ON_RQ_MIGRATING", so we can safely
* unlock busiest->lock, and we are able to be sure
* that nobody can manipulate the tasks in parallel.
* See task_rq_lock() family for the details.
*/
raw_spin_unlock(&busiest->lock);
if (cur_ld_moved) {
attach_tasks(&env);
ld_moved += cur_ld_moved;
}
local_irq_restore(flags);
if (env.flags & LBF_NEED_BREAK) {
env.flags &= ~LBF_NEED_BREAK;
goto more_balance;
}
/*
* Revisit (affine) tasks on src_cpu that couldn't be moved to
* us and move them to an alternate dst_cpu in our sched_group
* where they can run. The upper limit on how many times we
* iterate on same src_cpu is dependent on number of cpus in our
* sched_group.
*
* This changes load balance semantics a bit on who can move
* load to a given_cpu. In addition to the given_cpu itself
* (or a ilb_cpu acting on its behalf where given_cpu is
* nohz-idle), we now have balance_cpu in a position to move
* load to given_cpu. In rare situations, this may cause
* conflicts (balance_cpu and given_cpu/ilb_cpu deciding
* _independently_ and at _same_ time to move some load to
* given_cpu) causing exceess load to be moved to given_cpu.
* This however should not happen so much in practice and
* moreover subsequent load balance cycles should correct the
* excess load moved.
*/
if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
/* Prevent to re-select dst_cpu via env's cpus */
cpumask_clear_cpu(env.dst_cpu, env.cpus);
env.dst_rq = cpu_rq(env.new_dst_cpu);
env.dst_cpu = env.new_dst_cpu;
env.flags &= ~LBF_DST_PINNED;
env.loop = 0;
env.loop_break = sched_nr_migrate_break;
/*
* Go back to "more_balance" rather than "redo" since we
* need to continue with same src_cpu.
*/
goto more_balance;
}
/*
* We failed to reach balance because of affinity.
*/
if (sd_parent) {
int *group_imbalance = &sd_parent->groups->sgc->imbalance;
if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
*group_imbalance = 1;
}
/* All tasks on this runqueue were pinned by CPU affinity */
if (unlikely(env.flags & LBF_ALL_PINNED)) {
cpumask_clear_cpu(cpu_of(busiest), cpus);
if (!cpumask_empty(cpus)) {
env.loop = 0;
env.loop_break = sched_nr_migrate_break;
goto redo;
}
goto out_all_pinned;
}
}
if (!ld_moved) {
schedstat_inc(sd, lb_failed[idle]);
/*
* Increment the failure counter only on periodic balance.
* We do not want newidle balance, which can be very
* frequent, pollute the failure counter causing
* excessive cache_hot migrations and active balances.
*/
if (idle != CPU_NEWLY_IDLE)
sd->nr_balance_failed++;
if (need_active_balance(&env)) {
raw_spin_lock_irqsave(&busiest->lock, flags);
/* don't kick the active_load_balance_cpu_stop,
* if the curr task on busiest cpu can't be
* moved to this_cpu
*/
if (!cpumask_test_cpu(this_cpu,
tsk_cpus_allowed(busiest->curr))) {
raw_spin_unlock_irqrestore(&busiest->lock,
flags);
env.flags |= LBF_ALL_PINNED;
goto out_one_pinned;
}
/*
* ->active_balance synchronizes accesses to
* ->active_balance_work. Once set, it's cleared
* only after active load balance is finished.
*/
if (!busiest->active_balance) {
busiest->active_balance = 1;
busiest->push_cpu = this_cpu;
active_balance = 1;
}
raw_spin_unlock_irqrestore(&busiest->lock, flags);
if (active_balance) {
stop_one_cpu_nowait(cpu_of(busiest),
active_load_balance_cpu_stop, busiest,
&busiest->active_balance_work);
}
/*
* We've kicked active balancing, reset the failure
* counter.
*/
sd->nr_balance_failed = sd->cache_nice_tries+1;
}
} else
sd->nr_balance_failed = 0;
if (likely(!active_balance)) {
/* We were unbalanced, so reset the balancing interval */
sd->balance_interval = sd->min_interval;
} else {
/*
* If we've begun active balancing, start to back off. This
* case may not be covered by the all_pinned logic if there
* is only 1 task on the busy runqueue (because we don't call
* detach_tasks).
*/
if (sd->balance_interval < sd->max_interval)
sd->balance_interval *= 2;
}
goto out;
out_balanced:
/*
* We reach balance although we may have faced some affinity
* constraints. Clear the imbalance flag if it was set.
*/
if (sd_parent) {
int *group_imbalance = &sd_parent->groups->sgc->imbalance;
if (*group_imbalance)
*group_imbalance = 0;
}
out_all_pinned:
/*
* We reach balance because all tasks are pinned at this level so
* we can't migrate them. Let the imbalance flag set so parent level
* can try to migrate them.
*/
schedstat_inc(sd, lb_balanced[idle]);
sd->nr_balance_failed = 0;
out_one_pinned:
/* tune up the balancing interval */
if (((env.flags & LBF_ALL_PINNED) &&
sd->balance_interval < MAX_PINNED_INTERVAL) ||
(sd->balance_interval < sd->max_interval))
sd->balance_interval *= 2;
ld_moved = 0;
out:
return ld_moved;
}
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
unsigned long interval = sd->balance_interval;
if (cpu_busy)
interval *= sd->busy_factor;
/* scale ms to jiffies */
interval = msecs_to_jiffies(interval);
interval = clamp(interval, 1UL, max_load_balance_interval);
return interval;
}
static inline void
update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
{
unsigned long interval, next;
interval = get_sd_balance_interval(sd, cpu_busy);
next = sd->last_balance + interval;
if (time_after(*next_balance, next))
*next_balance = next;
}
/*
* idle_balance is called by schedule() if this_cpu is about to become
* idle. Attempts to pull tasks from other CPUs.
*/
static int idle_balance(struct rq *this_rq)
{
unsigned long next_balance = jiffies + HZ;
int this_cpu = this_rq->cpu;
struct sched_domain *sd;
int pulled_task = 0;
u64 curr_cost = 0;
idle_enter_fair(this_rq);
/*
* We must set idle_stamp _before_ calling idle_balance(), such that we
* measure the duration of idle_balance() as idle time.
*/
this_rq->idle_stamp = rq_clock(this_rq);
if (this_rq->avg_idle < sysctl_sched_migration_cost ||
!this_rq->rd->overload) {
rcu_read_lock();
sd = rcu_dereference_check_sched_domain(this_rq->sd);
if (sd)
update_next_balance(sd, 0, &next_balance);
rcu_read_unlock();
goto out;
}
/*
* Drop the rq->lock, but keep IRQ/preempt disabled.
*/
raw_spin_unlock(&this_rq->lock);
update_blocked_averages(this_cpu);
rcu_read_lock();
for_each_domain(this_cpu, sd) {
int continue_balancing = 1;
u64 t0, domain_cost;
if (!(sd->flags & SD_LOAD_BALANCE))
continue;
if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
update_next_balance(sd, 0, &next_balance);
break;
}
if (sd->flags & SD_BALANCE_NEWIDLE) {
t0 = sched_clock_cpu(this_cpu);
pulled_task = load_balance(this_cpu, this_rq,
sd, CPU_NEWLY_IDLE,
&continue_balancing);
domain_cost = sched_clock_cpu(this_cpu) - t0;
if (domain_cost > sd->max_newidle_lb_cost)
sd->max_newidle_lb_cost = domain_cost;
curr_cost += domain_cost;
}
update_next_balance(sd, 0, &next_balance);
/*
* Stop searching for tasks to pull if there are
* now runnable tasks on this rq.
*/
if (pulled_task || this_rq->nr_running > 0)
break;
}
rcu_read_unlock();
raw_spin_lock(&this_rq->lock);
if (curr_cost > this_rq->max_idle_balance_cost)
this_rq->max_idle_balance_cost = curr_cost;
/*
* While browsing the domains, we released the rq lock, a task could
* have been enqueued in the meantime. Since we're not going idle,
* pretend we pulled a task.
*/
if (this_rq->cfs.h_nr_running && !pulled_task)
pulled_task = 1;
out:
/* Move the next balance forward */
if (time_after(this_rq->next_balance, next_balance))
this_rq->next_balance = next_balance;
/* Is there a task of a high priority class? */
if (this_rq->nr_running != this_rq->cfs.h_nr_running)
pulled_task = -1;
if (pulled_task) {
idle_exit_fair(this_rq);
this_rq->idle_stamp = 0;
}
return pulled_task;
}
/*
* active_load_balance_cpu_stop is run by cpu stopper. It pushes
* running tasks off the busiest CPU onto idle CPUs. It requires at
* least 1 task to be running on each physical CPU where possible, and
* avoids physical / logical imbalances.
*/
static int active_load_balance_cpu_stop(void *data)
{
struct rq *busiest_rq = data;
int busiest_cpu = cpu_of(busiest_rq);
int target_cpu = busiest_rq->push_cpu;
struct rq *target_rq = cpu_rq(target_cpu);
struct sched_domain *sd;
struct task_struct *p = NULL;
raw_spin_lock_irq(&busiest_rq->lock);
/* make sure the requested cpu hasn't gone down in the meantime */
if (unlikely(busiest_cpu != smp_processor_id() ||
!busiest_rq->active_balance))
goto out_unlock;
/* Is there any task to move? */
if (busiest_rq->nr_running <= 1)
goto out_unlock;
/*
* This condition is "impossible", if it occurs
* we need to fix it. Originally reported by
* Bjorn Helgaas on a 128-cpu setup.
*/
BUG_ON(busiest_rq == target_rq);
/* Search for an sd spanning us and the target CPU. */
rcu_read_lock();
for_each_domain(target_cpu, sd) {
if ((sd->flags & SD_LOAD_BALANCE) &&
cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
break;
}
if (likely(sd)) {
struct lb_env env = {
.sd = sd,
.dst_cpu = target_cpu,
.dst_rq = target_rq,
.src_cpu = busiest_rq->cpu,
.src_rq = busiest_rq,
.idle = CPU_IDLE,
};
schedstat_inc(sd, alb_count);
p = detach_one_task(&env);
if (p)
schedstat_inc(sd, alb_pushed);
else
schedstat_inc(sd, alb_failed);
}
rcu_read_unlock();
out_unlock:
busiest_rq->active_balance = 0;
raw_spin_unlock(&busiest_rq->lock);
if (p)
attach_one_task(target_rq, p);
local_irq_enable();
return 0;
}
static inline int on_null_domain(struct rq *rq)
{
return unlikely(!rcu_dereference_sched(rq->sd));
}
#ifdef CONFIG_NO_HZ_COMMON
/*
* idle load balancing details
* - When one of the busy CPUs notice that there may be an idle rebalancing
* needed, they will kick the idle load balancer, which then does idle
* load balancing for all the idle CPUs.
*/
static struct {
cpumask_var_t idle_cpus_mask;
atomic_t nr_cpus;
unsigned long next_balance; /* in jiffy units */
} nohz ____cacheline_aligned;
static inline int find_new_ilb(void)
{
int ilb = cpumask_first(nohz.idle_cpus_mask);
if (ilb < nr_cpu_ids && idle_cpu(ilb))
return ilb;
return nr_cpu_ids;
}
/*
* Kick a CPU to do the nohz balancing, if it is time for it. We pick the
* nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
* CPU (if there is one).
*/
static void nohz_balancer_kick(void)
{
int ilb_cpu;
nohz.next_balance++;
ilb_cpu = find_new_ilb();
if (ilb_cpu >= nr_cpu_ids)
return;
if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
return;
/*
* Use smp_send_reschedule() instead of resched_cpu().
* This way we generate a sched IPI on the target cpu which
* is idle. And the softirq performing nohz idle load balance
* will be run before returning from the IPI.
*/
smp_send_reschedule(ilb_cpu);
return;
}
static inline void nohz_balance_exit_idle(int cpu)
{
if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
/*
* Completely isolated CPUs don't ever set, so we must test.
*/
if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
atomic_dec(&nohz.nr_cpus);
}
clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
}
}
static inline void set_cpu_sd_state_busy(void)
{
struct sched_domain *sd;
int cpu = smp_processor_id();
rcu_read_lock();
sd = rcu_dereference(per_cpu(sd_busy, cpu));
if (!sd || !sd->nohz_idle)
goto unlock;
sd->nohz_idle = 0;
atomic_inc(&sd->groups->sgc->nr_busy_cpus);
unlock:
rcu_read_unlock();
}
void set_cpu_sd_state_idle(void)
{
struct sched_domain *sd;
int cpu = smp_processor_id();
rcu_read_lock();
sd = rcu_dereference(per_cpu(sd_busy, cpu));
if (!sd || sd->nohz_idle)
goto unlock;
sd->nohz_idle = 1;
atomic_dec(&sd->groups->sgc->nr_busy_cpus);
unlock:
rcu_read_unlock();
}
/*
* This routine will record that the cpu is going idle with tick stopped.
* This info will be used in performing idle load balancing in the future.
*/
void nohz_balance_enter_idle(int cpu)
{
/*
* If this cpu is going down, then nothing needs to be done.
*/
if (!cpu_active(cpu))
return;
if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
return;
/*
* If we're a completely isolated CPU, we don't play.
*/
if (on_null_domain(cpu_rq(cpu)))
return;
cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
atomic_inc(&nohz.nr_cpus);
set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
}
static int sched_ilb_notifier(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
switch (action & ~CPU_TASKS_FROZEN) {
case CPU_DYING:
nohz_balance_exit_idle(smp_processor_id());
return NOTIFY_OK;
default:
return NOTIFY_DONE;
}
}
#endif
static DEFINE_SPINLOCK(balancing);
/*
* Scale the max load_balance interval with the number of CPUs in the system.
* This trades load-balance latency on larger machines for less cross talk.
*/
void update_max_interval(void)
{
max_load_balance_interval = HZ*num_online_cpus()/10;
}
/*
* It checks each scheduling domain to see if it is due to be balanced,
* and initiates a balancing operation if so.
*
* Balancing parameters are set up in init_sched_domains.
*/
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
{
int continue_balancing = 1;
int cpu = rq->cpu;
unsigned long interval;
struct sched_domain *sd;
/* Earliest time when we have to do rebalance again */
unsigned long next_balance = jiffies + 60*HZ;
int update_next_balance = 0;
int need_serialize, need_decay = 0;
u64 max_cost = 0;
update_blocked_averages(cpu);
rcu_read_lock();
for_each_domain(cpu, sd) {
/*
* Decay the newidle max times here because this is a regular
* visit to all the domains. Decay ~1% per second.
*/
if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
sd->max_newidle_lb_cost =
(sd->max_newidle_lb_cost * 253) / 256;
sd->next_decay_max_lb_cost = jiffies + HZ;
need_decay = 1;
}
max_cost += sd->max_newidle_lb_cost;
if (!(sd->flags & SD_LOAD_BALANCE))
continue;
/*
* Stop the load balance at this level. There is another
* CPU in our sched group which is doing load balancing more
* actively.
*/
if (!continue_balancing) {
if (need_decay)
continue;
break;
}
interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
need_serialize = sd->flags & SD_SERIALIZE;
if (need_serialize) {
if (!spin_trylock(&balancing))
goto out;
}
if (time_after_eq(jiffies, sd->last_balance + interval)) {
if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
/*
* The LBF_DST_PINNED logic could have changed
* env->dst_cpu, so we can't know our idle
* state even if we migrated tasks. Update it.
*/
idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
}
sd->last_balance = jiffies;
interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
}
if (need_serialize)
spin_unlock(&balancing);
out:
if (time_after(next_balance, sd->last_balance + interval)) {
next_balance = sd->last_balance + interval;
update_next_balance = 1;
}
}
if (need_decay) {
/*
* Ensure the rq-wide value also decays but keep it at a
* reasonable floor to avoid funnies with rq->avg_idle.
*/
rq->max_idle_balance_cost =
max((u64)sysctl_sched_migration_cost, max_cost);
}
rcu_read_unlock();
/*
* next_balance will be updated only when there is a need.
* When the cpu is attached to null domain for ex, it will not be
* updated.
*/
if (likely(update_next_balance))
rq->next_balance = next_balance;
}
#ifdef CONFIG_NO_HZ_COMMON
/*
* In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
* rebalancing for all the cpus for whom scheduler ticks are stopped.
*/
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
{
int this_cpu = this_rq->cpu;
struct rq *rq;
int balance_cpu;
if (idle != CPU_IDLE ||
!test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
goto end;
for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
continue;
/*
* If this cpu gets work to do, stop the load balancing
* work being done for other cpus. Next load
* balancing owner will pick it up.
*/
if (need_resched())
break;
rq = cpu_rq(balance_cpu);
/*
* If time for next balance is due,
* do the balance.
*/
if (time_after_eq(jiffies, rq->next_balance)) {
raw_spin_lock_irq(&rq->lock);
update_rq_clock(rq);
update_idle_cpu_load(rq);
raw_spin_unlock_irq(&rq->lock);
rebalance_domains(rq, CPU_IDLE);
}
if (time_after(this_rq->next_balance, rq->next_balance))
this_rq->next_balance = rq->next_balance;
}
nohz.next_balance = this_rq->next_balance;
end:
clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
}
/*
* Current heuristic for kicking the idle load balancer in the presence
* of an idle cpu in the system.
* - This rq has more than one task.
* - This rq has at least one CFS task and the capacity of the CPU is
* significantly reduced because of RT tasks or IRQs.
* - At parent of LLC scheduler domain level, this cpu's scheduler group has
* multiple busy cpu.
* - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
* domain span are idle.
*/
static inline bool nohz_kick_needed(struct rq *rq)
{
unsigned long now = jiffies;
struct sched_domain *sd;
struct sched_group_capacity *sgc;
int nr_busy, cpu = rq->cpu;
bool kick = false;
if (unlikely(rq->idle_balance))
return false;
/*
* We may be recently in ticked or tickless idle mode. At the first
* busy tick after returning from idle, we will update the busy stats.
*/
set_cpu_sd_state_busy();
nohz_balance_exit_idle(cpu);
/*
* None are in tickless mode and hence no need for NOHZ idle load
* balancing.
*/
if (likely(!atomic_read(&nohz.nr_cpus)))
return false;
if (time_before(now, nohz.next_balance))
return false;
if (rq->nr_running >= 2)
return true;
rcu_read_lock();
sd = rcu_dereference(per_cpu(sd_busy, cpu));
if (sd) {
sgc = sd->groups->sgc;
nr_busy = atomic_read(&sgc->nr_busy_cpus);
if (nr_busy > 1) {
kick = true;
goto unlock;
}
}
sd = rcu_dereference(rq->sd);
if (sd) {
if ((rq->cfs.h_nr_running >= 1) &&
check_cpu_capacity(rq, sd)) {
kick = true;
goto unlock;
}
}
sd = rcu_dereference(per_cpu(sd_asym, cpu));
if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
sched_domain_span(sd)) < cpu)) {
kick = true;
goto unlock;
}
unlock:
rcu_read_unlock();
return kick;
}
#else
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
#endif
/*
* run_rebalance_domains is triggered when needed from the scheduler tick.
* Also triggered for nohz idle balancing (with nohz_balancing_kick set).
*/
static void run_rebalance_domains(struct softirq_action *h)
{
struct rq *this_rq = this_rq();
enum cpu_idle_type idle = this_rq->idle_balance ?
CPU_IDLE : CPU_NOT_IDLE;
/*
* If this cpu has a pending nohz_balance_kick, then do the
* balancing on behalf of the other idle cpus whose ticks are
* stopped. Do nohz_idle_balance *before* rebalance_domains to
* give the idle cpus a chance to load balance. Else we may
* load balance only within the local sched_domain hierarchy
* and abort nohz_idle_balance altogether if we pull some load.
*/
nohz_idle_balance(this_rq, idle);
rebalance_domains(this_rq, idle);
}
/*
* Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
*/
void trigger_load_balance(struct rq *rq)
{
/* Don't need to rebalance while attached to NULL domain */
if (unlikely(on_null_domain(rq)))
return;
if (time_after_eq(jiffies, rq->next_balance))
raise_softirq(SCHED_SOFTIRQ);
#ifdef CONFIG_NO_HZ_COMMON
if (nohz_kick_needed(rq))
nohz_balancer_kick();
#endif
}
static void rq_online_fair(struct rq *rq)
{
update_sysctl();
update_runtime_enabled(rq);
}
static void rq_offline_fair(struct rq *rq)
{
update_sysctl();
/* Ensure any throttled groups are reachable by pick_next_task */
unthrottle_offline_cfs_rqs(rq);
}
#endif /* CONFIG_SMP */
/*
* scheduler tick hitting a task of our scheduling class:
*/
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
{
struct cfs_rq *cfs_rq;
struct sched_entity *se = &curr->se;
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
entity_tick(cfs_rq, se, queued);
}
if (numabalancing_enabled)
task_tick_numa(rq, curr);
update_rq_runnable_avg(rq, 1);
}
/*
* called on fork with the child task as argument from the parent's context
* - child not yet on the tasklist
* - preemption disabled
*/
static void task_fork_fair(struct task_struct *p)
{
struct cfs_rq *cfs_rq;
struct sched_entity *se = &p->se, *curr;
int this_cpu = smp_processor_id();
struct rq *rq = this_rq();
unsigned long flags;
raw_spin_lock_irqsave(&rq->lock, flags);
update_rq_clock(rq);
cfs_rq = task_cfs_rq(current);
curr = cfs_rq->curr;
/*
* Not only the cpu but also the task_group of the parent might have
* been changed after parent->se.parent,cfs_rq were copied to
* child->se.parent,cfs_rq. So call __set_task_cpu() to make those
* of child point to valid ones.
*/
rcu_read_lock();
__set_task_cpu(p, this_cpu);
rcu_read_unlock();
update_curr(cfs_rq);
if (curr)
se->vruntime = curr->vruntime;
place_entity(cfs_rq, se, 1);
if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
/*
* Upon rescheduling, sched_class::put_prev_task() will place
* 'current' within the tree based on its new key value.
*/
swap(curr->vruntime, se->vruntime);
resched_curr(rq);
}
se->vruntime -= cfs_rq->min_vruntime;
raw_spin_unlock_irqrestore(&rq->lock, flags);
}
/*
* Priority of the task has changed. Check to see if we preempt
* the current task.
*/
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
{
if (!task_on_rq_queued(p))
return;
/*
* Reschedule if we are currently running on this runqueue and
* our priority decreased, or if we are not currently running on
* this runqueue and our priority is higher than the current's
*/
if (rq->curr == p) {
if (p->prio > oldprio)
resched_curr(rq);
} else
check_preempt_curr(rq, p, 0);
}
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
struct sched_entity *se = &p->se;
struct cfs_rq *cfs_rq = cfs_rq_of(se);
/*
* Ensure the task's vruntime is normalized, so that when it's
* switched back to the fair class the enqueue_entity(.flags=0) will
* do the right thing.
*
* If it's queued, then the dequeue_entity(.flags=0) will already
* have normalized the vruntime, if it's !queued, then only when
* the task is sleeping will it still have non-normalized vruntime.
*/
if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
/*
* Fix up our vruntime so that the current sleep doesn't
* cause 'unlimited' sleep bonus.
*/
place_entity(cfs_rq, se, 0);
se->vruntime -= cfs_rq->min_vruntime;
}
#ifdef CONFIG_SMP
/*
* Remove our load from contribution when we leave sched_fair
* and ensure we don't carry in an old decay_count if we
* switch back.
*/
if (se->avg.decay_count) {
__synchronize_entity_decay(se);
subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
}
#endif
}
/*
* We switched to the sched_fair class.
*/
static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
struct sched_entity *se = &p->se;
/*
* Since the real-depth could have been changed (only FAIR
* class maintain depth value), reset depth properly.
*/
se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
if (!task_on_rq_queued(p))
return;
/*
* We were most likely switched from sched_rt, so
* kick off the schedule if running, otherwise just see
* if we can still preempt the current task.
*/
if (rq->curr == p)
resched_curr(rq);
else
check_preempt_curr(rq, p, 0);
}
/* Account for a task changing its policy or group.
*
* This routine is mostly called to set cfs_rq->curr field when a task
* migrates between groups/classes.
*/
static void set_curr_task_fair(struct rq *rq)
{
struct sched_entity *se = &rq->curr->se;
for_each_sched_entity(se) {
struct cfs_rq *cfs_rq = cfs_rq_of(se);
set_next_entity(cfs_rq, se);
/* ensure bandwidth has been allocated on our new cfs_rq */
account_cfs_rq_runtime(cfs_rq, 0);
}
}
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
cfs_rq->tasks_timeline = RB_ROOT;
cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
#ifdef CONFIG_SMP
atomic64_set(&cfs_rq->decay_counter, 1);
atomic_long_set(&cfs_rq->removed_load, 0);
#endif
}
#ifdef CONFIG_FAIR_GROUP_SCHED
static void task_move_group_fair(struct task_struct *p, int queued)
{
struct sched_entity *se = &p->se;
struct cfs_rq *cfs_rq;
/*
* If the task was not on the rq at the time of this cgroup movement
* it must have been asleep, sleeping tasks keep their ->vruntime
* absolute on their old rq until wakeup (needed for the fair sleeper
* bonus in place_entity()).
*
* If it was on the rq, we've just 'preempted' it, which does convert
* ->vruntime to a relative base.
*
* Make sure both cases convert their relative position when migrating
* to another cgroup's rq. This does somewhat interfere with the
* fair sleeper stuff for the first placement, but who cares.
*/
/*
* When !queued, vruntime of the task has usually NOT been normalized.
* But there are some cases where it has already been normalized:
*
* - Moving a forked child which is waiting for being woken up by
* wake_up_new_task().
* - Moving a task which has been woken up by try_to_wake_up() and
* waiting for actually being woken up by sched_ttwu_pending().
*
* To prevent boost or penalty in the new cfs_rq caused by delta
* min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
*/
if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
queued = 1;
if (!queued)
se->vruntime -= cfs_rq_of(se)->min_vruntime;
set_task_rq(p, task_cpu(p));
se->depth = se->parent ? se->parent->depth + 1 : 0;
if (!queued) {
cfs_rq = cfs_rq_of(se);
se->vruntime += cfs_rq->min_vruntime;
#ifdef CONFIG_SMP
/*
* migrate_task_rq_fair() will have removed our previous
* contribution, but we must synchronize for ongoing future
* decay.
*/
se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
#endif
}
}
void free_fair_sched_group(struct task_group *tg)
{
int i;
destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
for_each_possible_cpu(i) {
if (tg->cfs_rq)
kfree(tg->cfs_rq[i]);
if (tg->se)
kfree(tg->se[i]);
}
kfree(tg->cfs_rq);
kfree(tg->se);
}
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
struct cfs_rq *cfs_rq;
struct sched_entity *se;
int i;
tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
if (!tg->cfs_rq)
goto err;
tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
if (!tg->se)
goto err;
tg->shares = NICE_0_LOAD;
init_cfs_bandwidth(tg_cfs_bandwidth(tg));
for_each_possible_cpu(i) {
cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
GFP_KERNEL, cpu_to_node(i));
if (!cfs_rq)
goto err;
se = kzalloc_node(sizeof(struct sched_entity),
GFP_KERNEL, cpu_to_node(i));
if (!se)
goto err_free_rq;
init_cfs_rq(cfs_rq);
init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
}
return 1;
err_free_rq:
kfree(cfs_rq);
err:
return 0;
}
void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
struct rq *rq = cpu_rq(cpu);
unsigned long flags;
/*
* Only empty task groups can be destroyed; so we can speculatively
* check on_list without danger of it being re-added.
*/
if (!tg->cfs_rq[cpu]->on_list)
return;
raw_spin_lock_irqsave(&rq->lock, flags);
list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
raw_spin_unlock_irqrestore(&rq->lock, flags);
}
void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
struct sched_entity *se, int cpu,
struct sched_entity *parent)
{
struct rq *rq = cpu_rq(cpu);
cfs_rq->tg = tg;
cfs_rq->rq = rq;
init_cfs_rq_runtime(cfs_rq);
tg->cfs_rq[cpu] = cfs_rq;
tg->se[cpu] = se;
/* se could be NULL for root_task_group */
if (!se)
return;
if (!parent) {
se->cfs_rq = &rq->cfs;
se->depth = 0;
} else {
se->cfs_rq = parent->my_q;
se->depth = parent->depth + 1;
}
se->my_q = cfs_rq;
/* guarantee group entities always have weight */
update_load_set(&se->load, NICE_0_LOAD);
se->parent = parent;
}
static DEFINE_MUTEX(shares_mutex);
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
int i;
unsigned long flags;
/*
* We can't change the weight of the root cgroup.
*/
if (!tg->se[0])
return -EINVAL;
shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
mutex_lock(&shares_mutex);
if (tg->shares == shares)
goto done;
tg->shares = shares;
for_each_possible_cpu(i) {
struct rq *rq = cpu_rq(i);
struct sched_entity *se;
se = tg->se[i];
/* Propagate contribution to hierarchy */
raw_spin_lock_irqsave(&rq->lock, flags);
/* Possible calls to update_curr() need rq clock */
update_rq_clock(rq);
for_each_sched_entity(se)
update_cfs_shares(group_cfs_rq(se));
raw_spin_unlock_irqrestore(&rq->lock, flags);
}
done:
mutex_unlock(&shares_mutex);
return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */
void free_fair_sched_group(struct task_group *tg) { }
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
return 1;
}
void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
#endif /* CONFIG_FAIR_GROUP_SCHED */
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
{
struct sched_entity *se = &task->se;
unsigned int rr_interval = 0;
/*
* Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
* idle runqueue:
*/
if (rq->cfs.load.weight)
rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
return rr_interval;
}
/*
* All the scheduling class methods:
*/
const struct sched_class fair_sched_class = {
.next = &idle_sched_class,
.enqueue_task = enqueue_task_fair,
.dequeue_task = dequeue_task_fair,
.yield_task = yield_task_fair,
.yield_to_task = yield_to_task_fair,
.check_preempt_curr = check_preempt_wakeup,
.pick_next_task = pick_next_task_fair,
.put_prev_task = put_prev_task_fair,
#ifdef CONFIG_SMP
.select_task_rq = select_task_rq_fair,
.migrate_task_rq = migrate_task_rq_fair,
.rq_online = rq_online_fair,
.rq_offline = rq_offline_fair,
.task_waking = task_waking_fair,
#endif
.set_curr_task = set_curr_task_fair,
.task_tick = task_tick_fair,
.task_fork = task_fork_fair,
.prio_changed = prio_changed_fair,
.switched_from = switched_from_fair,
.switched_to = switched_to_fair,
.get_rr_interval = get_rr_interval_fair,
.update_curr = update_curr_fair,
#ifdef CONFIG_FAIR_GROUP_SCHED
.task_move_group = task_move_group_fair,
#endif
};
#ifdef CONFIG_SCHED_DEBUG
void print_cfs_stats(struct seq_file *m, int cpu)
{
struct cfs_rq *cfs_rq;
rcu_read_lock();
for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
print_cfs_rq(m, cpu, cfs_rq);
rcu_read_unlock();
}
#endif
__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
#ifdef CONFIG_NO_HZ_COMMON
nohz.next_balance = jiffies;
zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
cpu_notifier(sched_ilb_notifier, 0);
#endif
#endif /* SMP */
}