summaryrefslogblamecommitdiff
path: root/kernel/sched/cpupri.c
blob: d72586fdf6607db63c5f43a2e1fbbb32ff0ac2c7 (plain) (tree)
1
2
  
                         


























                                                                              
                      
                   

















                                                                      



                                                             
                                                               

                                                                            
                                                                          







                                                                             
                                            



                                                              



                                              
                                                               
                             
 
                                                
                                 


















                                                                                
 



                                                            
                                                                               

                                 
                                  
                                                                              












                                                                            









                                               
                                                             








                                                            
                                       









                                                                   

                                                                       
                                                                
           


                                                                 
                                                




                                                                           
                                            
                                          
                          
         


                                                                  
                  














                                                                       



                                                                                
                                           
                                                  
         







                                                
                                    
   
                                  







                                                            
                                           
                                                                
                                     



                                                   





                                                         

 






                                                 
 


                                                         
/*
 *  kernel/sched/cpupri.c
 *
 *  CPU priority management
 *
 *  Copyright (C) 2007-2008 Novell
 *
 *  Author: Gregory Haskins <ghaskins@novell.com>
 *
 *  This code tracks the priority of each CPU so that global migration
 *  decisions are easy to calculate.  Each CPU can be in a state as follows:
 *
 *                 (INVALID), IDLE, NORMAL, RT1, ... RT99
 *
 *  going from the lowest priority to the highest.  CPUs in the INVALID state
 *  are not eligible for routing.  The system maintains this state with
 *  a 2 dimensional bitmap (the first for priority class, the second for cpus
 *  in that class).  Therefore a typical application without affinity
 *  restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
 *  searches).  For tasks with affinity restrictions, the algorithm has a
 *  worst case complexity of O(min(102, nr_domcpus)), though the scenario that
 *  yields the worst case search is fairly contrived.
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; version 2
 *  of the License.
 */

#include <linux/gfp.h>
#include "cpupri.h"

/* Convert between a 140 based task->prio, and our 102 based cpupri */
static int convert_prio(int prio)
{
	int cpupri;

	if (prio == CPUPRI_INVALID)
		cpupri = CPUPRI_INVALID;
	else if (prio == MAX_PRIO)
		cpupri = CPUPRI_IDLE;
	else if (prio >= MAX_RT_PRIO)
		cpupri = CPUPRI_NORMAL;
	else
		cpupri = MAX_RT_PRIO - prio + 1;

	return cpupri;
}

/**
 * cpupri_find - find the best (lowest-pri) CPU in the system
 * @cp: The cpupri context
 * @p: The task
 * @lowest_mask: A mask to fill in with selected CPUs (or NULL)
 *
 * Note: This function returns the recommended CPUs as calculated during the
 * current invocation.  By the time the call returns, the CPUs may have in
 * fact changed priorities any number of times.  While not ideal, it is not
 * an issue of correctness since the normal rebalancer logic will correct
 * any discrepancies created by racing against the uncertainty of the current
 * priority configuration.
 *
 * Returns: (int)bool - CPUs were found
 */
int cpupri_find(struct cpupri *cp, struct task_struct *p,
		struct cpumask *lowest_mask)
{
	int                  idx      = 0;
	int                  task_pri = convert_prio(p->prio);

	if (task_pri >= MAX_RT_PRIO)
		return 0;

	for (idx = 0; idx < task_pri; idx++) {
		struct cpupri_vec *vec  = &cp->pri_to_cpu[idx];
		int skip = 0;

		if (!atomic_read(&(vec)->count))
			skip = 1;
		/*
		 * When looking at the vector, we need to read the counter,
		 * do a memory barrier, then read the mask.
		 *
		 * Note: This is still all racey, but we can deal with it.
		 *  Ideally, we only want to look at masks that are set.
		 *
		 *  If a mask is not set, then the only thing wrong is that we
		 *  did a little more work than necessary.
		 *
		 *  If we read a zero count but the mask is set, because of the
		 *  memory barriers, that can only happen when the highest prio
		 *  task for a run queue has left the run queue, in which case,
		 *  it will be followed by a pull. If the task we are processing
		 *  fails to find a proper place to go, that pull request will
		 *  pull this task if the run queue is running at a lower
		 *  priority.
		 */
		smp_rmb();

		/* Need to do the rmb for every iteration */
		if (skip)
			continue;

		if (cpumask_any_and(&p->cpus_allowed, vec->mask) >= nr_cpu_ids)
			continue;

		if (lowest_mask) {
			cpumask_and(lowest_mask, &p->cpus_allowed, vec->mask);

			/*
			 * We have to ensure that we have at least one bit
			 * still set in the array, since the map could have
			 * been concurrently emptied between the first and
			 * second reads of vec->mask.  If we hit this
			 * condition, simply act as though we never hit this
			 * priority level and continue on.
			 */
			if (cpumask_any(lowest_mask) >= nr_cpu_ids)
				continue;
		}

		return 1;
	}

	return 0;
}

/**
 * cpupri_set - update the cpu priority setting
 * @cp: The cpupri context
 * @cpu: The target cpu
 * @newpri: The priority (INVALID-RT99) to assign to this CPU
 *
 * Note: Assumes cpu_rq(cpu)->lock is locked
 *
 * Returns: (void)
 */
void cpupri_set(struct cpupri *cp, int cpu, int newpri)
{
	int                 *currpri = &cp->cpu_to_pri[cpu];
	int                  oldpri  = *currpri;
	int                  do_mb = 0;

	newpri = convert_prio(newpri);

	BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);

	if (newpri == oldpri)
		return;

	/*
	 * If the cpu was currently mapped to a different value, we
	 * need to map it to the new value then remove the old value.
	 * Note, we must add the new value first, otherwise we risk the
	 * cpu being missed by the priority loop in cpupri_find.
	 */
	if (likely(newpri != CPUPRI_INVALID)) {
		struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];

		cpumask_set_cpu(cpu, vec->mask);
		/*
		 * When adding a new vector, we update the mask first,
		 * do a write memory barrier, and then update the count, to
		 * make sure the vector is visible when count is set.
		 */
		smp_mb__before_atomic_inc();
		atomic_inc(&(vec)->count);
		do_mb = 1;
	}
	if (likely(oldpri != CPUPRI_INVALID)) {
		struct cpupri_vec *vec  = &cp->pri_to_cpu[oldpri];

		/*
		 * Because the order of modification of the vec->count
		 * is important, we must make sure that the update
		 * of the new prio is seen before we decrement the
		 * old prio. This makes sure that the loop sees
		 * one or the other when we raise the priority of
		 * the run queue. We don't care about when we lower the
		 * priority, as that will trigger an rt pull anyway.
		 *
		 * We only need to do a memory barrier if we updated
		 * the new priority vec.
		 */
		if (do_mb)
			smp_mb__after_atomic_inc();

		/*
		 * When removing from the vector, we decrement the counter first
		 * do a memory barrier and then clear the mask.
		 */
		atomic_dec(&(vec)->count);
		smp_mb__after_atomic_inc();
		cpumask_clear_cpu(cpu, vec->mask);
	}

	*currpri = newpri;
}

/**
 * cpupri_init - initialize the cpupri structure
 * @cp: The cpupri context
 *
 * Returns: -ENOMEM if memory fails.
 */
int cpupri_init(struct cpupri *cp)
{
	int i;

	memset(cp, 0, sizeof(*cp));

	for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
		struct cpupri_vec *vec = &cp->pri_to_cpu[i];

		atomic_set(&vec->count, 0);
		if (!zalloc_cpumask_var(&vec->mask, GFP_KERNEL))
			goto cleanup;
	}

	for_each_possible_cpu(i)
		cp->cpu_to_pri[i] = CPUPRI_INVALID;
	return 0;

cleanup:
	for (i--; i >= 0; i--)
		free_cpumask_var(cp->pri_to_cpu[i].mask);
	return -ENOMEM;
}

/**
 * cpupri_cleanup - clean up the cpupri structure
 * @cp: The cpupri context
 */
void cpupri_cleanup(struct cpupri *cp)
{
	int i;

	for (i = 0; i < CPUPRI_NR_PRIORITIES; i++)
		free_cpumask_var(cp->pri_to_cpu[i].mask);
}