/*
* Performance counter core code
*
* Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
* Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
*
*
* For licensing details see kernel-base/COPYING
*/
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/cpu.h>
#include <linux/smp.h>
#include <linux/file.h>
#include <linux/poll.h>
#include <linux/sysfs.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
#include <linux/vmstat.h>
#include <linux/hardirq.h>
#include <linux/rculist.h>
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
#include <linux/kernel_stat.h>
#include <linux/perf_counter.h>
#include <linux/dcache.h>
#include <asm/irq_regs.h>
/*
* Each CPU has a list of per CPU counters:
*/
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
int perf_max_counters __read_mostly = 1;
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;
/*
* Mutex for (sysadmin-configurable) counter reservations:
*/
static DEFINE_MUTEX(perf_resource_mutex);
/*
* Architecture provided APIs - weak aliases:
*/
extern __weak const struct hw_perf_counter_ops *
hw_perf_counter_init(struct perf_counter *counter)
{
return NULL;
}
u64 __weak hw_perf_save_disable(void) { return 0; }
void __weak hw_perf_restore(u64 ctrl) { barrier(); }
void __weak hw_perf_counter_setup(int cpu) { barrier(); }
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
struct perf_cpu_context *cpuctx,
struct perf_counter_context *ctx, int cpu)
{
return 0;
}
void __weak perf_counter_print_debug(void) { }
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
struct perf_counter *group_leader = counter->group_leader;
/*
* Depending on whether it is a standalone or sibling counter,
* add it straight to the context's counter list, or to the group
* leader's sibling list:
*/
if (counter->group_leader == counter)
list_add_tail(&counter->list_entry, &ctx->counter_list);
else {
list_add_tail(&counter->list_entry, &group_leader->sibling_list);
group_leader->nr_siblings++;
}
list_add_rcu(&counter->event_entry, &ctx->event_list);
}
static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
struct perf_counter *sibling, *tmp;
list_del_init(&counter->list_entry);
list_del_rcu(&counter->event_entry);
if (counter->group_leader != counter)
counter->group_leader->nr_siblings--;
/*
* If this was a group counter with sibling counters then
* upgrade the siblings to singleton counters by adding them
* to the context list directly:
*/
list_for_each_entry_safe(sibling, tmp,
&counter->sibling_list, list_entry) {
list_move_tail(&sibling->list_entry, &ctx->counter_list);
sibling->group_leader = sibling;
}
}
static void
counter_sched_out(struct perf_counter *counter,
struct perf_cpu_context *cpuctx,
struct perf_counter_context *ctx)
{
if (counter->state != PERF_COUNTER_STATE_ACTIVE)
return;
counter->state = PERF_COUNTER_STATE_INACTIVE;
counter->tstamp_stopped = ctx->time_now;
counter->hw_ops->disable(counter);
counter->oncpu = -1;
if (!is_software_counter(counter))
cpuctx->active_oncpu--;
ctx->nr_active--;
if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
cpuctx->exclusive = 0;
}
static void
group_sched_out(struct perf_counter *group_counter,
struct perf_cpu_context *cpuctx,
struct perf_counter_context *ctx)
{
struct perf_counter *counter;
if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
return;
counter_sched_out(group_counter, cpuctx, ctx);
/*
* Schedule out siblings (if any):
*/
list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
counter_sched_out(counter, cpuctx, ctx);
if (group_counter->hw_event.exclusive)
cpuctx->exclusive = 0;
}
/*
* Cross CPU call to remove a performance counter
*
* We disable the counter on the hardware level first. After that we
* remove it from the context list.
*/
static void __perf_counter_remove_from_context(void *info)
{
struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
struct perf_counter *counter = info;
struct perf_counter_context *ctx = counter->ctx;
unsigned long flags;
u64 perf_flags;
/*
* If this is a task context, we need to check whether it is
* the current task context of this cpu. If not it has been
* scheduled out before the smp call arrived.
*/
if (ctx->task && cpuctx->task_ctx != ctx)
return;
curr_rq_lock_irq_save(&flags);
spin_lock(&ctx->lock);
counter_sched_out(counter, cpuctx, ctx);
counter->task = NULL;
ctx->nr_counters--;
/*
* Protect the list operation against NMI by disabling the
* counters on a global level. NOP for non NMI based counters.
*/
perf_flags = hw_perf_save_disable();
list_del_counter(counter, ctx);
hw_perf_restore(perf_flags);
if (!ctx->task) {
/*
* Allow more per task counters with respect to the
* reservation:
*/
cpuctx->max_pertask =
min(perf_max_counters - ctx->nr_counters,
perf_max_counters - perf_reserved_percpu);
}
spin_unlock(&ctx->lock);
curr_rq_unlock_irq_restore(&flags);
}
/*
* Remove the counter from a task's (or a CPU's) list of counters.
*
* Must be called with counter->mutex and ctx->mutex held.
*
* CPU counters are removed with a smp call. For task counters we only
* call when the task is on a CPU.
*/
static void perf_counter_remove_from_context(struct perf_counter *counter)
{
struct perf_counter_context *ctx = counter->ctx;
struct task_struct *task = ctx->task;
if (!task) {
/*
* Per cpu counters are removed via an smp call and
* the removal is always sucessful.
*/
smp_call_function_single(counter->cpu,
__perf_counter_remove_from_context,
counter, 1);
return;
}
retry:
task_oncpu_function_call(task, __perf_counter_remove_from_context,
counter);
spin_lock_irq(&ctx->lock);
/*
* If the context is active we need to retry the smp call.
*/
if (ctx->nr_active && !list_empty(&counter->list_entry)) {
spin_unlock_irq(&ctx->lock);
goto retry;
}
/*
* The lock prevents that this context is scheduled in so we
* can remove the counter safely, if the call above did not
* succeed.
*/
if (!list_empty(&counter->list_entry)) {
ctx->nr_counters--;
list_del_counter(counter, ctx);
counter->task = NULL;
}
spin_unlock_irq(&ctx->lock);
}
/*
* Get the current time for this context.
* If this is a task context, we use the task's task clock,
* or for a per-cpu context, we use the cpu clock.
*/
static u64 get_context_time(struct perf_counter_context *ctx, int update)
{
struct task_struct *curr = ctx->task;
if (!curr)
return cpu_clock(smp_processor_id());
return __task_delta_exec(curr, update) + curr->se.sum_exec_runtime;
}
/*
* Update the record of the current time in a context.
*/
static void update_context_time(struct perf_counter_context *ctx, int update)
{
ctx->time_now = get_context_time(ctx, update) - ctx->time_lost;
}
/*
* Update the total_time_enabled and total_time_running fields for a counter.
*/
static void update_counter_times(struct perf_counter *counter)
{
struct perf_counter_context *ctx = counter->ctx;
u64 run_end;
if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
counter->total_time_enabled = ctx->time_now -
counter->tstamp_enabled;
if (counter->state == PERF_COUNTER_STATE_INACTIVE)
run_end = counter->tstamp_stopped;
else
run_end = ctx->time_now;
counter->total_time_running = run_end - counter->tstamp_running;
}
}
/*
* Update total_time_enabled and total_time_running for all counters in a group.
*/
static void update_group_times(struct perf_counter *leader)
{
struct perf_counter *counter;
update_counter_times(leader);
list_for_each_entry(counter, &leader->sibling_list, list_entry)
update_counter_times(counter);
}
/*
* Cross CPU call to disable a performance counter
*/
static void __perf_counter_disable(void *info)
{
struct perf_counter *counter = info;
struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
struct perf_counter_context *ctx = counter->ctx;
unsigned long flags;
/*
* If this is a per-task counter, need to check whether this
* counter's task is the current task on this cpu.
*/
if (ctx->task && cpuctx->task_ctx != ctx)
return;
curr_rq_lock_irq_save(&flags);
spin_lock(&ctx->lock);
/*
* If the counter is on, turn it off.
* If it is in error state, leave it in error state.
*/
if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
update_context_time(ctx, 1);
update_counter_times(counter);
if (counter == counter->group_leader)
group_sched_out(counter, cpuctx, ctx);
else
counter_sched_out(counter, cpuctx, ctx);
counter->state = PERF_COUNTER_STATE_OFF;
}
spin_unlock(&ctx->lock);
curr_rq_unlock_irq_restore(&flags);
}
/*
* Disable a counter.
*/
static void perf_counter_disable(struct perf_counter *counter)
{
struct perf_counter_context *ctx = counter->ctx;
struct task_struct *task = ctx->task;
if (!task) {
/*
* Disable the counter on the cpu that it's on
*/
smp_call_function_single(counter->cpu, __perf_counter_disable,
counter, 1);
return;
}
retry:
task_oncpu_function_call(task, __perf_counter_disable, counter);
spin_lock_irq(&ctx->lock);
/*
* If the counter is still active, we need to retry the cross-call.
*/
if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
spin_unlock_irq(&ctx->lock);
goto retry;
}
/*
* Since we have the lock this context can't be scheduled
* in, so we can change the state safely.
*/
if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
update_counter_times(counter);
counter->state = PERF_COUNTER_STATE_OFF;
}
spin_unlock_irq(&ctx->lock);
}
/*
* Disable a counter and all its children.
*/
static void perf_counter_disable_family(struct perf_counter *counter)
{
struct perf_counter *child;
perf_counter_disable(counter);
/*
* Lock the mutex to protect the list of children
*/
mutex_lock(&counter->mutex);
list_for_each_entry(child, &counter->child_list, child_list)
perf_counter_disable(child);
mutex_unlock(&counter->mutex);
}
static int
counter_sched_in(struct perf_counter *counter,
struct perf_cpu_context *cpuctx,
struct perf_counter_context *ctx,
int cpu)
{
if (counter->state <= PERF_COUNTER_STATE_OFF)
return 0;
counter->state = PERF_COUNTER_STATE_ACTIVE;
counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
/*
* The new state must be visible before we turn it on in the hardware:
*/
smp_wmb();
if (counter->hw_ops->enable(counter)) {
counter->state = PERF_COUNTER_STATE_INACTIVE;
counter->oncpu = -1;
return -EAGAIN;
}
counter->tstamp_running += ctx->time_now - counter->tstamp_stopped;
if (!is_software_counter(counter))
cpuctx->active_oncpu++;
ctx->nr_active++;
if (counter->hw_event.exclusive)
cpuctx->exclusive = 1;
return 0;
}
/*
* Return 1 for a group consisting entirely of software counters,
* 0 if the group contains any hardware counters.
*/
static int is_software_only_group(struct perf_counter *leader)
{
struct perf_counter *counter;
if (!is_software_counter(leader))
return 0;
list_for_each_entry(counter, &leader->sibling_list, list_entry)
if (!is_software_counter(counter))
return 0;
return 1;
}
/*
* Work out whether we can put this counter group on the CPU now.
*/
static int group_can_go_on(struct perf_counter *counter,
struct perf_cpu_context *cpuctx,
int can_add_hw)
{
/*
* Groups consisting entirely of software counters can always go on.
*/
if (is_software_only_group(counter))
return 1;
/*
* If an exclusive group is already on, no other hardware
* counters can go on.
*/
if (cpuctx->exclusive)
return 0;
/*
* If this group is exclusive and there are already
* counters on the CPU, it can't go on.
*/
if (counter->hw_event.exclusive && cpuctx->active_oncpu)
return 0;
/*
* Otherwise, try to add it if all previous groups were able
* to go on.
*/
return can_add_hw;
}
static void add_counter_to_ctx(struct perf_counter *counter,
struct perf_counter_context *ctx)
{
list_add_counter(counter, ctx);
ctx->nr_counters++;
counter->prev_state = PERF_COUNTER_STATE_OFF;
counter->tstamp_enabled = ctx->time_now;
counter->tstamp_running = ctx->time_now;
counter->tstamp_stopped = ctx->time_now;
}
/*
* Cross CPU call to install and enable a performance counter
*/
static void __perf_install_in_context(void *info)
{
struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
struct perf_counter *counter = info;
struct perf_counter_context *ctx = counter->ctx;
struct perf_counter *leader = counter->group_leader;
int cpu = smp_processor_id();
unsigned long flags;
u64 perf_flags;
int err;
/*
* If this is a task context, we need to check whether it is
* the current task context of this cpu. If not it has been
* scheduled out before the smp call arrived.
*/
if (ctx->task && cpuctx->task_ctx != ctx)
return;
curr_rq_lock_irq_save(&flags);
spin_lock(&ctx->lock);
update_context_time(ctx, 1);
/*
* Protect the list operation against NMI by disabling the
* counters on a global level. NOP for non NMI based counters.
*/
perf_flags = hw_perf_save_disable();
add_counter_to_ctx(counter, ctx);
/*
* Don't put the counter on if it is disabled or if
* it is in a group and the group isn't on.
*/
if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
(leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
goto unlock;
/*
* An exclusive counter can't go on if there are already active
* hardware counters, and no hardware counter can go on if there
* is already an exclusive counter on.
*/
if (!group_can_go_on(counter, cpuctx, 1))
err = -EEXIST;
else
err = counter_sched_in(counter, cpuctx, ctx, cpu);
if (err) {
/*
* This counter couldn't go on. If it is in a group
* then we have to pull the whole group off.
* If the counter group is pinned then put it in error state.
*/
if (leader != counter)
group_sched_out(leader, cpuctx, ctx);
if (leader->hw_event.pinned) {
update_group_times(leader);
leader->state = PERF_COUNTER_STATE_ERROR;
}
}
if (!err && !ctx->task && cpuctx->max_pertask)
cpuctx->max_pertask--;
unlock:
hw_perf_restore(perf_flags);
spin_unlock(&ctx->lock);
curr_rq_unlock_irq_restore(&flags);
}
/*
* Attach a performance counter to a context
*
* First we add the counter to the list with the hardware enable bit
* in counter->hw_config cleared.
*
* If the counter is attached to a task which is on a CPU we use a smp
* call to enable it in the task context. The task might have been
* scheduled away, but we check this in the smp call again.
*
* Must be called with ctx->mutex held.
*/
static void
perf_install_in_context(struct perf_counter_context *ctx,
struct perf_counter *counter,
int cpu)
{
struct task_struct *task = ctx->task;
if (!task) {
/*
* Per cpu counters are installed via an smp call and
* the install is always sucessful.
*/
smp_call_function_single(cpu, __perf_install_in_context,
counter, 1);
return;
}
counter->task = task;
retry:
task_oncpu_function_call(task, __perf_install_in_context,
counter);
spin_lock_irq(&ctx->lock);
/*
* we need to retry the smp call.
*/
if (ctx->is_active && list_empty(&counter->list_entry)) {
spin_unlock_irq(&ctx->lock);
goto retry;
}
/*
* The lock prevents that this context is scheduled in so we
* can add the counter safely, if it the call above did not
* succeed.
*/
if (list_empty(&counter->list_entry))
add_counter_to_ctx(counter, ctx);
spin_unlock_irq(&ctx->lock);
}
/*
* Cross CPU call to enable a performance counter
*/
static void __perf_counter_enable(void *info)
{
struct perf_counter *counter = info;
struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
struct perf_counter_context *ctx = counter->ctx;
struct perf_counter *leader = counter->group_leader;
unsigned long flags;
int err;
/*
* If this is a per-task counter, need to check whether this
* counter's task is the current task on this cpu.
*/
if (ctx->task && cpuctx->task_ctx != ctx)
return;
curr_rq_lock_irq_save(&flags);
spin_lock(&ctx->lock);
update_context_time(ctx, 1);
counter->prev_state = counter->state;
if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
goto unlock;
counter->state = PERF_COUNTER_STATE_INACTIVE;
counter->tstamp_enabled = ctx->time_now - counter->total_time_enabled;
/*
* If the counter is in a group and isn't the group leader,
* then don't put it on unless the group is on.
*/
if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
goto unlock;
if (!group_can_go_on(counter, cpuctx, 1))
err = -EEXIST;
else
err = counter_sched_in(counter, cpuctx, ctx,
smp_processor_id());
if (err) {
/*
* If this counter can't go on and it's part of a
* group, then the whole group has to come off.
*/
if (leader != counter)
group_sched_out(leader, cpuctx, ctx);
if (leader->hw_event.pinned) {
update_group_times(leader);
leader->state = PERF_COUNTER_STATE_ERROR;
}
}
unlock:
spin_unlock(&ctx->lock);
curr_rq_unlock_irq_restore(&flags);
}
/*
* Enable a counter.
*/
static void perf_counter_enable(struct perf_counter *counter)
{
struct perf_counter_context *ctx = counter->ctx;
struct task_struct *task = ctx->task;
if (!task) {
/*
* Enable the counter on the cpu that it's on
*/
smp_call_function_single(counter->cpu, __perf_counter_enable,
counter, 1);
return;
}
spin_lock_irq(&ctx->lock);
if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
goto out;
/*
* If the counter is in error state, clear that first.
* That way, if we see the counter in error state below, we
* know that it has gone back into error state, as distinct
* from the task having been scheduled away before the
* cross-call arrived.
*/
if (counter->state == PERF_COUNTER_STATE_ERROR)
counter->state = PERF_COUNTER_STATE_OFF;
retry:
spin_unlock_irq(&ctx->lock);
task_oncpu_function_call(task, __perf_counter_enable, counter);
spin_lock_irq(&ctx->lock);
/*
* If the context is active and the counter is still off,
* we need to retry the cross-call.
*/
if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
goto retry;
/*
* Since we have the lock this context can't be scheduled
* in, so we can change the state safely.
*/
if (counter->state == PERF_COUNTER_STATE_OFF) {
counter->state = PERF_COUNTER_STATE_INACTIVE;
counter->tstamp_enabled = ctx->time_now -
counter->total_time_enabled;
}
out:
spin_unlock_irq(&ctx->lock);
}
static void perf_counter_refresh(struct perf_counter *counter, int refresh)
{
atomic_add(refresh, &counter->event_limit);
perf_counter_enable(counter);
}
/*
* Enable a counter and all its children.
*/
static void perf_counter_enable_family(struct perf_counter *counter)
{
struct perf_counter *child;
perf_counter_enable(counter);
/*
* Lock the mutex to protect the list of children
*/
mutex_lock(&counter->mutex);
list_for_each_entry(child, &counter->child_list, child_list)
perf_counter_enable(child);
mutex_unlock(&counter->mutex);
}
void __perf_counter_sched_out(struct perf_counter_context *ctx,
struct perf_cpu_context *cpuctx)
{
struct perf_counter *counter;
u64 flags;
spin_lock(&ctx->lock);
ctx->is_active = 0;
if (likely(!ctx->nr_counters))
goto out;
update_context_time(ctx, 0);
flags = hw_perf_save_disable();
if (ctx->nr_active) {
list_for_each_entry(counter, &ctx->counter_list, list_entry)
group_sched_out(counter, cpuctx, ctx);
}
hw_perf_restore(flags);
out:
spin_unlock(&ctx->lock);
}
/*
* Called from scheduler to remove the counters of the current task,
* with interrupts disabled.
*
* We stop each counter and update the counter value in counter->count.
*
* This does not protect us against NMI, but disable()
* sets the disabled bit in the control field of counter _before_
* accessing the counter control register. If a NMI hits, then it will
* not restart the counter.
*/
void perf_counter_task_sched_out(struct task_struct *task, int cpu)
{
struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
struct perf_counter_context *ctx = &task->perf_counter_ctx;
struct pt_regs *regs;
if (likely(!cpuctx->task_ctx))
return;
regs = task_pt_regs(task);
perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
__perf_counter_sched_out(ctx, cpuctx);
cpuctx->task_ctx = NULL;
}
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
{
__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
}
static int
group_sched_in(struct perf_counter *group_counter,
struct perf_cpu_context *cpuctx,
struct perf_counter_context *ctx,
int cpu)
{
struct perf_counter *counter, *partial_group;
int ret;
if (group_counter->state == PERF_COUNTER_STATE_OFF)
return 0;
ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
if (ret)
return ret < 0 ? ret : 0;
group_counter->prev_state = group_counter->state;
if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
return -EAGAIN;
/*
* Schedule in siblings as one group (if any):
*/
list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
counter->prev_state = counter->state;
if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
partial_group = counter;
goto group_error;
}
}
return 0;
group_error:
/*
* Groups can be scheduled in as one unit only, so undo any
* partial group before returning:
*/
list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
if (counter == partial_group)
break;
counter_sched_out(counter, cpuctx, ctx);
}
counter_sched_out(group_counter, cpuctx, ctx);
return -EAGAIN;
}
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
struct perf_cpu_context *cpuctx, int cpu)
{
struct perf_counter *counter;
u64 flags;
int can_add_hw = 1;
spin_lock(&ctx->lock);
ctx->is_active = 1;
if (likely(!ctx->nr_counters))
goto out;
/*
* Add any time since the last sched_out to the lost time
* so it doesn't get included in the total_time_enabled and
* total_time_running measures for counters in the context.
*/
ctx->time_lost = get_context_time(ctx, 0) - ctx->time_now;
flags = hw_perf_save_disable();
/*
* First go through the list and put on any pinned groups
* in order to give them the best chance of going on.
*/
list_for_each_entry(counter, &ctx->counter_list, list_entry) {
if (counter->state <= PERF_COUNTER_STATE_OFF ||
!counter->hw_event.pinned)
continue;
if (counter->cpu != -1 && counter->cpu != cpu)
continue;
if (group_can_go_on(counter, cpuctx, 1))
group_sched_in(counter, cpuctx, ctx, cpu);
/*
* If this pinned group hasn't been scheduled,
* put it in error state.
*/
if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
update_group_times(counter);
counter->state = PERF_COUNTER_STATE_ERROR;
}
}
list_for_each_entry(counter, &ctx->counter_list, list_entry) {
/*
* Ignore counters in OFF or ERROR state, and
* ignore pinned counters since we did them already.
*/
if (counter->state <= PERF_COUNTER_STATE_OFF ||
counter->hw_event.pinned)
continue;
/*
* Listen to the 'cpu' scheduling filter constraint
* of counters:
*/
if (counter->cpu != -1 && counter->cpu != cpu)
continue;
if (group_can_go_on(counter, cpuctx, can_add_hw)) {
if (group_sched_in(counter, cpuctx, ctx, cpu))
can_add_hw = 0;
}
}
hw_perf_restore(flags);
out:
spin_unlock(&ctx->lock);
}
/*
* Called from scheduler to add the counters of the current task
* with interrupts disabled.
*
* We restore the counter value and then enable it.
*
* This does not protect us against NMI, but enable()
* sets the enabled bit in the control field of counter _before_
* accessing the counter control register. If a NMI hits, then it will
* keep the counter running.
*/
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
struct perf_counter_context *ctx = &task->perf_counter_ctx;
__perf_counter_sched_in(ctx, cpuctx, cpu);
cpuctx->task_ctx = ctx;
}
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
struct perf_counter_context *ctx = &cpuctx->ctx;
__perf_counter_sched_in(ctx, cpuctx, cpu);
}
int perf_counter_task_disable(void)
{
struct task_struct *curr = current;
struct perf_counter_context *ctx = &curr->perf_counter_ctx;
struct perf_counter *counter;
unsigned long flags;
u64 perf_flags;
int cpu;
if (likely(!ctx->nr_counters))
return 0;
curr_rq_lock_irq_save(&flags);
cpu = smp_processor_id();
/* force the update of the task clock: */
__task_delta_exec(curr, 1);
perf_counter_task_sched_out(curr, cpu);
spin_lock(&ctx->lock);
/*
* Disable all the counters:
*/
perf_flags = hw_perf_save_disable();
list_for_each_entry(counter, &ctx->counter_list, list_entry) {
if (counter->state != PERF_COUNTER_STATE_ERROR) {
update_group_times(counter);
counter->state = PERF_COUNTER_STATE_OFF;
}
}
hw_perf_restore(perf_flags);
spin_unlock(&ctx->lock);
curr_rq_unlock_irq_restore(&flags);
return 0;
}
int perf_counter_task_enable(void)
{
struct task_struct *curr = current;
struct perf_counter_context *ctx = &curr->perf_counter_ctx;
struct perf_counter *counter;
unsigned long flags;
u64 perf_flags;
int cpu;
if (likely(!ctx->nr_counters))
return 0;
curr_rq_lock_irq_save(&flags);
cpu = smp_processor_id();
/* force the update of the task clock: */
__task_delta_exec(curr, 1);
perf_counter_task_sched_out(curr, cpu);
spin_lock(&ctx->lock);
/*
* Disable all the counters:
*/
perf_flags = hw_perf_save_disable();
list_for_each_entry(counter, &ctx->counter_list, list_entry) {
if (counter->state > PERF_COUNTER_STATE_OFF)
continue;
counter->state = PERF_COUNTER_STATE_INACTIVE;
counter->tstamp_enabled = ctx->time_now -
counter->total_time_enabled;
counter->hw_event.disabled = 0;
}
hw_perf_restore(perf_flags);
spin_unlock(&ctx->lock);
perf_counter_task_sched_in(curr, cpu);
curr_rq_unlock_irq_restore(&flags);
return 0;
}
/*
* Round-robin a context's counters:
*/
static void rotate_ctx(struct perf_counter_context *ctx)
{
struct perf_counter *counter;
u64 perf_flags;
if (!ctx->nr_counters)
return;
spin_lock(&ctx->lock);
/*
* Rotate the first entry last (works just fine for group counters too):
*/
perf_flags = hw_perf_save_disable();
list_for_each_entry(counter, &ctx->counter_list, list_entry) {
list_move_tail(&counter->list_entry, &ctx->counter_list);
break;
}
hw_perf_restore(perf_flags);
spin_unlock(&ctx->lock);
}
void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
struct perf_counter_context *ctx = &curr->perf_counter_ctx;
const int rotate_percpu = 0;
if (rotate_percpu)
perf_counter_cpu_sched_out(cpuctx);
perf_counter_task_sched_out(curr, cpu);
if (rotate_percpu)
rotate_ctx(&cpuctx->ctx);
rotate_ctx(ctx);
if (rotate_percpu)
perf_counter_cpu_sched_in(cpuctx, cpu);
perf_counter_task_sched_in(curr, cpu);
}
/*
* Cross CPU call to read the hardware counter
*/
static void __read(void *info)
{
struct perf_counter *counter = info;
struct perf_counter_context *ctx = counter->ctx;
unsigned long flags;
curr_rq_lock_irq_save(&flags);
if (ctx->is_active)
update_context_time(ctx, 1);
counter->hw_ops->read(counter);
update_counter_times(counter);
curr_rq_unlock_irq_restore(&flags);
}
static u64 perf_counter_read(struct perf_counter *counter)
{
/*
* If counter is enabled and currently active on a CPU, update the
* value in the counter structure:
*/
if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
smp_call_function_single(counter->oncpu,
__read, counter, 1);
} else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
update_counter_times(counter);
}
return atomic64_read(&counter->count);
}
static void put_context(struct perf_counter_context *ctx)
{
if (ctx->task)
put_task_struct(ctx->task);
}
static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
struct perf_cpu_context *cpuctx;
struct perf_counter_context *ctx;
struct task_struct *task;
/*
* If cpu is not a wildcard then this is a percpu counter:
*/
if (cpu != -1) {
/* Must be root to operate on a CPU counter: */
if (!capable(CAP_SYS_ADMIN))
return ERR_PTR(-EACCES);
if (cpu < 0 || cpu > num_possible_cpus())
return ERR_PTR(-EINVAL);
/*
* We could be clever and allow to attach a counter to an
* offline CPU and activate it when the CPU comes up, but
* that's for later.
*/
if (!cpu_isset(cpu, cpu_online_map))
return ERR_PTR(-ENODEV);
cpuctx = &per_cpu(perf_cpu_context, cpu);
ctx = &cpuctx->ctx;
return ctx;
}
rcu_read_lock();
if (!pid)
task = current;
else
task = find_task_by_vpid(pid);
if (task)
get_task_struct(task);
rcu_read_unlock();
if (!task)
return ERR_PTR(-ESRCH);
ctx = &task->perf_counter_ctx;
ctx->task = task;
/* Reuse ptrace permission checks for now. */
if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
put_context(ctx);
return ERR_PTR(-EACCES);
}
return ctx;
}
static void free_counter_rcu(struct rcu_head *head)
{
struct perf_counter *counter;
counter = container_of(head, struct perf_counter, rcu_head);
kfree(counter);
}
static void perf_pending_sync(struct perf_counter *counter);
static void free_counter(struct perf_counter *counter)
{
perf_pending_sync(counter);
if (counter->destroy)
counter->destroy(counter);
call_rcu(&counter->rcu_head, free_counter_rcu);
}
/*
* Called when the last reference to the file is gone.
*/
static int perf_release(struct inode *inode, struct file *file)
{
struct perf_counter *counter = file->private_data;
struct perf_counter_context *ctx = counter->ctx;
file->private_data = NULL;
mutex_lock(&ctx->mutex);
mutex_lock(&counter->mutex);
perf_counter_remove_from_context(counter);
mutex_unlock(&counter->mutex);
mutex_unlock(&ctx->mutex);
free_counter(counter);
put_context(ctx);
return 0;
}
/*
* Read the performance counter - simple non blocking version for now
*/
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
u64 values[3];
int n;
/*
* Return end-of-file for a read on a counter that is in
* error state (i.e. because it was pinned but it couldn't be
* scheduled on to the CPU at some point).
*/
if (counter->state == PERF_COUNTER_STATE_ERROR)
return 0;
mutex_lock(&counter->mutex);
values[0] = perf_counter_read(counter);
n = 1;
if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
values[n++] = counter->total_time_enabled +
atomic64_read(&counter->child_total_time_enabled);
if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
values[n++] = counter->total_time_running +
atomic64_read(&counter->child_total_time_running);
mutex_unlock(&counter->mutex);
if (count < n * sizeof(u64))
return -EINVAL;
count = n * sizeof(u64);
if (copy_to_user(buf, values, count))
return -EFAULT;
return count;
}
static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
struct perf_counter *counter = file->private_data;
return perf_read_hw(counter, buf, count);
}
static unsigned int perf_poll(struct file *file, poll_table *wait)
{
struct perf_counter *counter = file->private_data;
struct perf_mmap_data *data;
unsigned int events;
rcu_read_lock();
data = rcu_dereference(counter->data);
if (data)
events = atomic_xchg(&data->wakeup, 0);
else
events = POLL_HUP;
rcu_read_unlock();
poll_wait(file, &counter->waitq, wait);
return events;
}
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct perf_counter *counter = file->private_data;
int err = 0;
switch (cmd) {
case PERF_COUNTER_IOC_ENABLE:
perf_counter_enable_family(counter);
break;
case PERF_COUNTER_IOC_DISABLE:
perf_counter_disable_family(counter);
break;
case PERF_COUNTER_IOC_REFRESH:
perf_counter_refresh(counter, arg);
break;
default:
err = -ENOTTY;
}
return err;
}
/*
* Callers need to ensure there can be no nesting of this function, otherwise
* the seqlock logic goes bad. We can not serialize this because the arch
* code calls this from NMI context.
*/
void perf_counter_update_userpage(struct perf_counter *counter)
{
struct perf_mmap_data *data;
struct perf_counter_mmap_page *userpg;
rcu_read_lock();
data = rcu_dereference(counter->data);
if (!data)
goto unlock;
userpg = data->user_page;
/*
* Disable preemption so as to not let the corresponding user-space
* spin too long if we get preempted.
*/
preempt_disable();
++userpg->lock;
barrier();
userpg->index = counter->hw.idx;
userpg->offset = atomic64_read(&counter->count);
if (counter->state == PERF_COUNTER_STATE_ACTIVE)
userpg->offset -= atomic64_read(&counter->hw.prev_count);
barrier();
++userpg->lock;
preempt_enable();
unlock:
rcu_read_unlock();
}
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct perf_counter *counter = vma->vm_file->private_data;
struct perf_mmap_data *data;
int ret = VM_FAULT_SIGBUS;
rcu_read_lock();
data = rcu_dereference(counter->data);
if (!data)
goto unlock;
if (vmf->pgoff == 0) {
vmf->page = virt_to_page(data->user_page);
} else {
int nr = vmf->pgoff - 1;
if ((unsigned)nr > data->nr_pages)
goto unlock;
vmf->page = virt_to_page(data->data_pages[nr]);
}
get_page(vmf->page);
ret = 0;
unlock:
rcu_read_unlock();
return ret;
}
static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
struct perf_mmap_data *data;
unsigned long size;
int i;
WARN_ON(atomic_read(&counter->mmap_count));
size = sizeof(struct perf_mmap_data);
size += nr_pages * sizeof(void *);
data = kzalloc(size, GFP_KERNEL);
if (!data)
goto fail;
data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
if (!data->user_page)
goto fail_user_page;
for (i = 0; i < nr_pages; i++) {
data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
if (!data->data_pages[i])
goto fail_data_pages;
}
data->nr_pages = nr_pages;
rcu_assign_pointer(counter->data, data);
return 0;
fail_data_pages:
for (i--; i >= 0; i--)
free_page((unsigned long)data->data_pages[i]);
free_page((unsigned long)data->user_page);
fail_user_page:
kfree(data);
fail:
return -ENOMEM;
}
static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
struct perf_mmap_data *data = container_of(rcu_head,
struct perf_mmap_data, rcu_head);
int i;
free_page((unsigned long)data->user_page);
for (i = 0; i < data->nr_pages; i++)
free_page((unsigned long)data->data_pages[i]);
kfree(data);
}
static void perf_mmap_data_free(struct perf_counter *counter)
{
struct perf_mmap_data *data = counter->data;
WARN_ON(atomic_read(&counter->mmap_count));
rcu_assign_pointer(counter->data, NULL);
call_rcu(&data->rcu_head, __perf_mmap_data_free);
}
static void perf_mmap_open(struct vm_area_struct *vma)
{
struct perf_counter *counter = vma->vm_file->private_data;
atomic_inc(&counter->mmap_count);
}
static void perf_mmap_close(struct vm_area_struct *vma)
{
struct perf_counter *counter = vma->vm_file->private_data;
if (atomic_dec_and_mutex_lock(&counter->mmap_count,
&counter->mmap_mutex)) {
vma->vm_mm->locked_vm -= counter->data->nr_pages + 1;
perf_mmap_data_free(counter);
mutex_unlock(&counter->mmap_mutex);
}
}
static struct vm_operations_struct perf_mmap_vmops = {
.open = perf_mmap_open,
.close = perf_mmap_close,
.fault = perf_mmap_fault,
};
static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
struct perf_counter *counter = file->private_data;
unsigned long vma_size;
unsigned long nr_pages;
unsigned long locked, lock_limit;
int ret = 0;
if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
return -EINVAL;
vma_size = vma->vm_end - vma->vm_start;
nr_pages = (vma_size / PAGE_SIZE) - 1;
/*
* If we have data pages ensure they're a power-of-two number, so we
* can do bitmasks instead of modulo.
*/
if (nr_pages != 0 && !is_power_of_2(nr_pages))
return -EINVAL;
if (vma_size != PAGE_SIZE * (1 + nr_pages))
return -EINVAL;
if (vma->vm_pgoff != 0)
return -EINVAL;
mutex_lock(&counter->mmap_mutex);
if (atomic_inc_not_zero(&counter->mmap_count)) {
if (nr_pages != counter->data->nr_pages)
ret = -EINVAL;
goto unlock;
}
locked = vma->vm_mm->locked_vm;
locked += nr_pages + 1;
lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
lock_limit >>= PAGE_SHIFT;
if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
ret = -EPERM;
goto unlock;
}
WARN_ON(counter->data);
ret = perf_mmap_data_alloc(counter, nr_pages);
if (ret)
goto unlock;
atomic_set(&counter->mmap_count, 1);
vma->vm_mm->locked_vm += nr_pages + 1;
unlock:
mutex_unlock(&counter->mmap_mutex);
vma->vm_flags &= ~VM_MAYWRITE;
vma->vm_flags |= VM_RESERVED;
vma->vm_ops = &perf_mmap_vmops;
return ret;
}
static int perf_fasync(int fd, struct file *filp, int on)
{
struct perf_counter *counter = filp->private_data;
struct inode *inode = filp->f_path.dentry->d_inode;
int retval;
mutex_lock(&inode->i_mutex);
retval = fasync_helper(fd, filp, on, &counter->fasync);
mutex_unlock(&inode->i_mutex);
if (retval < 0)
return retval;
return 0;
}
static const struct file_operations perf_fops = {
.release = perf_release,
.read = perf_read,
.poll = perf_poll,
.unlocked_ioctl = perf_ioctl,
.compat_ioctl = perf_ioctl,
.mmap = perf_mmap,
.fasync = perf_fasync,
};
/*
* Perf counter wakeup
*
* If there's data, ensure we set the poll() state and publish everything
* to user-space before waking everybody up.
*/
void perf_counter_wakeup(struct perf_counter *counter)
{
struct perf_mmap_data *data;
rcu_read_lock();
data = rcu_dereference(counter->data);
if (data) {
atomic_set(&data->wakeup, POLL_IN);
/*
* Ensure all data writes are issued before updating the
* user-space data head information. The matching rmb()
* will be in userspace after reading this value.
*/
smp_wmb();
data->user_page->data_head = atomic_read(&data->head);
}
rcu_read_unlock();
wake_up_all(&counter->waitq);
if (counter->pending_kill) {
kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
counter->pending_kill = 0;
}
}
/*
* Pending wakeups
*
* Handle the case where we need to wakeup up from NMI (or rq->lock) context.
*
* The NMI bit means we cannot possibly take locks. Therefore, maintain a
* single linked list and use cmpxchg() to add entries lockless.
*/
static void perf_pending_counter(struct perf_pending_entry *entry)
{
struct perf_counter *counter = container_of(entry,
struct perf_counter, pending);
if (counter->pending_disable) {
counter->pending_disable = 0;
perf_counter_disable(counter);
}
if (counter->pending_wakeup) {
counter->pending_wakeup = 0;
perf_counter_wakeup(counter);
}
}
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
PENDING_TAIL,
};
static void perf_pending_queue(struct perf_pending_entry *entry,
void (*func)(struct perf_pending_entry *))
{
struct perf_pending_entry **head;
if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
return;
entry->func = func;
head = &get_cpu_var(perf_pending_head);
do {
entry->next = *head;
} while (cmpxchg(head, entry->next, entry) != entry->next);
set_perf_counter_pending();
put_cpu_var(perf_pending_head);
}
static int __perf_pending_run(void)
{
struct perf_pending_entry *list;
int nr = 0;
list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
while (list != PENDING_TAIL) {
void (*func)(struct perf_pending_entry *);
struct perf_pending_entry *entry = list;
list = list->next;
func = entry->func;
entry->next = NULL;
/*
* Ensure we observe the unqueue before we issue the wakeup,
* so that we won't be waiting forever.
* -- see perf_not_pending().
*/
smp_wmb();
func(entry);
nr++;
}
return nr;
}
static inline int perf_not_pending(struct perf_counter *counter)
{
/*
* If we flush on whatever cpu we run, there is a chance we don't
* need to wait.
*/
get_cpu();
__perf_pending_run();
put_cpu();
/*
* Ensure we see the proper queue state before going to sleep
* so that we do not miss the wakeup. -- see perf_pending_handle()
*/
smp_rmb();
return counter->pending.next == NULL;
}
static void perf_pending_sync(struct perf_counter *counter)
{
wait_event(counter->waitq, perf_not_pending(counter));
}
void perf_counter_do_pending(void)
{
__perf_pending_run();
}
/*
* Callchain support -- arch specific
*/
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
return NULL;
}
/*
* Output
*/
struct perf_output_handle {
struct perf_counter *counter;
struct perf_mmap_data *data;
unsigned int offset;
unsigned int head;
int wakeup;
int nmi;
int overflow;
};
static inline void __perf_output_wakeup(struct perf_output_handle *handle)
{
if (handle->nmi) {
handle->counter->pending_wakeup = 1;
perf_pending_queue(&handle->counter->pending,
perf_pending_counter);
} else
perf_counter_wakeup(handle->counter);
}
static int perf_output_begin(struct perf_output_handle *handle,
struct perf_counter *counter, unsigned int size,
int nmi, int overflow)
{
struct perf_mmap_data *data;
unsigned int offset, head;
rcu_read_lock();
data = rcu_dereference(counter->data);
if (!data)
goto out;
handle->counter = counter;
handle->nmi = nmi;
handle->overflow = overflow;
if (!data->nr_pages)
goto fail;
do {
offset = head = atomic_read(&data->head);
head += size;
} while (atomic_cmpxchg(&data->head, offset, head) != offset);
handle->data = data;
handle->offset = offset;
handle->head = head;
handle->wakeup = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
return 0;
fail:
__perf_output_wakeup(handle);
out:
rcu_read_unlock();
return -ENOSPC;
}
static void perf_output_copy(struct perf_output_handle *handle,
void *buf, unsigned int len)
{
unsigned int pages_mask;
unsigned int offset;
unsigned int size;
void **pages;
offset = handle->offset;
pages_mask = handle->data->nr_pages - 1;
pages = handle->data->data_pages;
do {
unsigned int page_offset;
int nr;
nr = (offset >> PAGE_SHIFT) & pages_mask;
page_offset = offset & (PAGE_SIZE - 1);
size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
memcpy(pages[nr] + page_offset, buf, size);
len -= size;
buf += size;
offset += size;
} while (len);
handle->offset = offset;
WARN_ON_ONCE(handle->offset > handle->head);
}
#define perf_output_put(handle, x) \
perf_output_copy((handle), &(x), sizeof(x))
static void perf_output_end(struct perf_output_handle *handle)
{
int wakeup_events = handle->counter->hw_event.wakeup_events;
if (handle->overflow && wakeup_events) {
int events = atomic_inc_return(&handle->data->events);
if (events >= wakeup_events) {
atomic_sub(wakeup_events, &handle->data->events);
__perf_output_wakeup(handle);
}
} else if (handle->wakeup)
__perf_output_wakeup(handle);
rcu_read_unlock();
}
static void perf_counter_output(struct perf_counter *counter,
int nmi, struct pt_regs *regs)
{
int ret;
u64 record_type = counter->hw_event.record_type;
struct perf_output_handle handle;
struct perf_event_header header;
u64 ip;
struct {
u32 pid, tid;
} tid_entry;
struct {
u64 event;
u64 counter;
} group_entry;
struct perf_callchain_entry *callchain = NULL;
int callchain_size = 0;
u64 time;
header.type = PERF_EVENT_COUNTER_OVERFLOW;
header.size = sizeof(header);
if (record_type & PERF_RECORD_IP) {
ip = instruction_pointer(regs);
header.type |= __PERF_EVENT_IP;
header.size += sizeof(ip);
}
if (record_type & PERF_RECORD_TID) {
/* namespace issues */
tid_entry.pid = current->group_leader->pid;
tid_entry.tid = current->pid;
header.type |= __PERF_EVENT_TID;
header.size += sizeof(tid_entry);
}
if (record_type & PERF_RECORD_GROUP) {
header.type |= __PERF_EVENT_GROUP;
header.size += sizeof(u64) +
counter->nr_siblings * sizeof(group_entry);
}
if (record_type & PERF_RECORD_CALLCHAIN) {
callchain = perf_callchain(regs);
if (callchain) {
callchain_size = (1 + callchain->nr) * sizeof(u64);
header.type |= __PERF_EVENT_CALLCHAIN;
header.size += callchain_size;
}
}
if (record_type & PERF_RECORD_TIME) {
/*
* Maybe do better on x86 and provide cpu_clock_nmi()
*/
time = sched_clock();
header.type |= __PERF_EVENT_TIME;
header.size += sizeof(u64);
}
ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
if (ret)
return;
perf_output_put(&handle, header);
if (record_type & PERF_RECORD_IP)
perf_output_put(&handle, ip);
if (record_type & PERF_RECORD_TID)
perf_output_put(&handle, tid_entry);
if (record_type & PERF_RECORD_GROUP) {
struct perf_counter *leader, *sub;
u64 nr = counter->nr_siblings;
perf_output_put(&handle, nr);
leader = counter->group_leader;
list_for_each_entry(sub, &leader->sibling_list, list_entry) {
if (sub != counter)
sub->hw_ops->read(sub);
group_entry.event = sub->hw_event.config;
group_entry.counter = atomic64_read(&sub->count);
perf_output_put(&handle, group_entry);
}
}
if (callchain)
perf_output_copy(&handle, callchain, callchain_size);
if (record_type & PERF_RECORD_TIME)
perf_output_put(&handle, time);
perf_output_end(&handle);
}
/*
* mmap tracking
*/
struct perf_mmap_event {
struct file *file;
char *file_name;
int file_size;
struct {
struct perf_event_header header;
u32 pid;
u32 tid;
u64 start;
u64 len;
u64 pgoff;
} event;
};
static void perf_counter_mmap_output(struct perf_counter *counter,
struct perf_mmap_event *mmap_event)
{
struct perf_output_handle handle;
int size = mmap_event->event.header.size;
int ret = perf_output_begin(&handle, counter, size, 0, 0);
if (ret)
return;
perf_output_put(&handle, mmap_event->event);
perf_output_copy(&handle, mmap_event->file_name,
mmap_event->file_size);
perf_output_end(&handle);
}
static int perf_counter_mmap_match(struct perf_counter *counter,
struct perf_mmap_event *mmap_event)
{
if (counter->hw_event.mmap &&
mmap_event->event.header.type == PERF_EVENT_MMAP)
return 1;
if (counter->hw_event.munmap &&
mmap_event->event.header.type == PERF_EVENT_MUNMAP)
return 1;
return 0;
}
static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
struct perf_mmap_event *mmap_event)
{
struct perf_counter *counter;
if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
return;
rcu_read_lock();
list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
if (perf_counter_mmap_match(counter, mmap_event))
perf_counter_mmap_output(counter, mmap_event);
}
rcu_read_unlock();
}
static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
{
struct perf_cpu_context *cpuctx;
struct file *file = mmap_event->file;
unsigned int size;
char tmp[16];
char *buf = NULL;
char *name;
if (file) {
buf = kzalloc(PATH_MAX, GFP_KERNEL);
if (!buf) {
name = strncpy(tmp, "//enomem", sizeof(tmp));
goto got_name;
}
name = dentry_path(file->f_dentry, buf, PATH_MAX);
if (IS_ERR(name)) {
name = strncpy(tmp, "//toolong", sizeof(tmp));
goto got_name;
}
} else {
name = strncpy(tmp, "//anon", sizeof(tmp));
goto got_name;
}
got_name:
size = ALIGN(strlen(name), sizeof(u64));
mmap_event->file_name = name;
mmap_event->file_size = size;
mmap_event->event.header.size = sizeof(mmap_event->event) + size;
cpuctx = &get_cpu_var(perf_cpu_context);
perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
put_cpu_var(perf_cpu_context);
perf_counter_mmap_ctx(¤t->perf_counter_ctx, mmap_event);
kfree(buf);
}
void perf_counter_mmap(unsigned long addr, unsigned long len,
unsigned long pgoff, struct file *file)
{
struct perf_mmap_event mmap_event = {
.file = file,
.event = {
.header = { .type = PERF_EVENT_MMAP, },
.pid = current->group_leader->pid,
.tid = current->pid,
.start = addr,
.len = len,
.pgoff = pgoff,
},
};
perf_counter_mmap_event(&mmap_event);
}
void perf_counter_munmap(unsigned long addr, unsigned long len,
unsigned long pgoff, struct file *file)
{
struct perf_mmap_event mmap_event = {
.file = file,
.event = {
.header = { .type = PERF_EVENT_MUNMAP, },
.pid = current->group_leader->pid,
.tid = current->pid,
.start = addr,
.len = len,
.pgoff = pgoff,
},
};
perf_counter_mmap_event(&mmap_event);
}
/*
* Generic counter overflow handling.
*/
int perf_counter_overflow(struct perf_counter *counter,
int nmi, struct pt_regs *regs)
{
int events = atomic_read(&counter->event_limit);
int ret = 0;
counter->pending_kill = POLL_IN;
if (events && atomic_dec_and_test(&counter->event_limit)) {
ret = 1;
counter->pending_kill = POLL_HUP;
if (nmi) {
counter->pending_disable = 1;
perf_pending_queue(&counter->pending,
perf_pending_counter);
} else
perf_counter_disable(counter);
}
perf_counter_output(counter, nmi, regs);
return ret;
}
/*
* Generic software counter infrastructure
*/
static void perf_swcounter_update(struct perf_counter *counter)
{
struct hw_perf_counter *hwc = &counter->hw;
u64 prev, now;
s64 delta;
again:
prev = atomic64_read(&hwc->prev_count);
now = atomic64_read(&hwc->count);
if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
goto again;
delta = now - prev;
atomic64_add(delta, &counter->count);
atomic64_sub(delta, &hwc->period_left);
}
static void perf_swcounter_set_period(struct perf_counter *counter)
{
struct hw_perf_counter *hwc = &counter->hw;
s64 left = atomic64_read(&hwc->period_left);
s64 period = hwc->irq_period;
if (unlikely(left <= -period)) {
left = period;
atomic64_set(&hwc->period_left, left);
}
if (unlikely(left <= 0)) {
left += period;
atomic64_add(period, &hwc->period_left);
}
atomic64_set(&hwc->prev_count, -left);
atomic64_set(&hwc->count, -left);
}
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
enum hrtimer_restart ret = HRTIMER_RESTART;
struct perf_counter *counter;
struct pt_regs *regs;
counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
counter->hw_ops->read(counter);
regs = get_irq_regs();
/*
* In case we exclude kernel IPs or are somehow not in interrupt
* context, provide the next best thing, the user IP.
*/
if ((counter->hw_event.exclude_kernel || !regs) &&
!counter->hw_event.exclude_user)
regs = task_pt_regs(current);
if (regs) {
if (perf_counter_overflow(counter, 0, regs))
ret = HRTIMER_NORESTART;
}
hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
return ret;
}
static void perf_swcounter_overflow(struct perf_counter *counter,
int nmi, struct pt_regs *regs)
{
perf_swcounter_update(counter);
perf_swcounter_set_period(counter);
if (perf_counter_overflow(counter, nmi, regs))
/* soft-disable the counter */
;
}
static int perf_swcounter_match(struct perf_counter *counter,
enum perf_event_types type,
u32 event, struct pt_regs *regs)
{
if (counter->state != PERF_COUNTER_STATE_ACTIVE)
return 0;
if (perf_event_raw(&counter->hw_event))
return 0;
if (perf_event_type(&counter->hw_event) != type)
return 0;
if (perf_event_id(&counter->hw_event) != event)
return 0;
if (counter->hw_event.exclude_user && user_mode(regs))
return 0;
if (counter->hw_event.exclude_kernel && !user_mode(regs))
return 0;
return 1;
}
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
int nmi, struct pt_regs *regs)
{
int neg = atomic64_add_negative(nr, &counter->hw.count);
if (counter->hw.irq_period && !neg)
perf_swcounter_overflow(counter, nmi, regs);
}
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
enum perf_event_types type, u32 event,
u64 nr, int nmi, struct pt_regs *regs)
{
struct perf_counter *counter;
if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
return;
rcu_read_lock();
list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
if (perf_swcounter_match(counter, type, event, regs))
perf_swcounter_add(counter, nr, nmi, regs);
}
rcu_read_unlock();
}
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
if (in_nmi())
return &cpuctx->recursion[3];
if (in_irq())
return &cpuctx->recursion[2];
if (in_softirq())
return &cpuctx->recursion[1];
return &cpuctx->recursion[0];
}
static void __perf_swcounter_event(enum perf_event_types type, u32 event,
u64 nr, int nmi, struct pt_regs *regs)
{
struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
int *recursion = perf_swcounter_recursion_context(cpuctx);
if (*recursion)
goto out;
(*recursion)++;
barrier();
perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
if (cpuctx->task_ctx) {
perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
nr, nmi, regs);
}
barrier();
(*recursion)--;
out:
put_cpu_var(perf_cpu_context);
}
void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
{
__perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
}
static void perf_swcounter_read(struct perf_counter *counter)
{
perf_swcounter_update(counter);
}
static int perf_swcounter_enable(struct perf_counter *counter)
{
perf_swcounter_set_period(counter);
return 0;
}
static void perf_swcounter_disable(struct perf_counter *counter)
{
perf_swcounter_update(counter);
}
static const struct hw_perf_counter_ops perf_ops_generic = {
.enable = perf_swcounter_enable,
.disable = perf_swcounter_disable,
.read = perf_swcounter_read,
};
/*
* Software counter: cpu wall time clock
*/
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
int cpu = raw_smp_processor_id();
s64 prev;
u64 now;
now = cpu_clock(cpu);
prev = atomic64_read(&counter->hw.prev_count);
atomic64_set(&counter->hw.prev_count, now);
atomic64_add(now - prev, &counter->count);
}
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
struct hw_perf_counter *hwc = &counter->hw;
int cpu = raw_smp_processor_id();
atomic64_set(&hwc->prev_count, cpu_clock(cpu));
hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
hwc->hrtimer.function = perf_swcounter_hrtimer;
if (hwc->irq_period) {
__hrtimer_start_range_ns(&hwc->hrtimer,
ns_to_ktime(hwc->irq_period), 0,
HRTIMER_MODE_REL, 0);
}
return 0;
}
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
hrtimer_cancel(&counter->hw.hrtimer);
cpu_clock_perf_counter_update(counter);
}
static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
cpu_clock_perf_counter_update(counter);
}
static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
.enable = cpu_clock_perf_counter_enable,
.disable = cpu_clock_perf_counter_disable,
.read = cpu_clock_perf_counter_read,
};
/*
* Software counter: task time clock
*/
/*
* Called from within the scheduler:
*/
static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
{
struct task_struct *curr = counter->task;
u64 delta;
delta = __task_delta_exec(curr, update);
return curr->se.sum_exec_runtime + delta;
}
static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
{
u64 prev;
s64 delta;
prev = atomic64_read(&counter->hw.prev_count);
atomic64_set(&counter->hw.prev_count, now);
delta = now - prev;
atomic64_add(delta, &counter->count);
}
static int task_clock_perf_counter_enable(struct perf_counter *counter)
{
struct hw_perf_counter *hwc = &counter->hw;
atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
hwc->hrtimer.function = perf_swcounter_hrtimer;
if (hwc->irq_period) {
__hrtimer_start_range_ns(&hwc->hrtimer,
ns_to_ktime(hwc->irq_period), 0,
HRTIMER_MODE_REL, 0);
}
return 0;
}
static void task_clock_perf_counter_disable(struct perf_counter *counter)
{
hrtimer_cancel(&counter->hw.hrtimer);
task_clock_perf_counter_update(counter,
task_clock_perf_counter_val(counter, 0));
}
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
task_clock_perf_counter_update(counter,
task_clock_perf_counter_val(counter, 1));
}
static const struct hw_perf_counter_ops perf_ops_task_clock = {
.enable = task_clock_perf_counter_enable,
.disable = task_clock_perf_counter_disable,
.read = task_clock_perf_counter_read,
};
/*
* Software counter: cpu migrations
*/
static inline u64 get_cpu_migrations(struct perf_counter *counter)
{
struct task_struct *curr = counter->ctx->task;
if (curr)
return curr->se.nr_migrations;
return cpu_nr_migrations(smp_processor_id());
}
static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
{
u64 prev, now;
s64 delta;
prev = atomic64_read(&counter->hw.prev_count);
now = get_cpu_migrations(counter);
atomic64_set(&counter->hw.prev_count, now);
delta = now - prev;
atomic64_add(delta, &counter->count);
}
static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
{
cpu_migrations_perf_counter_update(counter);
}
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
{
if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
atomic64_set(&counter->hw.prev_count,
get_cpu_migrations(counter));
return 0;
}
static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
{
cpu_migrations_perf_counter_update(counter);
}
static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
.enable = cpu_migrations_perf_counter_enable,
.disable = cpu_migrations_perf_counter_disable,
.read = cpu_migrations_perf_counter_read,
};
#ifdef CONFIG_EVENT_PROFILE
void perf_tpcounter_event(int event_id)
{
struct pt_regs *regs = get_irq_regs();
if (!regs)
regs = task_pt_regs(current);
__perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
}
extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);
static void tp_perf_counter_destroy(struct perf_counter *counter)
{
ftrace_profile_disable(perf_event_id(&counter->hw_event));
}
static const struct hw_perf_counter_ops *
tp_perf_counter_init(struct perf_counter *counter)
{
int event_id = perf_event_id(&counter->hw_event);
int ret;
ret = ftrace_profile_enable(event_id);
if (ret)
return NULL;
counter->destroy = tp_perf_counter_destroy;
counter->hw.irq_period = counter->hw_event.irq_period;
return &perf_ops_generic;
}
#else
static const struct hw_perf_counter_ops *
tp_perf_counter_init(struct perf_counter *counter)
{
return NULL;
}
#endif
static const struct hw_perf_counter_ops *
sw_perf_counter_init(struct perf_counter *counter)
{
struct perf_counter_hw_event *hw_event = &counter->hw_event;
const struct hw_perf_counter_ops *hw_ops = NULL;
struct hw_perf_counter *hwc = &counter->hw;
/*
* Software counters (currently) can't in general distinguish
* between user, kernel and hypervisor events.
* However, context switches and cpu migrations are considered
* to be kernel events, and page faults are never hypervisor
* events.
*/
switch (perf_event_id(&counter->hw_event)) {
case PERF_COUNT_CPU_CLOCK:
hw_ops = &perf_ops_cpu_clock;
if (hw_event->irq_period && hw_event->irq_period < 10000)
hw_event->irq_period = 10000;
break;
case PERF_COUNT_TASK_CLOCK:
/*
* If the user instantiates this as a per-cpu counter,
* use the cpu_clock counter instead.
*/
if (counter->ctx->task)
hw_ops = &perf_ops_task_clock;
else
hw_ops = &perf_ops_cpu_clock;
if (hw_event->irq_period && hw_event->irq_period < 10000)
hw_event->irq_period = 10000;
break;
case PERF_COUNT_PAGE_FAULTS:
case PERF_COUNT_PAGE_FAULTS_MIN:
case PERF_COUNT_PAGE_FAULTS_MAJ:
case PERF_COUNT_CONTEXT_SWITCHES:
hw_ops = &perf_ops_generic;
break;
case PERF_COUNT_CPU_MIGRATIONS:
if (!counter->hw_event.exclude_kernel)
hw_ops = &perf_ops_cpu_migrations;
break;
}
if (hw_ops)
hwc->irq_period = hw_event->irq_period;
return hw_ops;
}
/*
* Allocate and initialize a counter structure
*/
static struct perf_counter *
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
int cpu,
struct perf_counter_context *ctx,
struct perf_counter *group_leader,
gfp_t gfpflags)
{
const struct hw_perf_counter_ops *hw_ops;
struct perf_counter *counter;
long err;
counter = kzalloc(sizeof(*counter), gfpflags);
if (!counter)
return ERR_PTR(-ENOMEM);
/*
* Single counters are their own group leaders, with an
* empty sibling list:
*/
if (!group_leader)
group_leader = counter;
mutex_init(&counter->mutex);
INIT_LIST_HEAD(&counter->list_entry);
INIT_LIST_HEAD(&counter->event_entry);
INIT_LIST_HEAD(&counter->sibling_list);
init_waitqueue_head(&counter->waitq);
mutex_init(&counter->mmap_mutex);
INIT_LIST_HEAD(&counter->child_list);
counter->cpu = cpu;
counter->hw_event = *hw_event;
counter->group_leader = group_leader;
counter->hw_ops = NULL;
counter->ctx = ctx;
counter->state = PERF_COUNTER_STATE_INACTIVE;
if (hw_event->disabled)
counter->state = PERF_COUNTER_STATE_OFF;
hw_ops = NULL;
if (perf_event_raw(hw_event)) {
hw_ops = hw_perf_counter_init(counter);
goto done;
}
switch (perf_event_type(hw_event)) {
case PERF_TYPE_HARDWARE:
hw_ops = hw_perf_counter_init(counter);
break;
case PERF_TYPE_SOFTWARE:
hw_ops = sw_perf_counter_init(counter);
break;
case PERF_TYPE_TRACEPOINT:
hw_ops = tp_perf_counter_init(counter);
break;
}
done:
err = 0;
if (!hw_ops)
err = -EINVAL;
else if (IS_ERR(hw_ops))
err = PTR_ERR(hw_ops);
if (err) {
kfree(counter);
return ERR_PTR(err);
}
counter->hw_ops = hw_ops;
return counter;
}
/**
* sys_perf_counter_open - open a performance counter, associate it to a task/cpu
*
* @hw_event_uptr: event type attributes for monitoring/sampling
* @pid: target pid
* @cpu: target cpu
* @group_fd: group leader counter fd
*/
SYSCALL_DEFINE5(perf_counter_open,
const struct perf_counter_hw_event __user *, hw_event_uptr,
pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
{
struct perf_counter *counter, *group_leader;
struct perf_counter_hw_event hw_event;
struct perf_counter_context *ctx;
struct file *counter_file = NULL;
struct file *group_file = NULL;
int fput_needed = 0;
int fput_needed2 = 0;
int ret;
/* for future expandability... */
if (flags)
return -EINVAL;
if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
return -EFAULT;
/*
* Get the target context (task or percpu):
*/
ctx = find_get_context(pid, cpu);
if (IS_ERR(ctx))
return PTR_ERR(ctx);
/*
* Look up the group leader (we will attach this counter to it):
*/
group_leader = NULL;
if (group_fd != -1) {
ret = -EINVAL;
group_file = fget_light(group_fd, &fput_needed);
if (!group_file)
goto err_put_context;
if (group_file->f_op != &perf_fops)
goto err_put_context;
group_leader = group_file->private_data;
/*
* Do not allow a recursive hierarchy (this new sibling
* becoming part of another group-sibling):
*/
if (group_leader->group_leader != group_leader)
goto err_put_context;
/*
* Do not allow to attach to a group in a different
* task or CPU context:
*/
if (group_leader->ctx != ctx)
goto err_put_context;
/*
* Only a group leader can be exclusive or pinned
*/
if (hw_event.exclusive || hw_event.pinned)
goto err_put_context;
}
counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
GFP_KERNEL);
ret = PTR_ERR(counter);
if (IS_ERR(counter))
goto err_put_context;
ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
if (ret < 0)
goto err_free_put_context;
counter_file = fget_light(ret, &fput_needed2);
if (!counter_file)
goto err_free_put_context;
counter->filp = counter_file;
mutex_lock(&ctx->mutex);
perf_install_in_context(ctx, counter, cpu);
mutex_unlock(&ctx->mutex);
fput_light(counter_file, fput_needed2);
out_fput:
fput_light(group_file, fput_needed);
return ret;
err_free_put_context:
kfree(counter);
err_put_context:
put_context(ctx);
goto out_fput;
}
/*
* Initialize the perf_counter context in a task_struct:
*/
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
struct task_struct *task)
{
memset(ctx, 0, sizeof(*ctx));
spin_lock_init(&ctx->lock);
mutex_init(&ctx->mutex);
INIT_LIST_HEAD(&ctx->counter_list);
INIT_LIST_HEAD(&ctx->event_list);
ctx->task = task;
}
/*
* inherit a counter from parent task to child task:
*/
static struct perf_counter *
inherit_counter(struct perf_counter *parent_counter,
struct task_struct *parent,
struct perf_counter_context *parent_ctx,
struct task_struct *child,
struct perf_counter *group_leader,
struct perf_counter_context *child_ctx)
{
struct perf_counter *child_counter;
/*
* Instead of creating recursive hierarchies of counters,
* we link inherited counters back to the original parent,
* which has a filp for sure, which we use as the reference
* count:
*/
if (parent_counter->parent)
parent_counter = parent_counter->parent;
child_counter = perf_counter_alloc(&parent_counter->hw_event,
parent_counter->cpu, child_ctx,
group_leader, GFP_KERNEL);
if (IS_ERR(child_counter))
return child_counter;
/*
* Link it up in the child's context:
*/
child_counter->task = child;
add_counter_to_ctx(child_counter, child_ctx);
child_counter->parent = parent_counter;
/*
* inherit into child's child as well:
*/
child_counter->hw_event.inherit = 1;
/*
* Get a reference to the parent filp - we will fput it
* when the child counter exits. This is safe to do because
* we are in the parent and we know that the filp still
* exists and has a nonzero count:
*/
atomic_long_inc(&parent_counter->filp->f_count);
/*
* Link this into the parent counter's child list
*/
mutex_lock(&parent_counter->mutex);
list_add_tail(&child_counter->child_list, &parent_counter->child_list);
/*
* Make the child state follow the state of the parent counter,
* not its hw_event.disabled bit. We hold the parent's mutex,
* so we won't race with perf_counter_{en,dis}able_family.
*/
if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
child_counter->state = PERF_COUNTER_STATE_INACTIVE;
else
child_counter->state = PERF_COUNTER_STATE_OFF;
mutex_unlock(&parent_counter->mutex);
return child_counter;
}
static int inherit_group(struct perf_counter *parent_counter,
struct task_struct *parent,
struct perf_counter_context *parent_ctx,
struct task_struct *child,
struct perf_counter_context *child_ctx)
{
struct perf_counter *leader;
struct perf_counter *sub;
struct perf_counter *child_ctr;
leader = inherit_counter(parent_counter, parent, parent_ctx,
child, NULL, child_ctx);
if (IS_ERR(leader))
return PTR_ERR(leader);
list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
child_ctr = inherit_counter(sub, parent, parent_ctx,
child, leader, child_ctx);
if (IS_ERR(child_ctr))
return PTR_ERR(child_ctr);
}
return 0;
}
static void sync_child_counter(struct perf_counter *child_counter,
struct perf_counter *parent_counter)
{
u64 parent_val, child_val;
parent_val = atomic64_read(&parent_counter->count);
child_val = atomic64_read(&child_counter->count);
/*
* Add back the child's count to the parent's count:
*/
atomic64_add(child_val, &parent_counter->count);
atomic64_add(child_counter->total_time_enabled,
&parent_counter->child_total_time_enabled);
atomic64_add(child_counter->total_time_running,
&parent_counter->child_total_time_running);
/*
* Remove this counter from the parent's list
*/
mutex_lock(&parent_counter->mutex);
list_del_init(&child_counter->child_list);
mutex_unlock(&parent_counter->mutex);
/*
* Release the parent counter, if this was the last
* reference to it.
*/
fput(parent_counter->filp);
}
static void
__perf_counter_exit_task(struct task_struct *child,
struct perf_counter *child_counter,
struct perf_counter_context *child_ctx)
{
struct perf_counter *parent_counter;
struct perf_counter *sub, *tmp;
/*
* If we do not self-reap then we have to wait for the
* child task to unschedule (it will happen for sure),
* so that its counter is at its final count. (This
* condition triggers rarely - child tasks usually get
* off their CPU before the parent has a chance to
* get this far into the reaping action)
*/
if (child != current) {
wait_task_inactive(child, 0);
list_del_init(&child_counter->list_entry);
update_counter_times(child_counter);
} else {
struct perf_cpu_context *cpuctx;
unsigned long flags;
u64 perf_flags;
/*
* Disable and unlink this counter.
*
* Be careful about zapping the list - IRQ/NMI context
* could still be processing it:
*/
curr_rq_lock_irq_save(&flags);
perf_flags = hw_perf_save_disable();
cpuctx = &__get_cpu_var(perf_cpu_context);
group_sched_out(child_counter, cpuctx, child_ctx);
update_counter_times(child_counter);
list_del_init(&child_counter->list_entry);
child_ctx->nr_counters--;
hw_perf_restore(perf_flags);
curr_rq_unlock_irq_restore(&flags);
}
parent_counter = child_counter->parent;
/*
* It can happen that parent exits first, and has counters
* that are still around due to the child reference. These
* counters need to be zapped - but otherwise linger.
*/
if (parent_counter) {
sync_child_counter(child_counter, parent_counter);
list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
list_entry) {
if (sub->parent) {
sync_child_counter(sub, sub->parent);
free_counter(sub);
}
}
free_counter(child_counter);
}
}
/*
* When a child task exits, feed back counter values to parent counters.
*
* Note: we may be running in child context, but the PID is not hashed
* anymore so new counters will not be added.
*/
void perf_counter_exit_task(struct task_struct *child)
{
struct perf_counter *child_counter, *tmp;
struct perf_counter_context *child_ctx;
child_ctx = &child->perf_counter_ctx;
if (likely(!child_ctx->nr_counters))
return;
list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
list_entry)
__perf_counter_exit_task(child, child_counter, child_ctx);
}
/*
* Initialize the perf_counter context in task_struct
*/
void perf_counter_init_task(struct task_struct *child)
{
struct perf_counter_context *child_ctx, *parent_ctx;
struct perf_counter *counter;
struct task_struct *parent = current;
child_ctx = &child->perf_counter_ctx;
parent_ctx = &parent->perf_counter_ctx;
__perf_counter_init_context(child_ctx, child);
/*
* This is executed from the parent task context, so inherit
* counters that have been marked for cloning:
*/
if (likely(!parent_ctx->nr_counters))
return;
/*
* Lock the parent list. No need to lock the child - not PID
* hashed yet and not running, so nobody can access it.
*/
mutex_lock(&parent_ctx->mutex);
/*
* We dont have to disable NMIs - we are only looking at
* the list, not manipulating it:
*/
list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
if (!counter->hw_event.inherit)
continue;
if (inherit_group(counter, parent,
parent_ctx, child, child_ctx))
break;
}
mutex_unlock(&parent_ctx->mutex);
}
static void __cpuinit perf_counter_init_cpu(int cpu)
{
struct perf_cpu_context *cpuctx;
cpuctx = &per_cpu(perf_cpu_context, cpu);
__perf_counter_init_context(&cpuctx->ctx, NULL);
mutex_lock(&perf_resource_mutex);
cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
mutex_unlock(&perf_resource_mutex);
hw_perf_counter_setup(cpu);
}
#ifdef CONFIG_HOTPLUG_CPU
static void __perf_counter_exit_cpu(void *info)
{
struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
struct perf_counter_context *ctx = &cpuctx->ctx;
struct perf_counter *counter, *tmp;
list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
__perf_counter_remove_from_context(counter);
}
static void perf_counter_exit_cpu(int cpu)
{
struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
struct perf_counter_context *ctx = &cpuctx->ctx;
mutex_lock(&ctx->mutex);
smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
mutex_unlock(&ctx->mutex);
}
#else
static inline void perf_counter_exit_cpu(int cpu) { }
#endif
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
unsigned int cpu = (long)hcpu;
switch (action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN:
perf_counter_init_cpu(cpu);
break;
case CPU_DOWN_PREPARE:
case CPU_DOWN_PREPARE_FROZEN:
perf_counter_exit_cpu(cpu);
break;
default:
break;
}
return NOTIFY_OK;
}
static struct notifier_block __cpuinitdata perf_cpu_nb = {
.notifier_call = perf_cpu_notify,
};
static int __init perf_counter_init(void)
{
perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
(void *)(long)smp_processor_id());
register_cpu_notifier(&perf_cpu_nb);
return 0;
}
early_initcall(perf_counter_init);
static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
return sprintf(buf, "%d\n", perf_reserved_percpu);
}
static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
const char *buf,
size_t count)
{
struct perf_cpu_context *cpuctx;
unsigned long val;
int err, cpu, mpt;
err = strict_strtoul(buf, 10, &val);
if (err)
return err;
if (val > perf_max_counters)
return -EINVAL;
mutex_lock(&perf_resource_mutex);
perf_reserved_percpu = val;
for_each_online_cpu(cpu) {
cpuctx = &per_cpu(perf_cpu_context, cpu);
spin_lock_irq(&cpuctx->ctx.lock);
mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
perf_max_counters - perf_reserved_percpu);
cpuctx->max_pertask = mpt;
spin_unlock_irq(&cpuctx->ctx.lock);
}
mutex_unlock(&perf_resource_mutex);
return count;
}
static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
return sprintf(buf, "%d\n", perf_overcommit);
}
static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
unsigned long val;
int err;
err = strict_strtoul(buf, 10, &val);
if (err)
return err;
if (val > 1)
return -EINVAL;
mutex_lock(&perf_resource_mutex);
perf_overcommit = val;
mutex_unlock(&perf_resource_mutex);
return count;
}
static SYSDEV_CLASS_ATTR(
reserve_percpu,
0644,
perf_show_reserve_percpu,
perf_set_reserve_percpu
);
static SYSDEV_CLASS_ATTR(
overcommit,
0644,
perf_show_overcommit,
perf_set_overcommit
);
static struct attribute *perfclass_attrs[] = {
&attr_reserve_percpu.attr,
&attr_overcommit.attr,
NULL
};
static struct attribute_group perfclass_attr_group = {
.attrs = perfclass_attrs,
.name = "perf_counters",
};
static int __init perf_counter_sysfs_init(void)
{
return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
&perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);