summaryrefslogblamecommitdiff
path: root/kernel/irq/handle.c
blob: 436c7d93c00a9555f245da72ce9efced1bffd47b (plain) (tree)































                                                                
                                       























































































                                                                             






































































                                                                         
/*
 * linux/kernel/irq/handle.c
 *
 * Copyright (C) 1992, 1998-2004 Linus Torvalds, Ingo Molnar
 *
 * This file contains the core interrupt handling code.
 */

#include <linux/irq.h>
#include <linux/module.h>
#include <linux/random.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>

#include "internals.h"

/*
 * Linux has a controller-independent interrupt architecture.
 * Every controller has a 'controller-template', that is used
 * by the main code to do the right thing. Each driver-visible
 * interrupt source is transparently wired to the apropriate
 * controller. Thus drivers need not be aware of the
 * interrupt-controller.
 *
 * The code is designed to be easily extended with new/different
 * interrupt controllers, without having to do assembly magic or
 * having to touch the generic code.
 *
 * Controller mappings for all interrupt sources:
 */
irq_desc_t irq_desc[NR_IRQS] __cacheline_aligned = {
	[0 ... NR_IRQS-1] = {
		.status = IRQ_DISABLED,
		.handler = &no_irq_type,
		.lock = SPIN_LOCK_UNLOCKED
	}
};

/*
 * Generic 'no controller' code
 */
static void end_none(unsigned int irq) { }
static void enable_none(unsigned int irq) { }
static void disable_none(unsigned int irq) { }
static void shutdown_none(unsigned int irq) { }
static unsigned int startup_none(unsigned int irq) { return 0; }

static void ack_none(unsigned int irq)
{
	/*
	 * 'what should we do if we get a hw irq event on an illegal vector'.
	 * each architecture has to answer this themself.
	 */
	ack_bad_irq(irq);
}

struct hw_interrupt_type no_irq_type = {
	.typename = 	"none",
	.startup = 	startup_none,
	.shutdown = 	shutdown_none,
	.enable = 	enable_none,
	.disable = 	disable_none,
	.ack = 		ack_none,
	.end = 		end_none,
	.set_affinity = NULL
};

/*
 * Special, empty irq handler:
 */
irqreturn_t no_action(int cpl, void *dev_id, struct pt_regs *regs)
{
	return IRQ_NONE;
}

/*
 * Have got an event to handle:
 */
fastcall int handle_IRQ_event(unsigned int irq, struct pt_regs *regs,
				struct irqaction *action)
{
	int ret, retval = 0, status = 0;

	if (!(action->flags & SA_INTERRUPT))
		local_irq_enable();

	do {
		ret = action->handler(irq, action->dev_id, regs);
		if (ret == IRQ_HANDLED)
			status |= action->flags;
		retval |= ret;
		action = action->next;
	} while (action);

	if (status & SA_SAMPLE_RANDOM)
		add_interrupt_randomness(irq);
	local_irq_disable();

	return retval;
}

/*
 * do_IRQ handles all normal device IRQ's (the special
 * SMP cross-CPU interrupts have their own specific
 * handlers).
 */
fastcall unsigned int __do_IRQ(unsigned int irq, struct pt_regs *regs)
{
	irq_desc_t *desc = irq_desc + irq;
	struct irqaction * action;
	unsigned int status;

	kstat_this_cpu.irqs[irq]++;
	if (desc->status & IRQ_PER_CPU) {
		irqreturn_t action_ret;

		/*
		 * No locking required for CPU-local interrupts:
		 */
		desc->handler->ack(irq);
		action_ret = handle_IRQ_event(irq, regs, desc->action);
		desc->handler->end(irq);
		return 1;
	}

	spin_lock(&desc->lock);
	desc->handler->ack(irq);
	/*
	 * REPLAY is when Linux resends an IRQ that was dropped earlier
	 * WAITING is used by probe to mark irqs that are being tested
	 */
	status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
	status |= IRQ_PENDING; /* we _want_ to handle it */

	/*
	 * If the IRQ is disabled for whatever reason, we cannot
	 * use the action we have.
	 */
	action = NULL;
	if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
		action = desc->action;
		status &= ~IRQ_PENDING; /* we commit to handling */
		status |= IRQ_INPROGRESS; /* we are handling it */
	}
	desc->status = status;

	/*
	 * If there is no IRQ handler or it was disabled, exit early.
	 * Since we set PENDING, if another processor is handling
	 * a different instance of this same irq, the other processor
	 * will take care of it.
	 */
	if (unlikely(!action))
		goto out;

	/*
	 * Edge triggered interrupts need to remember
	 * pending events.
	 * This applies to any hw interrupts that allow a second
	 * instance of the same irq to arrive while we are in do_IRQ
	 * or in the handler. But the code here only handles the _second_
	 * instance of the irq, not the third or fourth. So it is mostly
	 * useful for irq hardware that does not mask cleanly in an
	 * SMP environment.
	 */
	for (;;) {
		irqreturn_t action_ret;

		spin_unlock(&desc->lock);

		action_ret = handle_IRQ_event(irq, regs, action);

		spin_lock(&desc->lock);
		if (!noirqdebug)
			note_interrupt(irq, desc, action_ret);
		if (likely(!(desc->status & IRQ_PENDING)))
			break;
		desc->status &= ~IRQ_PENDING;
	}
	desc->status &= ~IRQ_INPROGRESS;

out:
	/*
	 * The ->end() handler has to deal with interrupts which got
	 * disabled while the handler was running.
	 */
	desc->handler->end(irq);
	spin_unlock(&desc->lock);

	return 1;
}