// SPDX-License-Identifier: GPL-2.0-only
/*
* crash.c - kernel crash support code.
* Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
*/
#include <linux/buildid.h>
#include <linux/init.h>
#include <linux/utsname.h>
#include <linux/vmalloc.h>
#include <linux/sizes.h>
#include <linux/kexec.h>
#include <linux/memory.h>
#include <linux/mm.h>
#include <linux/cpuhotplug.h>
#include <linux/memblock.h>
#include <linux/kmemleak.h>
#include <linux/crash_core.h>
#include <linux/reboot.h>
#include <linux/btf.h>
#include <linux/objtool.h>
#include <asm/page.h>
#include <asm/sections.h>
#include <crypto/sha1.h>
#include "kallsyms_internal.h"
#include "kexec_internal.h"
/* Per cpu memory for storing cpu states in case of system crash. */
note_buf_t __percpu *crash_notes;
#ifdef CONFIG_CRASH_DUMP
int kimage_crash_copy_vmcoreinfo(struct kimage *image)
{
struct page *vmcoreinfo_page;
void *safecopy;
if (!IS_ENABLED(CONFIG_CRASH_DUMP))
return 0;
if (image->type != KEXEC_TYPE_CRASH)
return 0;
/*
* For kdump, allocate one vmcoreinfo safe copy from the
* crash memory. as we have arch_kexec_protect_crashkres()
* after kexec syscall, we naturally protect it from write
* (even read) access under kernel direct mapping. But on
* the other hand, we still need to operate it when crash
* happens to generate vmcoreinfo note, hereby we rely on
* vmap for this purpose.
*/
vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
if (!vmcoreinfo_page) {
pr_warn("Could not allocate vmcoreinfo buffer\n");
return -ENOMEM;
}
safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
if (!safecopy) {
pr_warn("Could not vmap vmcoreinfo buffer\n");
return -ENOMEM;
}
image->vmcoreinfo_data_copy = safecopy;
crash_update_vmcoreinfo_safecopy(safecopy);
return 0;
}
int kexec_should_crash(struct task_struct *p)
{
/*
* If crash_kexec_post_notifiers is enabled, don't run
* crash_kexec() here yet, which must be run after panic
* notifiers in panic().
*/
if (crash_kexec_post_notifiers)
return 0;
/*
* There are 4 panic() calls in make_task_dead() path, each of which
* corresponds to each of these 4 conditions.
*/
if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
return 1;
return 0;
}
int kexec_crash_loaded(void)
{
return !!kexec_crash_image;
}
EXPORT_SYMBOL_GPL(kexec_crash_loaded);
/*
* No panic_cpu check version of crash_kexec(). This function is called
* only when panic_cpu holds the current CPU number; this is the only CPU
* which processes crash_kexec routines.
*/
void __noclone __crash_kexec(struct pt_regs *regs)
{
/* Take the kexec_lock here to prevent sys_kexec_load
* running on one cpu from replacing the crash kernel
* we are using after a panic on a different cpu.
*
* If the crash kernel was not located in a fixed area
* of memory the xchg(&kexec_crash_image) would be
* sufficient. But since I reuse the memory...
*/
if (kexec_trylock()) {
if (kexec_crash_image) {
struct pt_regs fixed_regs;
crash_setup_regs(&fixed_regs, regs);
crash_save_vmcoreinfo();
machine_crash_shutdown(&fixed_regs);
machine_kexec(kexec_crash_image);
}
kexec_unlock();
}
}
STACK_FRAME_NON_STANDARD(__crash_kexec);
__bpf_kfunc void crash_kexec(struct pt_regs *regs)
{
int old_cpu, this_cpu;
/*
* Only one CPU is allowed to execute the crash_kexec() code as with
* panic(). Otherwise parallel calls of panic() and crash_kexec()
* may stop each other. To exclude them, we use panic_cpu here too.
*/
old_cpu = PANIC_CPU_INVALID;
this_cpu = raw_smp_processor_id();
if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) {
/* This is the 1st CPU which comes here, so go ahead. */
__crash_kexec(regs);
/*
* Reset panic_cpu to allow another panic()/crash_kexec()
* call.
*/
atomic_set(&panic_cpu, PANIC_CPU_INVALID);
}
}
static inline resource_size_t crash_resource_size(const struct resource *res)
{
return !res->end ? 0 : resource_size(res);
}
int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
void **addr, unsigned long *sz)
{
Elf64_Ehdr *ehdr;
Elf64_Phdr *phdr;
unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
unsigned char *buf;
unsigned int cpu, i;
unsigned long long notes_addr;
unsigned long mstart, mend;
/* extra phdr for vmcoreinfo ELF note */
nr_phdr = nr_cpus + 1;
nr_phdr += mem->nr_ranges;
/*
* kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
* area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
* I think this is required by tools like gdb. So same physical
* memory will be mapped in two ELF headers. One will contain kernel
* text virtual addresses and other will have __va(physical) addresses.
*/
nr_phdr++;
elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
buf = vzalloc(elf_sz);
if (!buf)
return -ENOMEM;
ehdr = (Elf64_Ehdr *)buf;
phdr = (Elf64_Phdr *)(ehdr + 1);
memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
ehdr->e_ident[EI_CLASS] = ELFCLASS64;
ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
ehdr->e_ident[EI_VERSION] = EV_CURRENT;
ehdr->e_ident[EI_OSABI] = ELF_OSABI;
memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
ehdr->e_type = ET_CORE;
ehdr->e_machine = ELF_ARCH;
ehdr->e_version = EV_CURRENT;
ehdr->e_phoff = sizeof(Elf64_Ehdr);
ehdr->e_ehsize = sizeof(Elf64_Ehdr);
ehdr->e_phentsize = sizeof(Elf64_Phdr);
/* Prepare one phdr of type PT_NOTE for each possible CPU */
for_each_possible_cpu(cpu) {
phdr->p_type = PT_NOTE;
notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
phdr->p_offset = phdr->p_paddr = notes_addr;
phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
(ehdr->e_phnum)++;
phdr++;
}
/* Prepare one PT_NOTE header for vmcoreinfo */
phdr->p_type = PT_NOTE;
phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
(ehdr->e_phnum)++;
phdr++;
/* Prepare PT_LOAD type program header for kernel text region */
if (need_kernel_map) {
phdr->p_type = PT_LOAD;
phdr->p_flags = PF_R|PF_W|PF_X;
phdr->p_vaddr = (unsigned long) _text;
phdr->p_filesz = phdr->p_memsz = _end - _text;
phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
ehdr->e_phnum++;
phdr++;
}
/* Go through all the ranges in mem->ranges[] and prepare phdr */
for (i = 0; i < mem->nr_ranges; i++) {
mstart = mem->ranges[i].start;
mend = mem->ranges[i].end;
phdr->p_type = PT_LOAD;
phdr->p_flags = PF_R|PF_W|PF_X;
phdr->p_offset = mstart;
phdr->p_paddr = mstart;
phdr->p_vaddr = (unsigned long) __va(mstart);
phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
phdr->p_align = 0;
ehdr->e_phnum++;
#ifdef CONFIG_KEXEC_FILE
kexec_dprintk("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
ehdr->e_phnum, phdr->p_offset);
#endif
phdr++;
}
*addr = buf;
*sz = elf_sz;
return 0;
}
int crash_exclude_mem_range(struct crash_mem *mem,
unsigned long long mstart, unsigned long long mend)
{
int i;
unsigned long long start, end, p_start, p_end;
for (i = 0; i < mem->nr_ranges; i++) {
start = mem->ranges[i].start;
end = mem->ranges[i].end;
p_start = mstart;
p_end = mend;
if (p_start > end)
continue;
/*
* Because the memory ranges in mem->ranges are stored in
* ascending order, when we detect `p_end < start`, we can
* immediately exit the for loop, as the subsequent memory
* ranges will definitely be outside the range we are looking
* for.
*/
if (p_end < start)
break;
/* Truncate any area outside of range */
if (p_start < start)
p_start = start;
if (p_end > end)
p_end = end;
/* Found completely overlapping range */
if (p_start == start && p_end == end) {
memmove(&mem->ranges[i], &mem->ranges[i + 1],
(mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
i--;
mem->nr_ranges--;
} else if (p_start > start && p_end < end) {
/* Split original range */
if (mem->nr_ranges >= mem->max_nr_ranges)
return -ENOMEM;
memmove(&mem->ranges[i + 2], &mem->ranges[i + 1],
(mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
mem->ranges[i].end = p_start - 1;
mem->ranges[i + 1].start = p_end + 1;
mem->ranges[i + 1].end = end;
i++;
mem->nr_ranges++;
} else if (p_start != start)
mem->ranges[i].end = p_start - 1;
else
mem->ranges[i].start = p_end + 1;
}
return 0;
}
ssize_t crash_get_memory_size(void)
{
ssize_t size = 0;
if (!kexec_trylock())
return -EBUSY;
size += crash_resource_size(&crashk_res);
size += crash_resource_size(&crashk_low_res);
kexec_unlock();
return size;
}
static int __crash_shrink_memory(struct resource *old_res,
unsigned long new_size)
{
struct resource *ram_res;
ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
if (!ram_res)
return -ENOMEM;
ram_res->start = old_res->start + new_size;
ram_res->end = old_res->end;
ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
ram_res->name = "System RAM";
if (!new_size) {
release_resource(old_res);
old_res->start = 0;
old_res->end = 0;
} else {
crashk_res.end = ram_res->start - 1;
}
crash_free_reserved_phys_range(ram_res->start, ram_res->end);
insert_resource(&iomem_resource, ram_res);
return 0;
}
int crash_shrink_memory(unsigned long new_size)
{
int ret = 0;
unsigned long old_size, low_size;
if (!kexec_trylock())
return -EBUSY;
if (kexec_crash_image) {
ret = -ENOENT;
goto unlock;
}
low_size = crash_resource_size(&crashk_low_res);
old_size = crash_resource_size(&crashk_res) + low_size;
new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN);
if (new_size >= old_size) {
ret = (new_size == old_size) ? 0 : -EINVAL;
goto unlock;
}
/*
* (low_size > new_size) implies that low_size is greater than zero.
* This also means that if low_size is zero, the else branch is taken.
*
* If low_size is greater than 0, (low_size > new_size) indicates that
* crashk_low_res also needs to be shrunken. Otherwise, only crashk_res
* needs to be shrunken.
*/
if (low_size > new_size) {
ret = __crash_shrink_memory(&crashk_res, 0);
if (ret)
goto unlock;
ret = __crash_shrink_memory(&crashk_low_res, new_size);
} else {
ret = __crash_shrink_memory(&crashk_res, new_size - low_size);
}
/* Swap crashk_res and crashk_low_res if needed */
if (!crashk_res.end && crashk_low_res.end) {
crashk_res.start = crashk_low_res.start;
crashk_res.end = crashk_low_res.end;
release_resource(&crashk_low_res);
crashk_low_res.start = 0;
crashk_low_res.end = 0;
insert_resource(&iomem_resource, &crashk_res);
}
unlock:
kexec_unlock();
return ret;
}
void crash_save_cpu(struct pt_regs *regs, int cpu)
{
struct elf_prstatus prstatus;
u32 *buf;
if ((cpu < 0) || (cpu >= nr_cpu_ids))
return;
/* Using ELF notes here is opportunistic.
* I need a well defined structure format
* for the data I pass, and I need tags
* on the data to indicate what information I have
* squirrelled away. ELF notes happen to provide
* all of that, so there is no need to invent something new.
*/
buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
if (!buf)
return;
memset(&prstatus, 0, sizeof(prstatus));
prstatus.common.pr_pid = current->pid;
elf_core_copy_regs(&prstatus.pr_reg, regs);
buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
&prstatus, sizeof(prstatus));
final_note(buf);
}
static int __init crash_notes_memory_init(void)
{
/* Allocate memory for saving cpu registers. */
size_t size, align;
/*
* crash_notes could be allocated across 2 vmalloc pages when percpu
* is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
* pages are also on 2 continuous physical pages. In this case the
* 2nd part of crash_notes in 2nd page could be lost since only the
* starting address and size of crash_notes are exported through sysfs.
* Here round up the size of crash_notes to the nearest power of two
* and pass it to __alloc_percpu as align value. This can make sure
* crash_notes is allocated inside one physical page.
*/
size = sizeof(note_buf_t);
align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
/*
* Break compile if size is bigger than PAGE_SIZE since crash_notes
* definitely will be in 2 pages with that.
*/
BUILD_BUG_ON(size > PAGE_SIZE);
crash_notes = __alloc_percpu(size, align);
if (!crash_notes) {
pr_warn("Memory allocation for saving cpu register states failed\n");
return -ENOMEM;
}
return 0;
}
subsys_initcall(crash_notes_memory_init);
#endif /*CONFIG_CRASH_DUMP*/
#ifdef CONFIG_CRASH_HOTPLUG
#undef pr_fmt
#define pr_fmt(fmt) "crash hp: " fmt
/*
* Different than kexec/kdump loading/unloading/jumping/shrinking which
* usually rarely happen, there will be many crash hotplug events notified
* during one short period, e.g one memory board is hot added and memory
* regions are online. So mutex lock __crash_hotplug_lock is used to
* serialize the crash hotplug handling specifically.
*/
static DEFINE_MUTEX(__crash_hotplug_lock);
#define crash_hotplug_lock() mutex_lock(&__crash_hotplug_lock)
#define crash_hotplug_unlock() mutex_unlock(&__crash_hotplug_lock)
/*
* This routine utilized when the crash_hotplug sysfs node is read.
* It reflects the kernel's ability/permission to update the crash
* elfcorehdr directly.
*/
int crash_check_update_elfcorehdr(void)
{
int rc = 0;
crash_hotplug_lock();
/* Obtain lock while reading crash information */
if (!kexec_trylock()) {
pr_info("kexec_trylock() failed, elfcorehdr may be inaccurate\n");
crash_hotplug_unlock();
return 0;
}
if (kexec_crash_image) {
if (kexec_crash_image->file_mode)
rc = 1;
else
rc = kexec_crash_image->update_elfcorehdr;
}
/* Release lock now that update complete */
kexec_unlock();
crash_hotplug_unlock();
return rc;
}
/*
* To accurately reflect hot un/plug changes of cpu and memory resources
* (including onling and offlining of those resources), the elfcorehdr
* (which is passed to the crash kernel via the elfcorehdr= parameter)
* must be updated with the new list of CPUs and memories.
*
* In order to make changes to elfcorehdr, two conditions are needed:
* First, the segment containing the elfcorehdr must be large enough
* to permit a growing number of resources; the elfcorehdr memory size
* is based on NR_CPUS_DEFAULT and CRASH_MAX_MEMORY_RANGES.
* Second, purgatory must explicitly exclude the elfcorehdr from the
* list of segments it checks (since the elfcorehdr changes and thus
* would require an update to purgatory itself to update the digest).
*/
static void crash_handle_hotplug_event(unsigned int hp_action, unsigned int cpu)
{
struct kimage *image;
crash_hotplug_lock();
/* Obtain lock while changing crash information */
if (!kexec_trylock()) {
pr_info("kexec_trylock() failed, elfcorehdr may be inaccurate\n");
crash_hotplug_unlock();
return;
}
/* Check kdump is not loaded */
if (!kexec_crash_image)
goto out;
image = kexec_crash_image;
/* Check that updating elfcorehdr is permitted */
if (!(image->file_mode || image->update_elfcorehdr))
goto out;
if (hp_action == KEXEC_CRASH_HP_ADD_CPU ||
hp_action == KEXEC_CRASH_HP_REMOVE_CPU)
pr_debug("hp_action %u, cpu %u\n", hp_action, cpu);
else
pr_debug("hp_action %u\n", hp_action);
/*
* The elfcorehdr_index is set to -1 when the struct kimage
* is allocated. Find the segment containing the elfcorehdr,
* if not already found.
*/
if (image->elfcorehdr_index < 0) {
unsigned long mem;
unsigned char *ptr;
unsigned int n;
for (n = 0; n < image->nr_segments; n++) {
mem = image->segment[n].mem;
ptr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT));
if (ptr) {
/* The segment containing elfcorehdr */
if (memcmp(ptr, ELFMAG, SELFMAG) == 0)
image->elfcorehdr_index = (int)n;
kunmap_local(ptr);
}
}
}
if (image->elfcorehdr_index < 0) {
pr_err("unable to locate elfcorehdr segment");
goto out;
}
/* Needed in order for the segments to be updated */
arch_kexec_unprotect_crashkres();
/* Differentiate between normal load and hotplug update */
image->hp_action = hp_action;
/* Now invoke arch-specific update handler */
arch_crash_handle_hotplug_event(image);
/* No longer handling a hotplug event */
image->hp_action = KEXEC_CRASH_HP_NONE;
image->elfcorehdr_updated = true;
/* Change back to read-only */
arch_kexec_protect_crashkres();
/* Errors in the callback is not a reason to rollback state */
out:
/* Release lock now that update complete */
kexec_unlock();
crash_hotplug_unlock();
}
static int crash_memhp_notifier(struct notifier_block *nb, unsigned long val, void *v)
{
switch (val) {
case MEM_ONLINE:
crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_MEMORY,
KEXEC_CRASH_HP_INVALID_CPU);
break;
case MEM_OFFLINE:
crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_MEMORY,
KEXEC_CRASH_HP_INVALID_CPU);
break;
}
return NOTIFY_OK;
}
static struct notifier_block crash_memhp_nb = {
.notifier_call = crash_memhp_notifier,
.priority = 0
};
static int crash_cpuhp_online(unsigned int cpu)
{
crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_CPU, cpu);
return 0;
}
static int crash_cpuhp_offline(unsigned int cpu)
{
crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_CPU, cpu);
return 0;
}
static int __init crash_hotplug_init(void)
{
int result = 0;
if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
register_memory_notifier(&crash_memhp_nb);
if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
result = cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN,
"crash/cpuhp", crash_cpuhp_online, crash_cpuhp_offline);
}
return result;
}
subsys_initcall(crash_hotplug_init);
#endif